
Randomized Motion Planning for Groups of Nonholonomic Robots

Christopher M. Clark Stephen Rock
chrisc@sun-valley.Stanford.edu rock@sun-valley.Stanford.edu

Department of Aeronautics & Astronautics
Stanford University

Stanford, CA 94305, U.S.A.

KeyWords Motion Planning, Robotics, Nonholonomic,
Group Robotics.

Abstract

This paper presents a technique for motion planning
which is capable of planning trajectories for a large
number of nonholonomic robots. The robots plan within
a two dimensional environment that consists of
stationary/moving obstacles, and fixed boundaries. Each
robot uses randomized motion planner techniques based
on Probabilistic Road Maps (PRM’s) to construct it’s
own trajectory that is free of collisions with moving
obstacles and other robots. The randomized motion
planner allows easy integration of the robots
nonholonomic constraint into the planning so that only
kinematically consistent plans are constructed. It is
important to include this constraint in the planning
problem since the majority of planetary surface robots
are nonholonomic. The speed of the road map
construction allows planning in real-time, enabling the
robot to maneuver safely in a dynamic environment.
Communication between robots is infrequent since
robots only communicate on a “need to know basis”. To
verify the planner’s effectiveness, it was tested using
both simulation and experiment.

1 Introduction

Future missions to Mars will require a fleet of surface
robots to carry out planet exploration. When large
groups of robots are working together within a
designated area, high-level motion planning is required
to avoid collisions. The main objective of this work is
to develop a motion planning system that can handle
these types of situations.

The motion planning algorithm presented is based
on the planner developed by Kindel and Hsu[1]. Their
work demonstrates the use of a randomized

kinodynamic motion planner for a single robot
maneuvering around stationary and moving obstacles.
Their planner benefited from fast planning times,
allowing the robot to rebuild trajectories in the presence
of changes to the environment.

Figure 1: Robots and obstacles from the Micro-
Autonomous RoverS (MARS) test platform.

In this paper, a randomized motion planner is
applied to a multi-robot situation. The planning is
decentralized in that each robot constructs it’s own path
independently, (see sections 2.1–2.4). When robots
encounter one another, they communicate with each
other. Using a priority system, the robots coordinate
their motion plans to avoid collisions, (see Section 2.5).

The coordination of robots planning around each
other’s previously constructed trajectories has been
demonstrated before[3],[7]. In [3], the trajectory for one
robot is constructed irrespective of the other robots
trajectory. To avoid collisions, the robots maintained the
same path they constructed earlier, but altered the
velocities along their paths. A drawback of this method
is that confining robots to their original paths can
eliminate a large amount of feasible solutions from the
search space. Our planning system does not have this
restriction.

A good majority of the motion planners for multi-
robot systems are based on potential field
methods[4],[8]. The reactive nature of potential field
planners makes them very fast and hence are used in
several applications like robot soccer[6]. A major
drawback of potential fields is their susceptibility to
dead-lock. Our planning system is similar to these
planners in that it can react quickly to dynamic
environments, but is more robust to dead-lock situations
due to its randomness.

The paper is organized as follows. Details of the
individual Motion Planners and how they coordinate are
given in Section 2. Section 3 describes the Micro-
Autonomous RoverS test platform that was used for
simulations and real robot experiments. Results from the
experiments are presented here. Section 4 discusses
future work on the MARS test platform and possible
heuristics to improve performance of the planner.

2 Motion Planner

Probabilistic Road Maps are constructed by randomly
selecting milestones from the robot’s configuration
space and connecting the milestone pairs whose
connection paths are collision-free [2]. As described in
[1] and [5], this algorithm can be modified to
accommodate any kinodynamic constraints by building
a roadmap in the state x time space. Also shown in [1],
is that under reasonable assumptions on the free space,
the probability of failure decreases exponentially to 0 as
the number of sampled milestones increases. They
demonstrated how randomized motion planners can
successfully build kinodynamically consistent
trajectories in real-time.

For the cases referenced, simulations and
experiments were carried out successfully with only a
single robot. While the planners could be modified to
include more robots by increasing the size of the
configuration space searched, the planning times would
increase to the point where real-time implementation
would become infeasible.

In the new multi-robot planning system presented,
each robot plans trajectories as described in sections 2.1
through 2.3. To decrease the complexity of the problem,
robots only plan trajectories around other robots that are
within a specific range. This is discussed in section 2.4.

2.1 Selecting new Milestones

The state of the robots in the MARS test platform can
be described by x = (x1,x2,θ) ∈ ℜ3 representing the
position and attitude of the robot with respect to the
table. Milestones are specified by both the state and

time the robot reaches that state (x,t). When selecting a
new milestone (x',t'), we must consider the
nonholonomic constraint described by:

1

2tan
x

x

&

&
=θ (1)

The constraint can be reformulated in terms of the
wheel velocities v1 and v2 of the robot.

θcos
2

)(21
1

vv
x

+
=& (2a)

θsin
2

)(21
2

vv
x

+
=& (2b)

21 vv −=θ& (2c)

To select a new milestone in the road map, we could
randomly select velocities v1 and v2 from { 0, vmax }.
However, further restrictions on the search space can be
incorporated to increase the probability of finding a
solution. The search space is restricted so that from one
milestone to the next, the robot will not rotate more than
90 degrees. This inhibits the robot from spinning in
circles. The distance the robot travels between
milestones is also restricted to decrease the probability
of selecting milestones located beyond the boundaries
of the workspace. To incorporate these restrictions, two
randomly selected variables are introduced: range
which is selected from {-rangemax, rangemax } and
difference which is selected from {-differencemax ,
differencemax }. From these two variables, the distance
traveled by each wheel s1 and s2 can be determined.

differenceranges +=1 (3a)

differenceranges −=2 (3b)

Figure 2: State space model of the MARS robot

x1

x2

�
s1

s2

r

�

(x1',x2',θ')

(x1,x2,θ)

This method corresponds to randomly selecting an
arc of radius r and angle θ. The new milestone x' =
(x1',x2',θ') can be calculated as follows:

21

21

ss

ss
r

+−
+

= (4a)

r

ss

2
21 +

=ϕ (4b)

ϕθθ +=′ (5a)

)sin(sin11 θθ −′+=′ rxx (5b)

)coscos(22 θθ +′−+=′ rxx (5c)

2.2 Road Map Construction

Let the tree T be a set of milestones. Initially T only
contains the milestone (xs,ts), were xs and ts are the
starting position and starting time respectively. The
Roadmap is constructed using an iterative algorithm that
adds new milestones to the set T at every step.

At each iteration, a milestone (x,t) is randomly
selected from T for expansion. From this milestone, the
tree is expanded to several new randomly selected
milestones, (see section 2.1). If the arc connecting (x,t)
to a new milestone (x',t') is collision-free, then it will be
added to the tree T and the milestone (x,t) will be stored
as it's parent. If (x',t') also lies within the endgame
region, then the algorithm has found a solution and
halts. The final trajectory is constructed by linking
milestones to their parent milestones, starting with the
goal milestone.

To avoid over-sampling in any one area of the
workspace, procedure of selecting a milestone for
expansion is modified. The workspace is divided up into
a grid of cells. Let C denote the set of all cells in which
a milestone from T is located. To select a new milestone
in T for expansion, a cell cexp is randomly selected from
C. Then from within cexp, the next milestone to expand
from is randomly selected.

2.3 Endgame Region

In our algorithm, the final goal state xg is underspecified
in that only the position and not the attitude is specified.
This is based on the assumption that once a robot has
reached its goal location, it can rotate on the spot to
reach any desired attitude. This underspecification on
the goal state increases the size of the endgame region,
hence increasing the probability of finding a solution.
The endgame region E in our algorithm is defined as the
subspace that includes all states xe, such that the arc
connecting xe to the goal state has an angle ϕ less than
90 degrees.

2.4 Coordinating Multi-Robot Planning

To deal with the intractability of planning for n different
robots, the following technique is proposed. Each robot
will create a plan with knowledge of only the few
objects surrounding it. By planning around only those
objects within the robot’s local area, the motion
planning problem is greatly simplified leading to
decreased planning times. When new objects enter the
robot’s field of view, a re-plan is called for to ensure
that the robot's trajectory is collision-free.

A priority system is used to determine how
robots plan around each other. Before the experiment
begins, each robot is given a priority number distinct
from all others. When two robots encounter one another
(i.e. enter each others field of view), they communicate
with each other. The robots exchange data including the
milestones of their roadmap and the robot's priority
number. The robot with the lower priority number will
immediately replan. When re-planning, the milestones
received from the high priority robot are used to
estimate its trajectory. The low priority robot can then
construct a plan which is free of collision. The high
priority robot will continue along its original path
knowing the other robot will avoid it.

Figure 3: Robot Coordination Algorithm

New Robot
Encounter?

Priority Higher
or Lower?

Replan to avoid
robots on H list

Add new robot to
H list

Remove robot
from L/H list

Communicate replan
to robots on L list

Y

N

H

L

Local robot
 left area?

Y

N

Remove robot
from H list

To facilitate this priority system, each robot must
store a list of all robots within it's field of view who
have lower priority, and a list of all robots within it's
field of view who have higher priority. When the robot
must replan because it encounters a robot with higher
priority, it must communicate it's new trajectory to all
the local robots of lower priority so that they can replan.
For example, Robot A has priority 1, robot B has
priority 2, and robot C has priority 3. If robot B and C
encounter one another at time t1, robot C will build a
new trajectory so as to avoid robot B. If at time t2, robot
A and robot B encounter one another, then robot B will
replan and communicate it's new trajectory to robot C
who must also replan.

Since robots communicate only when they enter
each others field of view, communication between
robots is infrequent.

2.5 Decreasing Path Distances

The randomness of the planner leads to trajectories that
are non-optimal. However, the randomized motion
planner offers decreased planning times (on the order of
0.1 seconds), allowing the robots to plan in real-time. A
method of improving the trajectories is to plan m (>1)
times consecutively, and use the trajectory with the
shortest path.

3 Experiment

The purpose of this research is to develop a system that
can plan for large groups of robots. Presented below are
simulations and experiments that verify the system’s
ability to build trajectories for many robots in
constrained environments. First, the Micro-Autonomous
RoverS test platform is introduced, followed by
descriptions of how the platform is used in both
simulations and real robot experiments.

3.1 The MARS Platform

The Micro-Autonomous RoverS (MARS) test platform
at Stanford University was used to model the rovers in a
two-dimensional work-space. The platform consists of a
large 3m x 2m flat, granite table with six autonomous
robots that move about the table’s surface.

The robots are cylindrical in shape and use two
independently driven wheels that allow them to rotate
on the spot, but inhibit lateral movement so as to induce
the nonholonomic constraint. Each robot has it’s own
Motion Planner located off-board. Control signal
processing is also done off-board, and the control

signals are sent to the individual robots via a wireless
RC signal.

Figure 4: A rover MARS test platform standing
beside a quarter.

An overhead vision system is used to provide
position sensing. Three cameras with Infra-Red filters
are used to detect LED’s mounted on the top surface of
robots and obstacles. Each robot/obstacle has a distinct
pattern of LEDs to distinguish it from other
robots/obstacles. The vision system updates the robot's
position and velocity at a rate of 60Hz.

Figure 3: Data Flow in the MARS test platform.

The test platform features a Graphical User Interface
(GUI) designed in Java/Swing. It provides a top-down
view of the table including graphical representations of

GUI

M. Planner 1

Vision System

Controller 1

N
D
D
S

Robot 1

Cameras

Controller 2

Controller n

.

.

.

M. Planner 2

M. Planner n

.

.

.

Robot 2

Robot n

robots and obstacles, (see Figures 7,8). Setting robot
goal locations is accomplished with a drag and drop
system. New goal locations are sent to the respective
motion planner so trajectories can be constructed.

All communication within the MARS platform is
accomplished with Real Time Innovation's Network
Data Delivery Service (NDDS) software. NDDS is
based on a publish/subscribe architecture. Figure 3
illustrates the data flow in the platform.

The platform can be modified to allow for multi-
robot simulations. The Vision System, the Controller,
and the robot, (i.e. The two lower blocks in Figure 3),
can be replaced by a software simulation program.
Therefore the same Graphical User Interface(GUI) and
Motion Planner are used for both physical experiment
and simulation.

3.2 Integration of the planner

Data Flow
As mentioned above, NDDS works on a
publish/subscribe architecture. Hence every node on the
network can send and receive different data types.

The GUI subscribes to the vision data being
published so that it may display the current locations of
objects on the table. It publishes any command signals
and desired goal locations requested by the user.

The Motion Planners subscribe to the vision data
and to the command signals being published. Upon
receiving a new command signal, it immediately
constructs a new trajectory which it then publishes. To
limit the amount of data sent across the network, Motion
Planners only publish the milestones of the trajectory.

The Controllers subscribe to the vision data and the
trajectory data published by their corresponding Motion
Planner. They don’t publish any information on the
NDDS, but send control signals to their corresponding
robots via an RC signal.

Time Synchronization
Robots are building trajectories based on the trajectory
information of other robots. In order to ensure one
trajectory is collision-free of another, all processors
must have their clocks synchronized. This is
accomplished by sending out an initial start signal from
the GUI. When the start signal is received by any
processor connected to the NDDS network, the
processor’s clock will be set to time zero. The time
delay induced by the time it takes for the signal to travel
across the network is compensated for by over
constraining the collision checking.

Trajectory Following
Each Controller uses the milestones from the
corresponding Motion Planner to construct the robot’s

trajectory. A Proportional Derivative (PD) control
scheme is used to track the desired heading and position
of sampled points of the trajectory.

3.3 Simulation

To simulate the MARS rovers and their environment, a
Java application was developed which replaces the
vision system, controllers, and robots. The simulations
demonstrate the success of the motion planner for a
large group of robots in a confined environment.

In each simulation, robots are initialized with
randomly selected starting points and goal locations.
Obstacle locations and orientations are also selected
randomly. To simplify the implementation, obstacles
move through the work space with a constant velocity
and don't stop or interact with other obstacles. Shown in
Table 1 are the results from 3 different simulation sets.
Between each set, the number of robots and obstacles
were varied. Each set was run 10 times with different
randomly selected starting points. These simulations
were run on a Sun Sparc Ultra5 with a 333 MHz
processor and 128 MB RAM.

Table 1: Simulation Results
Experiment

Set
1 2 3

Robots 5 10 15
Stationary
Obstacles

5 5 0

Moving
Obstacles

5 0 0

Average
Plan Time

(ms)

19.21 9.304 37.52

Average #
of Plans

54.0 125.8 216.6

Average
Maximum
Plan Time

(ms)

250.78 177.80 749.46

Average 1st

Plan Time
(ms)

58.92 44.69 44.61

Average
Replan

Time (ms)

8.67 5.59 15.31

As shown in Table 1, the motion planning system
can provide motion planning solutions for experiments
with up to 15 robots in an obstacle-free, bounded
workspace, as well as for experiments with only 5
robots, 5 moving obstacles and 5 stationary obstacles.

In the simulations presented, the average replan
times are significantly faster than the average first plan
times. This can be attributed to the fact that replans first
check to see if their original trajectory is collision-free
with a newly encountered obstacle. If the original
trajectory is safe, the planner will return it as the
solution, and no new trajectory is required. The average
first plan times are all less than 0.050 seconds, allowing
planning in real time.

Figure 7a) Simulation at time T1:
Rovers , goals and obstacles before the simulation.

Figure 7b) Simulation at time T2:
Rovers after constructing their first plans

Figure 7c) Simulation at time T3:
 Rovers replanning on the fly to avoid each other

An example of one such simulation is represented in
the Figures 7a)-7f). This particular simulation involves
10 rovers, and 5 stationary obstacles. Smaller circles
represent the micro-rovers as viewed from above, while
crosses represent goal locations and larger circles
represent obstacles. Trajectories constructed by each
robot's motion planner are indicated with lines that lead
to goal locations. Note that the trajectories change as the
simulation progresses, indicating the replanning in real
time.

Figure 7d) : Simulation at time T4
Rovers following their trajectories

Figure 7e) : Simulation at time T5
Rovers heading towards their respective goals .

Figure 7f) Simulation at time T6:
All but one rover having reached their goal location.

Figure 8a)Experiment on the MARS test platform: Initial trajectory generation.

Figure 8b)Experiment on the MARS test platform: Following the trajectories.

Figure 8c)Experiment on the MARS test platform: Approaching the goal destinations.

Figure 8d)Experiment on the MARS test platform: Heading towards new goal destinations

3.4 Physical Experiments

Several experiments were run to demonstrate that the
system is able to construct collision free trajectories for
rovers on a flat, bounded workspace. Tests were
performed with various start configurations. Throughout
the experiments, goal locations were continually being
modified, requiring real-time planning.

Figure 8 shows a series of snap-shots taken from an
experiment on the MARS test platform. In this
experiment, only three of the rovers are tracking
trajectories. The figures on the left are photos of the
actual test-bed. The GUI screen shots on the right depict
the rovers and the paths they are following. They were
taken at the same time as the photos to their left. Figure
8a) shows the rovers immediately after the first
trajectories were constructed. Figures 8b) and 8c) depict
the rovers tracking these trajectories. In Figure 8d), the
user has moved the goal locations. New trajectories
were constructed and the rovers began tracking them.
The initial plan times for this experiment ranged from
48 ms to 72 ms. Replan times ranged from 3 ms to 6 ms.

4 Conclusion

The motion planner presented has demonstrated its
effectiveness in planning for a large number of robots
within a bounded workspace. It planned with a high
probability of success, even in "cluttered" environments
involving 5 to 15 robots. Planning times on the order of
0.1 s allowed the robots to re-plan in real-time and react
quickly to changes in the environment. Although the
application of the motion planner to a surface rover
mission has been discussed, it should be noted that the
planner is extendible to three-dimensional workspaces.
Hence it is also applicable to aerospace applications.

In the future, the use of a dynamic priority system to
increase the probability of finding feasible trajectories
in real-time will be investigated. Currently, robots with
lower priorities must replan more frequently than robots
with higher priorities. Ideally, all robots should replan
with the same frequency. Also, robots with lower
priorities must plan to avoid more robots than those
with higher priorities. Hence lower priority robots have
slower planning times. By setting robot priorities online,
we hope to balance out the planning responsibilities
evenly between all robots. This should increase the
speed of constructing trajectories, and thus the
probability of finding feasible trajectories in real-time.

References

[1] D. Hsu, R. Kindel, J. C. Latombe, and S. Rock.
“Randomized Kinodynamic Motion Planning
with Moving Obstacles,” in Workshop on the
Algorithmic Foundations of Robotics, 2000.

[2] D. Hsu, J. C. Latombe, and R. Motwani, “Path
planning in expansive configuration spaces,” in
Proceedings of the IEEE International
Conference on Robotics and Automation, pages
2719-2726, 1997.

[3] K. Kant, and S. Zucker, “Toward efficient
Trajectory Planning: The path-velocity
decomposition,” The International Journal of
Robotics Research, 5-3, pages 72-89,1986.

[4] O. Khatib, "Real-Time Obstacle Avoidance for
Manipulators and Mobile Robots,”
International Journal of Robotics Research, 5,
1, pages 90-98, 1986.

[5] R. Kindel, D.Hsu, J. C. Latombe, and S. Rock.
"Kinodynamic Motion Planning Amidst
Moving Obstacles,” in Proceedings of the
IEEE International Conference on Robotics
and Automation, pages 537-544, 2000.

[6] Lee, Lee, and Park, "Trajectory Generation and
Motion Tracking for the Robot Soccer Game,”
in Proceedings of the 1999 IEEE International
Conference on Intelligent Robots and Systems,
pages 1149-1154 , 1999.

[7] T. Y. Li, and J. C. Latombe, "On-line
manipulation planning for two robot arms in a
dynamic environment", In Proceedings of the
IEEE International Conference on Robotics
and Automation, 1995

[8] C. W. Warren, "Multiple Path Coordination
using Artificial Potential Fields,” in
Proceedings of the IEEE International
Conference on Robotics and Automation, pages
500-505, 1990.

