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Abstract

Selection of neural network learning rates to obtain satisfactory per-
formance from neural network controllers is a challenging problem.
To assist in the selection of learning rates, this paper investigates
robotic system sensitivity to neural network (NN) learning rate. The
work reported here consists of experimental and simulation results.
A neural network controller module, developed for the purpose of
experimental evaluation of neural network controller performance
of a CRS Robotics Corporation A460 robot, allows testing of NN
controllers using real-time iterative learning. The A460 is equipped
with a joint position proportional, integral, and derivative (PID)
controller. The neural network module supplies a signal to com-
pensate for remaining errors in the PID-controlled system. A robot
simulation, which models this PID-controlled A460 robot and NN
controller, was also developed to allow the calculation of sensitivity
to the NN learning rate. This paper describes the implementation of
three NN architectures: the error back-propagation (EBP) NN, mix-
ture of experts (ME) NN, and manipulator operations using value
encoding (MOVE) NN. The sensitivity of joint trajectory error of
three NN controllers to learning rate was investigated using both
simulation and experimentation. Similar results were obtained from
the robot experiments and the dynamic simulation. These results of
state sensitivity to NN learning rate confirm that the MOVE NN is
least sensitive to learning rate, implying that selection of suitable
learning rates for this NN architecture for the system considered is
accomplished more readily than other NN architectures.
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1. Introduction

In the mid 1980s, interest in neural networks (NNs) grew when
it was shown that nonlinear NN architectures could be trained
to produce desired outputs. Rumelhart, Hinton, and Williams
(1986) introduced the multilayer perceptron model using the
error back propagation algorithm for training the weights of
the model. Evidence was found that indicated NNs were ca-
pable of learning complex functions, which led to their use in
applications including pattern recognition, function approxi-
mation, data fitting, and control of dynamic systems. Nonlin-
ear dynamic systems, including robots executing tasks repet-
itively, were shown to benefit from the use of NN controllers,
i.e., Chen, Mills, and Smith (1996). The results from these
and other experiments reported in the literature demonstrated
a reduction in robot trajectory tracking error through the use of
a feed-forward error back-propagation (EBP) NN controller.

Within the literature, which addresses the application of
NNs for robot control systems, considerable work has been
reported that employs feed-forward EBP NNs. However, sev-
eral improvements to the EBP algorithm, as well as many new
NN architectures and learning algorithms have been devel-
oped specifically for robot control applications. Three such
NNs, discussed in this paper, are the EBP NN, mixture of
experts (ME) NN (Jacobs and Jordan 1993), and manipulator
operations using value encoding (MOVE) NN (Graham and
D’Eleuterio 1990).

When these NN control algorithms are implemented, se-
lection of a suitable NN learning rate must be made. This
objective is typically achieved through the use of trial and er-
ror processes. A learning rate, when selected too large, may
lead to overall system instability, while a learning rate that is
too low will lead to a system that does not respond quickly
to parameter changes that are to be learned, for example.
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Investigation of the sensitivity of trajectory tracking error of
the robot system under NN control to learning rate will pro-
vide insight into the selection of learning rates for robotic
systems and the effect of nonoptimal learning rates on system
performance. In our work, we have investigated the sensitiv-
ity of three different NN controller architectures to learning
rate and have determined the sensitivity of these architectures
to variations in learning rate. This knowledge will provide
users of NN controllers with a body of quantitative informa-
tion, which may simplify the selection of learning rates for
these NN architectures. For example, attempts to optimize
the learning rate, to achieve better closed-loop performance,
will be more efficient with knowledge of the sensitivity of
performance to learning rate variation. Conversely, with cer-
tain NN architectures, the closed-loop system performance is
more sensitive to learning rate, hence more care must be taken
in selection of a suitable NN learning rate. While qualitative
in nature, this work represents a first step toward a rationale
for selection of NN learning rate.

In this work, we first derive the dynamic models of a
robotic manipulator controlled with a proportional, integral,
and derivative (PID) joint position controller, augmented with
an NN controller with real-time learning. The sensitivity
equations that relate state sensitivity to NN controller learn-
ing rate are derived. Using a full dynamic simulation of our
experimental robotic system including real-time NN learn-
ing, the sensitivity of the system state to NN learning rate is
found. Comparison of these sensitivity results is then made
with experimental results obtained using an NN robot control
test-bed with real-time NN learning.

By comparing the results obtained using the above pro-
cedure for three different NN architectures, i.e., EBP, ME,
and MOVE, it is found that the MOVE NN exhibits markedly
lower joint trajectory error sensitivity to NN learning rate.
This implies that a successful choice of learning rate for the
MOVE NN architecture can more readily be achieved than
with either the EBP or ME NN architectures. The MOVE
NN will operate successfully over a wider range of learning
rates than either the EBP or ME NN controllers. Second,
when selection of NN learning rate is undertaken, the fact
that the MOVE NN controller is least sensitive to learning
rate, when compared to either EBP or ME controllers, makes
selection of a suitable learning rate a simpler task. This al-
lows for easier implementation of the MOVE NN compared
to EBP and ME NNs.

In Section 2, three NN controllers implemented are de-
scribed. Section 3 describes the NN-robot control test-bed
module and the experimental robot. Section 4 introduces the
NN learning rate sensitivity equations and describes how they
are implemented in a dynamic simulation. Experimental re-
sults are presented in Section 5, and finally conclusions are
given in Section 6.

2. Neural Networks
In the following, we briefly outline relevant details of three
NN controllers that were implemented experimentally on the
robot system and in simulation. A more detailed descrip-
tion of the algorithms can be found in the corresponding
references.

2.1. Error Back-Propagation

Feed-forward networks trained with EBP have been the focus
of considerable work reported in the literature. EBP has ex-
hibited slower learning times when compared with other NN
learning algorithms (Graham and D’Eleuterio 1991; Jacobs
and Jordan 1993). Due to its wide use in research and en-
gineering applications, EBP was selected as the baseline for
comparison with the other types of NNs being investigated.

The EBP algorithm is composed of two main steps that
are repeated iteratively. The steps are (1) a forward pass to
produce values for the NN outputs and (2) a backward pass
to adjust the weights so as to achieve desired outputs from
the network. The weight adjustment rule is given in eq. (1)
below. At the nt time step, the change in the weight wig that
connects neuron I to neuron j is given by

�wij (n) = −λ∂J (n)
∂wij

, (1)

where
J (n) ≡ Cost Function, J (n) ∈ �1;
wij ≡ Connection weight, wij ∈ �1;
�wij ≡ Change in connection weight, �wij ∈ �1; and
λ ≡ Learning rate, λ ∈ �1.

A full description and mathematical details of the algorithm
can be found in Haykin (1994).

2.2. Mixture of Experts

The motivation to use ME NNs for the NN module came
from the work reported by Jacobs and Jordan (1993). In this
work, robot simulations illustrated ME NNs with both a faster
learning time and lower joint errors than EBP feed-forward
networks. The principle of “divide and conquer” is used as
the basis of this NN architecture. The intention is to divide
a complex problem into several smaller problems that are
more easily solved (see Rueckl, Cave, and Kosslyn 1989).
In a ME NN, a different NN is used for different regions of
the output. This is accomplished automatically by the NN
learning algorithm.

The ME NN is composed of several feed-forward NNs
connected in parallel with the output from each summed to
produce the output from the system. Each of the feed-forward
NNs is an “expert” and will learn its portion of the task accord-
ingly. A gating network is used to determine the proportion of
each expert’s output used in the system’s output. The gating
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network itself is also a feed-forward NN whose inputs are the
same as the experts.

Illustrated in Figure 1 is the network topology for the ME
algorithm. Experts 1 through 3 are feed-forward NNs. Learn-
ing is similar to that of EBP in that there are forward and back-
ward passes through the NN. However, additional weights in
the gating network must also be trained. Eqs. (2a) and (2b)
are the learning rules used to adjust the weights in the expert
networks and the gate network, respectively. A full descrip-
tion of the algorithm along with mathematical details can be
found in Jacobs et al. (1991).

�wijk(n) = λhi(n)ei(n)xj (2a)

�aij (n) = λ (hi(n)− gi(n)) xj , (2b)

where
�wijk(n) ≡ Change in the ij th connection weight from

expert network i, �wijk(n) ∈ �1;
�aij (n) ≡ Change in the ij th connection weight from gate

network, �aij (n) ∈ �1;
λ ≡ Learning rate, λ ∈ �1;
hi(n) ≡ Probability that ith expert generates a desired

response, hi ∈ �1;
gi(n) ≡ Gate function output for ith expert, gi ∈ �1;
ei(n) ≡ Error resulting from output of the ith expert, ei

∈ �n×1; and
xj (n) ≡ Input signal j , xj ∈ �1.

2.3. Manipulator Operations Using Value Encoding

The MOVE NN was chosen for investigation based on
the large decrease in trajectory tracking error obtained by
Graham and D’Eleuterio (1990). Originally based on the
CMAC (cerebellar model articulation controller) (Albus
1975), MOVE incorporates input discretization with the learn-
ing capabilities of an NN. As the underlying basis of the net-
work architecture, the CMAC structure acts as a preprocessor
that activates output units based on the value of the input sig-

Fig. 1. The mixture of experts neural network architecture.

nal. The signals from the CMAC output units are used as the
inputs to a single-layer EBP NN. An extension to MOVE has
been made, in the work reported here, to include two networks
running in parallel as in the ME network. The result is a net-
work that benefits from the input discretization of CMAC, the
learning capabilities of EBP and the modularity of ME.

Figure 2, illustrating the CMAC technique of encoding the
input signals, shows how the CMAC structure is incorporated
into a control system. The grid structure facilitates the CMAC
input-output mapping. In this figure, the two input states to be
encoded are q and q̇. The current values of the input states qi
and q̇j will activate one element in each of five separate grids,
with each grid offset with respect to the others. The grids are
composed of units called course cell units. Once the course
cell units are activated, the CMAC portion of the forward
propagation of the network is complete. As shown in Figure 3,
the output from each of the coarse cell units is connected to
a unit in the next layer of the network. These units are called
granule cell units. To reduce the memory required, a number
of course cell units are randomly connected, i.e., hashed in
such a way that several course cell units are connected to one
granule cell unit. The output from the granule cell units is set
to 1 if any of the connecting coarse cell units are activated, or 0
otherwise (i.e., logical OR statement). The granule cell units
are used as neurons in a feed-forward artificial NN. Every
granule cell is connected to the output cell unit. The outputs
from the granule cell units are all weighted and summed to
produce the final value from the output unit.

The weights connecting the granule cells to the output unit
of the network are variable. Learning of the network occurs
by adjusting the value of the variable weights over time so

Fig. 2. Cerebellar model articulation controller (CMAC)
encoding technique.
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Fig. 3. Manipulator operations using value encoding (MOVE) neural network topology.

as to obtain a desired output. The weight adjustment rule is
given as

�wij (n) = λ
�i,j (n)∑

j

∑
i

�i,j (n)
J (n), (3)

where
�wij (n) ≡ Change in connection weight, �wij (n) ∈ �1;
λ ≡ Learning rate, λ ∈ �1;
�i,j (n) ≡ Activated granule cell output, �i,j (n) ∈ �1;
and
J (n) ≡ Cost Function, J (n) ∈ �1.
Since only the weights in the final layer of the network are

adjusted iteratively, when compared with EBP and ME archi-
tectures that contain many more weights, a reduced learning
time is obtained. A full description of the algorithm, including
mathematical details, can be found in Graham and D’Eleuterio
(1990).

3. Development of a Neural Network Control
Test-Bed Module

Almost all industrial robots employ joint level PID position
controllers. Given this fact, it was determined that a generic
NN module controller to be used in conjunction with the PID
controllers already being used in industrial robots would be
developed. Details of this development are found in Chen
et al. (1998). The NN module structure is illustrated in Fig-
ure 4. Due to the modular structure of the software, different
NNs are readily implemented with this system.

In this development, we consider a joint-level PID-
controlled robot. The open-loop dynamics of a rigid link
robot with n actuated joints is expressed as

M(q)q̈ + h(q, q̇) = τ, (4)

where
q ≡ Joint position, q ∈ �n×1;
q̇ ≡ Joint velocity, q̇ ∈ �n×1;

Fig. 4. Block diagram of a robot with a proportional, integral,
and derivative (PID) and neural network controller.

q̈ ≡ Joint acceleration, q̈ ∈ �n×1;
τ ≡ Torque input signal, τ ∈ �n×1;
M(·) ≡ Inertia matrix, M(·) ∈ �n×n; and
h(·, ·) ≡ Coriolis, centripetal and gravitational term,

h(·, ·) ∈ �n×n.
Under the standard assumption of fast actuator dynamics,

the input torque τ signal is given by the following PID control
law:

τ = KP (qd − q)+KI

t∫
0

(qd − q)dt

+KD(q̇d − q̇) = TPID,

(5)

where
qd ≡ Desired joint position, qd ∈ �n×1;
q̇d ≡ Desired joint velocity, q̇d ∈ �n×1;
KP ≡ Proportional gain matrix, KP ∈ �n×n;
KI ≡ Integral gain matrix, KI ∈ �n×n; and
KD ≡ Derivative gain matrix, KD ∈ �n×n.
An NN signal ν is added to the control law to compensate

for trajectory tracking errors, as given below.

τ = KP (qd − q)+KI

t∫
0

(qd − q)dt

+KD(q̇d − q̇)+ v.

(6)
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Let the error e and control error �ν be defined below:

e = qd − q (7)

�v = M(q)q̈ + h(q, q̇)− v. (8)

With eqs. (6), (7), and (8), the closed-loop error dynamics
of the system are

�v = KP e +KI

t∫
0

edt +KDė. (9)

If the NN can learn to compensate for the nonlinear dy-
namics in (8), i.e., �ν → 0, then the closed-loop dynamics
becomes

0 = KP e +KI

t∫
0

edt +KDė. (10)

Selection of appropriate gains will lead to asymptotic tra-
jectory tracking.

3.1. Robot Experiment Hardware

Experiments utilized a CRS Robotics Corporation A460 robot
and a transputer-based C500 controller. The robot has 6 de-
grees of freedom and uses permanent magnet DC motors to
activate harmonic drive gears. Table 1 lists the CRS A460
robot kinematics and dynamics parameters.

Each NN software module is programmed in C lan-
guage, then compiled and downloaded to a Texas Instruments
TM320C40 Digital Signal Processor (DSP). Real-time exe-
cution of NN learning, weight update, and the PID controller
occurs at 500 Hz. A more detailed description of the hardware
and software setup can be found in Chen et al. (1998).

Two host 486 PCs act as the user interfaces for the DSP and
robot controller, respectively. These PCs initiate experiments,
and control software execution, data recording, and selection
of experimental parameters. Figure 5 illustrates the system
hardware configuration.

Fig. 5. Robot experimental hardware configuration.

3.2. Robot Experiment Software

Figure 6 illustrates the system software architecture. The DSP
host enables a user to compile and download any type of NN
to the DSP. Matlab software is used for the front-end of the
programming and enables NN parameter selection as well as
the generation of initial weights.

The NN module consists of procedures written in C for
(a) network output generation and (b) learning algorithms,
i.e., weight adjustments. The DSP communication module
sends and receives data to and from the C500 communication
module. The DSP communication module must (a) establish
communication with the C500, (b) send NN output signals to
the C500 to provide the compensating torque signal, and (c)
receive the actual and desired values of joint position, velocity,
and acceleration from the C500.

The DSP execution manager supervises the execution of
procedures in the DSP. It ensures a proper schedule for real-
time execution. The procedures include (a) NN output gen-
eration, (b) NN learning, (c) communication with the C500
controller, and (d) data recording.

The C500 host allows the user to select parameters for
the PID controller and experiment execution. Important se-
lections include robot trajectory, PID gains, maximum robot
velocity and accelerations, and the number of trials in an ex-
periment. Experiment execution and termination are also con-
trolled via the C500 host.

The C500 communication module works with the DSP
communication module to carry out data transfer. Its responsi-
bilities include (a) establishing communication with the DSP;
(b) sending actual and desired values of joint position, veloc-
ity, and acceleration; and (c) receiving the NN output signals
from the DSP. The user control program contains the PID
control algorithm. Modifications were made to include the
addition of the NN compensating torque signal into the con-
trol scheme.

The C500 execution manager acts in a supervisory role
coordinating activities of other software modules while in-
corporating the real-time NN communication and execution.
A detailed description of the software flow chart can be found
in Chen et al. (1998).

4. Sensitivity Functions and the Development of
a Neural Network/Robot Control Simulation

The system sensitivity function (Frank 1976) provides a mea-
sure of how a closed-loop system will behave given a variation
in a system parameter. In this section, we introduce the sen-
sitivity equations for the PID-controlled robot system with an
NN compensator. The sensitivity equations of robot joint tra-
jectory tracking error with respect to NN learning rate are then
derived. Details of the numerical solution of the sensitivity
equations are given.
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Table 1. CRS A460 Robot Data
Twist Length Offset Angle

Link α (deg) a (in) d (in) θ (deg)

1 +90 0 0 θ1
2 0 a2 = 12.125 0 θ2
3 −90 0 0 θ3
4 +90 0 d4 = 12.125 θ4
5 −90 0 0 θ5
6 0 0 0 θ6

Fig. 6. Robot experimental software architecture.

4.1. Sensitivity Functions

The state sensitivity is defined as the change of a state value
relative to the change of a system parameter (Frank 1976).
The sensitivity function ς is defined as below.

ς = ∂z

∂α
, (11)

where
ς ≡ Sensitivity of state z to parameter α, ς ∈ Rn×1;
z ≡ System state, z ∈ Rn×1; and
α ≡ A system parameter, α ∈ R1.
Consider a system with r parameters given by

ż = f (z, α, t). (12)

The sensitivity function of the system is given by partial
differentiation of (12) with respect to the system parameter
α as

∂ż

∂α
= ∂f

∂z

∂z

∂α
+ ∂f

∂α
, (13)

where
∂ż
∂α

≡ Sensitivity derivative, ∂ż
∂α

∈ �n×1;

∂f
∂z

≡ Jacobian matrix, ∂f
∂z

∈ �n×n;
∂z
∂α

≡ Sensitivity, ∂z
∂α

∈ �n×1; and
∂f
∂α

≡ System parameters, ∂f
∂α

∈ �n×1.

From eq. (11), the sensitivity function dynamics are ex-
pressed as

ς̇ = ∂

∂t

(
∂z

∂α

)
= ∂ż

∂α
. (14)

Substituting eq. (14) into eq. (13) yields the sensitivity
equation

ς̇ = fzς + fα, (15)

where
ς̇ ≡ Sensitivity derivative, ς̇ ∈ �n×1;
fz ≡ ∂f

∂z
≡ Jacobian matrix, fz ∈ �n×n;

ς ≡ Sensitivity, ς ∈ �n×1; and
fα ≡ ∂f

∂α
≡ System parameters, ∂f

∂α
= fα ∈ �n×1.

4.2. The System State Model

Simultaneous solution of eq. (15) and the system dynamics
given by (12) will yield the sensitivity of the closed-loop
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system with respect to any parameter α. To solve these equa-
tions, a robot simulation developed with Simulink was used
(i.e., Liu and Mills 1998). Here, we present a derivation of the
model, including the robot dynamics and weight dynamics of
the system.

Using a first-order approximation, the weight dynamics,
given in eqs. (1), (2), and (3), are expressed as

ẇij ≈ wij (n)− wij (n− 1)

�T
= 1

�T
�wij , (16)

where �T ≡ Neural network update period, �T ∈ �1.
The dynamics of the ij th weight of an NN trained with

EBP is

ẇij = −λ̃ ∂J

∂wij

, (17)

where
wij ≡ Weight connecting the ith and j th neuron, ẇij

∈ �1;
∂J
∂wij

≡ Cost function derivative with respect to the weight

wij , ∂J
∂wij

∈ �1; and

λ̃ ≡ Modified learning rate (i.e., divided by �T ), λ̃ ∈ �1.
Using the delta function δj as described in Haykin (1994) and
the neuron output yj , eq. (17) can be rewritten as

ẇij = λ̃δj yj , (18)

where
yj ≡ The output of the j th neuron, yj ∈ �1 and
δj ≡ Delta function for the j th neuron, δj ∈ �1.
Let the vectorw ∈ �rxsxl represent the weights of the NN,

as follows,

w =






w11
w12
...

wrs




1



w11
w12
...

wrs




2
...


w11
w12
...

wrs



l




. (19)

Hence, the weight dynamics are represented as

ẇ =






λ̃δ1y1

λ̃δ2y2
...

λ̃δsys




1

λ̃δ1y1

λ̃δ2y2
...

λ̃δsys




2
...


λ̃δ1y1

λ̃δ2y2
...

λ̃δsys



l




= f (λ, y). (20)

From eqs. (4) and (6), the robot dynamics are expressed as

M(q)q̈ + h(q, q̇) = KP (qd − q)+KI

T∫
0

(qd − q)dt

+KD(q̇d − q̇)+ v.

(21)

Isolating q̈ in eq. (21) yields

q̈ = M−1(q)[KP (qd − q)+KI

T∫
0

(qd − q)dt

+KD(q̇d − q̇)− h(q, q̇)+ v].

(22)

By assigning the state variables as below,

x1 = q ∈ �n×1

x2 = q̇ ∈ �n×1

x3 =
t∫

0

(qd − q)dσ ∈ �n×1 (23)

ẋ1 = x2

ẋ2 = M−1(x1)[KP (x1d − x1)+K1x3 +KD(x2d − x2)

− h(x1, x2)+ v(x1, x2, w)],
ẋ3 = x1d − x1
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the system can now be expressed in block matrix form as


ẋ1
ẋ2
ẋ3


 =


 0 In 0

0 0 0
−In 0 0





x1
x2
x3


 +


 0

−M−1h

0




+

 0

−M−1

0





 0 0 0

−KP −KD KI

0 0 0





x1
x2
x3




+

 0

−M−1

0





 0
KPx1d +KDx2d

x1d




+

 0

−M−1

0





0
v

0


 .

(24)

The overall system state model is defined with the state
vector z,

z =



z1
z2
z3
z4


 =



x1
x2
x3
w


 , (25)

to give



ż1
ż2
ż3
ż4


 =




0 In 0 0
0 0 0 0

−In 0 0 0
0 0 0 0






z1
z2
z3
z4


 +




0
−M−1h

0
f (λ, y)




+




0
−M−1

0
0







0 0 0 0
−KP −KD KI 0

0 0 0 0
0 0 0 0






z1
z2
z3
z4




+




0
−M−1

0
0







0
KP z1d +KDz2d

z1d
0


 (26)

+




0
−M−1

0
0







0
v

0
0


 ,

where f (λ, y) is defined in eq. (20).

4.3. Robot Simulation Software

The simulation of eqs. (15) and (26) was carried out us-
ing Simulink and Matlab with a fourth-order Runge-Kutta
algorithm.

5. Experiment and Simulation Results

In this section, we calculate the sensitivity functions of the
robotic system under NN control. We briefly discuss NN im-
plementation details, and the validity of the robot simulation
is confirmed. Finally, sensitivity plots from experiments and
simulations are given.

5.1. Experiment and Simulation Neural Network
Implementation

A series of experiments was conducted to establish a base-
line performance for each of the three NN controllers imple-
mented. This required that a number of parameters, specific
to each NN, i.e., learning rate, number of neurons in each
layer, and so on, be tuned to achieve acceptable behavior.

Experiments were conducted on a CRS Robotics Corpo-
ration 6-degree-of-freedom A460 industrial robot. The NN’s
compensation signal was applied to only the first three joints
of the robot. The rationale for this is based on the fact that the
robot trajectory error is mainly due to trajectory tracking er-
rors of the first three joints. In the following, an “experiment”
is defined as the consecutive execution of a number of trials,
while a “trial” is defined as the execution of a commanded
trajectory sequence once, by the robot. The trajectory input
consists of a set of “way points” connected by smooth trajec-
tories generated from spline functions. These way points are
listed in Table 2 with the joint trajectories plotted in Figure 7.

A valid comparison of the three NNs implemented dictated
that all experiments be conducted with certain parameters and
inputs held constant. These parameters include, for example,
the input trajectory, PID gains, and NN parameters, and are
given in Tables 2 and 3. Additionally, within each set of trials

Fig. 7. Input joint position trajectory for joints 1, 2, and 3.



Clark and Mills / Robotic System Sensitivity 963

Table 2. Simulation and Experiment Robot Parameters

Robot Experiment Parameter

Maximum joint velocity (rad/s) 0.6
Robot trajectory way points (degrees) [0 0 0], [40 −40 −40], [0 0 0]
Proportional gains (for three joints) [5500 6500 7500]
Integral gains (for three joints) [2 2 2]
Derivative gains (for three joints) [60 60 60]

Table 3. Experiment and Simulation Neural Network Parameters

Neural Network Experiment Parameter EBP ME MOVE

Number of neurons in input layer 9 9 9
Number of neurons in hidden layer 1 7 7 NA
Number of neurons in hidden layer 2 5 5 1000
Number of neurons in output layer 3 3 3
Number of experts NA 2 2
Number of grids in MOVE NA NA 5
Number of cells per grid in MOVE NA NA 3
Learning rate: λe 3E-8 2 6
Output limits [40 40 40] [60 75 70] [55 65 75]

NOTE: EBP = error back-propagation; ME = mixture of experts; MOVE = manipulator operations using value encoding.

for a particular NN implementation, a number of parameters
given in the following sections were also held fixed.

The input to the NNs consisted of the position and veloc-
ity of the first three joints of the robot. The output of the NN
consists of three signals, ν, as given in eq. (6). These com-
pensating signals, as seen in the following, lead to reduction
in error beyond which the PID control can achieve.

To provide a measure of the trajectory tracking perfor-
mance, the time averaged joint error norm for each trial is
calculated according to the equation below, and it is plotted.

E = 1

T

T∫
0

√
e2

1 + e2
2 + e2

3dt, (27)

where
E ≡ Time averaged joint error norm, E ∈ �1;
ei ≡ qid − qi ≡ Joint error, i = 1, 2, 3;
q ≡ Joint position, q ∈ �n×1;
qd ≡ Desired joint position, qd ∈ �n×1; and
T ≡ Trial Period, T ∈ �1.

5.2. Neural Network Performance: Simulation
and Experiment

Simulation studies were conducted to permit robot system
sensitivity to be calculated without noise and uncertainty of
our experiment, which can mask important results. Compar-
ison of experimental data with the simulations then allowed
us to analyze the nature of our experimental results more eas-
ily. To undertake this task, experiments and simulations were
conducted with identical PID and NN controller parameters.

Robot simulations produced similar performance results to
those obtained from the robot experimental results. Illus-
trated in Figure 8 are time-averaged joint error norm plots for
the robot experiments and simulations using the EBP, ME,
and MOVE NNs. All three plots show a similar reduction in
joint error norm for the simulation and experiment.

To provide insight into the effect of learning rate on the per-
formance of robotic systems with NN controllers, sensitivity
calculations were carried out. To make a valid comparison of
the sensitivity functions for the three NNs tested, the sensi-
tivity function, given by (11), is normalized as follows:

ςnorm = ∂z/‖z‖
dλ/λs

= ς
λs

‖z‖ , (28)

where
ςnorm ≡ Normalized sensitivity, ςnorm ∈ �n×1;
ς ≡ Sensitivity, ς ∈ �n×1; and
‖z‖ ≡ State norm, ‖z‖ ∈ �1.
Simulation results of normalized sensitivity of joint 1 tra-

jectory tracking error to learning rate, λ, for EBP, ME, and
MOVE systems, is shown in Figures 9 through 11. The joint
error norm, E, given by (27), corresponding to each simu-
lation, is also plotted. These plots are representative of the
dynamic behavior seen in joints 2 and 3. From these plots, it
is noted that the joint 1 trajectory tracking error sensitivity to
learning rate is the highest as the joint error norm decreases at
the greatest rate. This is due to the fact that as the error in the
system decreases most rapidly, during higher rates of change
in the NN weights, small changes in learning rate will lead
to greater changes in the system behavior, resulting in greater
sensitivity. Hence, during the period in which the changes in
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Fig. 8. Joint error norm for experimental and simulation results.
NOTE: MOVE = manipulator operations using value encoding.

Fig. 9. Normalized learning rate sensitivity versus joint error norm for an error back-propagation neural network, simulation
results.
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Fig. 10. Normalized learning rate sensitivity versus joint error norm for a mixture of experts neural network, simulation results.

Fig. 11. Normalized learning rate sensitivity versus joint error norm for a manipulator operations using value encoding (MOVE)
neural network, simulation results.
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Fig. 12. Experimental and simulation results, �z versus time for error back-propagation.

the weights are greatest, it would be anticipated that the sys-
tem state is most sensitive to variations in learning rate. From
these plots, it is seen that the MOVE NN controller exhibited
the least sensitivity to learning rate variation.

The change in robot joint trajectory error state (�ze) re-
sulting from a change in learning rate (�λ) obtained from
robot experiments is compared with results from the robot
simulation sensitivity (�zS). The simulation learning rate
perturbation, �λs , corresponds to the experiment learning
rate perturbation, but is normalized with respect to λe/λs , as
shown below.

�ze = z(λe +�λ)− z(λe) (29)

�zs = ∂z

∂λ
�λs, (30)

where
z(·) ≡ Experiment system state as a function of λ, z(·)

∈ �n×1;
�ze ≡ Change in experiment state z caused by perturba-

tion in λ, �ze ∈ �n×1;
�zs ≡ Change in simulation state z caused by perturbation

in λ, �zs ∈ �n×1;
λe ≡ Learning rate used in experiment, λe ∈ �1;
λs ≡ Learning rate used in simulation, λs ∈ �1;
�λe ≡ Experiment learning rate perturbation, �λe ∈ �1;
and

�λs ≡ Experiment learning rate perturbation with respect
to λs , �λe ∈ �1.

Experimental and simulation results of the variation in tra-
jectory tracking error, denoted by �ze and �zS , respectively,
for joints 1, 2, and 3, are illustrated in Figures 12 through 14
for the EBP, ME, and MOVE NN controllers. We note that

Fig. 13. Experimental and simulation results, �z versus time
for mixture of experts.
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Fig. 14. Experimental and simulation results, �z versus time for a manipulator operations using value encoding (MOVE)
controller with λ = 80.

in each set of plots, the dynamic behavior obtained from the
simulation is very similar to the experimental results. This
similarity confirms the validity of our simulations as a diag-
nostic tool in our work.

Calculation of �ze and �zS allows a designer of an NN
controller to predict the effect of variations in learning rate
on overall system performance. Conversely, in the process of
selection of a suitable learning rate for operation of an NN,
low sensitivity to perturbations in the value of the learning
rate indicates that the choice of learning rate is not critical to
neural overall system behavior.

From Figures 12 through 14, it is seen that the lowest
sensitivity of joint trajectory tracking error to learning rate
was achieved by the MOVE and ME NN controllers, i.e., the
MOVE and ME �z values were the smallest when compared
with those �z values obtained using EBP.

6. Conclusion

Learning rate sensitivity simulation results were shown to cor-
respond well with results obtained from robot experiments.
The simulation of learning rate sensitivity proved to be a good
predictor of actual system behavior. Simulations indicate that
the MOVE NN exhibited the lowest joint trajectory error sen-

sitivity to learning rate when compared to the EBP and ME
NN controllers. Experimental results, while similar to sim-
ulations, indicated that the MOVE and ME NN controller
architectures resulted in similar sensitivity to learning rate,
both lower than the EBP architecture. Differences in trajec-
tory tracking error sensitivity to learning rate, among three
NN controller architectures, provide insight into both the se-
lection of learning rates for robotic systems and the effect of
nonoptimal learning rates on system performance.

Our experimental and simulation work supports two
claims. First, the MOVE and ME NN will operate suc-
cessfully over a wider range of learning rates than the EBP
NN controller. Conversely, with the EBP NN controller, the
closed-loop system performance is more sensitive to learning
rate; hence, more care must be taken in selection of a suitable
NN learning rate. Second, when selection of NN learning rate
is undertaken, the fact that the MOVE and ME NN controller
is least sensitive to learning rate, when compared to the EBP
controller, makes selection of a suitable learning rate a sim-
pler task. Hence, a wider range of appropriate learning rates
can be used when using the MOVE and ME NNs as opposed
to when using an EBP NN. While qualitative in nature, this
work represents a first step toward a rationale for selection of
NN learning rate.
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The results of this paper provide a mechanism for the in-
vestigation of sensitivity of NN performance to learning rate
variation, and specific results for three NN architectures. The
benefits of the work presented are twofold. First, when ad-
justing learning rates, it is beneficial to know how sensitive
the system performance is to the learning rate. For example,
if it is known that the system performance is strongly depen-
dent on learning rate, then considerable care must be made
in tuning this parameter. Our work clearly demonstrates that
there is a variation in sensitivity to learning rate between NN
controller architectures; hence, this aspect of controller de-
sign has merit. Second, knowing that one NN architecture
has a lower sensitivity to learning rate variation allows more
rapid tuning of learning rates, leading to cost savings during
the tuning procedure. Selection of learning rates carried out in
the absence of such sensitivity information may lead to costly
tuning without substantial benefit, i.e., small changes made to
learning rate that have little impact on performance, or con-
versely, use of an NN architecture that is strongly dependent
on NN learning rate, leading to difficulties in learning rate
selection.
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