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ABSTRACT 
A new motion planning framework is presented that enables 
multiple mobile robots with limited ranges of sensing and 
communication to maneuver and achieve goals safely in 
dynamic environments. The framework is applicable to both 
planetary rover and free-floating space robot applications. To 
combine the respective advantages of centralized and de-
centralized planning, this framework is based on the concept 
of centralized planning within dynamic robot networks. As the 
robots move in their environment, localized robot groups form 
networks, within which world models and robot goals can be 
shared. Whenever a network is formed, new information 
becomes available to all robots in this network. With this new 
information, each robot uses a fast, centralized planner to 
compute new coordinated trajectories on the fly. Planning 
over multiple robot networks is decentralized and distributed. 
The applicability of the framework to planetary rovers is 
demonstrated in both simulations and real robot experiments. 
Also, the framework’s applicability to free-floating robots in a 
3D space environment is demonstrated in simulation.  
 
 

1. INTRODUCTION 
 
Concepts for future space robotic systems involve many 
robots under the direction of a few human operators, 
(e.g. assembly of large space structures [1], human-
robot colonies [24]). To enable this type of human-
robot operation, robots must be given a high degree of 
autonomy for completing tasks. Many challenges must 
be overcome to achieve this level of autonomy. This 
research focuses on one of these challenges: multi-robot 
motion planning. 
 
When many robots operate in the same environment, 
high-level motion planning is required for the robots to 
accomplish tasks autonomously. They must be able to 
reach their goals while avoiding collisions among 
themselves and with static and moving obstacles. In 
unknown or partially known environments, it is unlikely 
that a system of sensors can provide global knowledge. 
In addition, continuous inter-robot communication is 
usually not feasible. Instead, only robots that are 
sufficiently close to each other can exchange 
information, e.g., share their goals and local world 
models.  
 
This paper introduces a new planning framework that 
exploits the changing communication links between 
robots, as the robots move, to combine the respective 
advantages of centralized and decentralized planning.  
 

 

Figure 1: Motion Planning for 4 free-floating robots in 
a 3D space environment. Yellow lines denote robot 
trajectories that end at goal locations denoted by red 
cube lattices. The large gray cubes denote obstacles. 
 
More precisely, our approach is based on dynamic robot 
networks that are capable of: 1) forming dynamically 
whenever communication and sensing capabilities 
permit; 2) sharing world models and robot goals within 
each network; and 3) constructing “on the fly” 
coordinated trajectories for all robots in each network 
using a fast centralized motion planner.  
 
A brief overview of this approach is presented in 
Section 2. Then, a background review (Section 3) 
justifies the choices made in our approach. We then 
describe some aspects of our framework in more detail, 
namely the representation of partial world models 
(Section 4) and the planning technique used (Section 5). 
Section 6 presents the Micro-Autonomous RoverS 
(MARS) test-platform and discusses experiments 
involving rovers in a 2D workspace. In Section 7, 
results from free-floating space robot simulations are 
provided.  
 

2. PLANNING IN DYNAMIC NETWORKS 
 
2.1 Network Formation  
When any two robots are within communication range 
of each other, they establish a communication link. 
Define G to be the graph whose nodes are the robots 
and edges are the communication links. A network of 
robots is any group of k ≥ 1 robots forming a maximal 
connected component of G. So, any two robots in a 
network can communicate through one or several 
communication links, but two robots from different 
networks can not. 
 
 



Figure 2a shows an environment with 5 robots, where 2 
networks have formed. In Net1, the top and bottom 
robots can exchange information via their 
communication links with the middle robot. Because 
robots are moving to achieve their goal locations, the 
networks are dynamic. Robots may leave networks 
and/or form new networks (see Figure 2b). An 
application level protocol ensures that at any time 
robots in each network can access the local sensing 
information of all other robots in the same network, and 
hence share a common world model.  
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a) All three robots (grey circles) are at their initial locations. 
The two left robots are in communication range and form a 
network. Their centralized planners create coordinated 
collision-free trajectories for them toward the goals (cross-
hairs). The right robot forms a network by itself, and its 
trajectory is planned independently from the other two. The 
robots start moving along these trajectories. 
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b) As the robots move along their trajectories, the middle 
robot and the right robot enter communication range with 
each other, and all three robots now form a larger network. 
 
 
 
 
 
 
 
c) A new plan is made for all three robots in the network. This 
plan consists of collision-free trajectories for all three robots. 
 
 
 
 
 
 
 
d) As robots move along their new trajectories, they leave 
communication range of each other and some network links 
are broken. They keep following the planned trajectories. 
 
Figure 3: Top-down view of a planning example with three 
robots. In each of the fours snapshots, the illustration on the 
left shows the robots on their trajectories to their respective 
goals (cross-hairs). The diagram on the right depicts the 
communication range of each robot and the existing 
communication links. 
 

3. BACKGROUND REVIEW 
 
Most previous work on multi-robot motion planning 
can be grouped into centralized and decentralized 
planning [3,27].  While centralized planning considers 
all robots together as if they were forming a single 
multi-body robot [5,8,26,19,30,31], a decentralized 
planner plans for each robot separately before 
coordinating the individual plans by tuning the robot 
velocities along their respective paths 
[2,4,11,16,17,22,25,29]. A variant of decentralized, 
called prioritizing planning, plans for one robot at a 
time, in some sequence, considering the robots whose 
trajectories have already been planned as moving 
obstacles [6,12].   



Centralized planners can be advantageous because they 
allow the possibility of completeness and global 
optimization.  For example, it was shown in [27] that a 
centralized planner based on PRM techniques can 
reliably solve problems requiring the tight coordination 
of multiple articulated arms, while decentralized 
planners based on similar PRM techniques fail often. 
On the other hand, centralized planning may take more 
time due to the high dimensionality of the configuration 
spaces that are searched. A worse drawback is that they 
require all information (partial world models and robot 
goals) to be centralized in one single place, which is 
only possible if the robots have unlimited 
communication abilities. This is not the case in many 
practical settings. 
 
A major advantage of decentralized planning is that it 
allows for distributed planning. Each robot can then 
plan its own trajectory using its own partial model of 
the environment. If two robots eventually get close to 
one another and risk colliding, simple velocity-tuning 
techniques or other reactive techniques can be used to 
locally coordinate their motions. However, such a fully 
distributed approach fails to exploit the fact that 
localized groups of robots can exchange information to 
improve planning 
 
By searching several configuration spaces of smaller 
dimensionality, decentralized planning is potentially 
less computationally intensive. But it cannot offer any 
completeness or optimality guarantee. Various attempts 
have been made to improve the outcome of 
decentralized planners (e.g., [4,6,13]). In particular, a 
negotiation scheme between localized groups of robots 
is used in [4] to assign priority orders to robots, which 
allow the decentralized planner to compute trajectories 
of reduced lengths. This negotiation scheme 
demonstrates the benefits of localized inter-robot 
communication, and is the technique most closely 
related to the robot network planning framework 
presented in this paper. However de-centralized 
planning remains intrinsically incomplete.  
 
The planning approach presented in this paper exploits 
the respective advantages of centralized and 
decentralized planning. In each robot network, it uses a 
centralized single-query PRM planner to increase 
completeness and still provide fast on-the-fly planning. 
However, planning is distributed over the various 
networks – hence, planning over multiple networks is 
decentralized – to accommodate the fact that robots 
from different networks cannot share information. The 
triggering event caused by the merging of two 
previously distinct networks into a single network leads 
the robots in this new network to take advantage of the 
information they now share by centrally re-planning 
their coordinated trajectories. 
 
Planning with incomplete world models and on-the-fly 
re-planning when a sensor detects the presence of a still 
unknown obstacle or a change in an obstacle’s 
trajectory have previously been described in [14, 18] for 
a single robot. We use similar techniques, but extend 
them to multiple robot networks. 

4. WORLD MODEL 
 
Describing the world model in a concise but useful 
form is necessary to allow for information sharing 
between robots in the same network. In the 
experimental system that we have built, world models 
simply consist of a list of robots and their descriptions, 
and a list of obstacles and their descriptions. The 
following table outlines the information stored in each 
list: 
 
World Model Description 

1) List of Robot Descriptions 
- State (position and velocity) 

 - Size (Radius) 
- Most Recent Update Time 
- Information Source 

 - Goal position 
- Current Trajectory 

 
2) List of Obstacle Descriptions 

- State (position and velocity) 
- Size (Radius) 
- Most Recent Update Time 
- Information Source 

 
Robots report their own size and state, while obstacle 
sizes and states are estimated by robot sensors. The 
most recent update time is useful when updating world 
models with information received from other robots. 
The information source is a robot identification number 
that indicates which robot sensed (or communicated 
with) the object. It is used to keep track of which robots 
are currently in the network.  
 
Several assumptions were made to allow such a concise 
world model: 
 
• Each robot has access to its own state relative to a 

global coordinate system (e.g., GPS). 
 
• Each object is approximated as a circular object to 

allow its geometry to be described by a single 
parameter, its radius. 

 
• Each obstacle has constant linear velocity estimated 

by a robot’s sensor. As in [11], if at any later time its 
trajectory is found to diverge by more than some 
threshold from the predicted trajectory (either 
because the obstacle did not move at constant 
velocity, or because the error in the velocity estimate 
was too high), then the robot that detects this 
divergence calls for the construction of a new plan 
within its network. The planner “grows” the obstacles 
(and the robots) to allow for some errors in predicted 
trajectories of the objects. 

 
• All objects in the environment are easily identifiable 

by robot sensors, which can also precisely estimate 
their positions and velocities. Any discrepancy 
between two local world models can be easily 
resolved. 

 



The second assumption is rather easy to eliminate, as it 
has been shown before that PRM planners can 
efficiently deal with geometrically complex robots and 
obstacles (e.g., [26]). In [14], the third assumption has 
been shown to be quite reasonable, even when obstacle 
velocities change frequently, provided that (re-) 
planning is fast enough. The last assumption is more 
crucial. In our experimental system, it is enforced by 
engineering the vision system appropriately (see 
Section 6.2). In the future, it will be important to relax 
this assumption by using more general sensing systems 
and data fusion techniques [23]. 
 
 

5. MOTION PLANNING ALGORITHM 
 
As indicated earlier, motion planning within a robot 
network is done using a centralized single-query PRM 
planner (more precisely, several copies of this planner 
running in parallel). This planner searches the joint 
state×time space C of the k robots in this network. The 
state of each robot is defined by the two coordinates of 
its center and two velocity parameters, so C has 4k+1 
dimensions. This representation can easily be extended 
to other robots. For instance, we have implemented a 
version of the planner for robots in three-dimensional 
space [10]. The planner searches C for a collision-free 
trajectory from the initial state of the robots to their goal 
state. The resulting trajectory defines the coordinated 
motions of the robots to their respective goals. 
 
Our planner searches C by incrementally building a tree 
of milestones (the roadmap), as described in [14,15,19]. 
At each iteration, it selects a milestone m in the current 
roadmap, generates a collision-free state m’ at random 
in a neighborhood of m in C and, if the path from m to 
m’ tests collision-free, installs m’ as a new milestone in 
the roadmap. The search terminates when m’ falls into 
an “endgame” region around the goal. See [14] for 
details.  
 
As in [14,28], our planner satisfies kinodynamic 
constraints as follows: to generate each new milestone 
m’, it picks a control input at random and integrates the 
equations of motion of the robots over a short duration.  
 
We name our planner Kinodynamic Randomized 
Motion Planning (KRMP). As shown in [14], under 
reasonable assumptions on the free space, the 
probability of not finding a plan when one exists 
decreases exponentially to 0 as the number of 
milestones increases. This is a major advantage over 
our previous work in [9,11], which used a decentralized 
prioritized planning approach.  Note, however, that the 
fact that the planner is probabilistically complete does 
not imply that the entire system is also probabilistically 
complete. The robots use partial world models and thus 
need to re-plan their trajectories when they encounter 
discrepancies in their model, (e.g. new obstacles). Since 
there is no guarantee that a series of complete plans is 
itself a complete plan, the robots are not guaranteed to 
find a global plan if one exists. While it is unclear to 
what extent the notion of completeness applies when 

planning for global goals with only partial knowledge 
of the environment, it is still desirable to achieve 
completeness in the system’s components whenever this 
is possible. 
 
The work in [14] also demonstrated empirically that the 
above techniques successfully compute trajectories for a 
single robot with kinodynamic motion constraints, in 
real-time, (i.e. fast enough to be run on the fly). To 
enable motion planning within robot networks, KRMP 
extends this previous work to accommodate several 
robots. Modified techniques are needed to 1) select 
milestones for expansion, 2) generate new milestones, 
and 3) define the endgame region. Below we present 
only the technique we use to generate a new milestone 
m’. Not all modifications are presented in this paper. 
 
When planning for multiple robots, one may generate 
m’ using the following “parallel” approach: first, pick 
the control inputs for all the robots at random; next, 
integrate the motions of all the robots concurrently; if 
no collision is detected, then record the endpoint as a 
new milestone, otherwise pick another set of control 
inputs. We found that this technique yields a high 
rejection rate, especially in tight space. This led us to 
develop the following “sequential” approach: consider 
the robots in some order, pick the control input for each 
robot and integrate its motion (while considering the 
previous robots as moving obstacles); if the motion 
collides, pick another control or change the motion of a 
previous robot. Our experiments show that this 
sequential approach makes it possible to get each new 
milestone much faster, without affecting the 
probabilistic completeness of the overall planner. 
 
Finally, we take advantage of the various processors 
available in a robot network by concurrently running a 
separate copy of KRMP on each robot of the network.  
Each copy uses a different seed of the random number 
generator, hence constructs different roadmaps. We set 
the same timeout constraint (typically, a small fraction 
of a second) on every robot. Each robot then returns a 
plan or its failure to generate one. The same best plan is 
selected by the robots and each robot immediately 
switches to executing its new trajectory.  This is made 
possible because we use a PRM planning approach. 
 
 

6. ROVER PLANNING 
 
To validate our planning approach, it was implemented 
on the MARS test-platform. This section describes the 
hardware used for rover experiments, followed by a 
brief summary of experimental results. For details about 
the implementation of the planner on planetary rovers, 
refer to [11]. 
 
6.1 Micro-Autonomous RoverS Test-Platform 
Located in the Aerospace Robotics Lab at Stanford 
University, the Micro-Autonomous RoverS (MARS) 
test-platform is used to model mobile robots in a two-
dimensional workspace. The platform consists of a 
large 12’ x 9’ flat, granite table with six autonomous 
robots that move about the table’s surface.  



The robots are cylindrical in shape and use two 
independently driven wheels that allow them to rotate 
on the spot, but inhibit lateral movement 
(nonholonomic constraint). Each robot is equipped with 
its own planner (copy of KRMP) and controller that are 
located off-board.  
 
An overhead vision system is used to track the states of 
all objects on the table. The vision system processor 
calculates these states and publishes them to all 
applications that subscribe (see Figure 4). This makes 
global state information available to all robots. To 
simulate the limited sensing range that would occur 
when sensors are mounted on robots, the object states 
are filtered such that robots only receive state 
information regarding objects within some 
predetermined range of the robot. 
 
Figure 4 shows the computer/network architecture of 
the MARS test-platform. All the processing is done off-
board. Two processors are assigned to each robot, 
respectively for planning and control. These computers 
are connected through a LAN. All communication 
within the LAN is accomplished with Real Time 
Innovation's Network Data Delivery Service (NDDS) 
software. Because a LAN is used for inter-robot 
communication instead of a wireless medium, there are 
no physical barriers to limit the range of 
communication. Hence the communication barrier is 
simulated. 
 
NDDS is based on a publish/subscribe architecture. To 
broadcast messages by flooding a robot network, the 
sender will publish a message to which all robots 
subscribe.  Before robots can receive their 
subscriptions, the messages are filtered so that only 
robots within some predetermined range of the sender 
will receive the message. This effectively simulates a 
discrete physical communication range. 

Figure 4: Network architecture of MARS test-platform 
 
6.2 Planetary Rover Experiments 
To illustrate the applicability of the planner to a 
physical system, real robot experiments with up to 5 
robots have been carried out. One example of such an 
experiment is illustrated in Figure 5. The top photo is a 
screenshot of the GUI taken at one point in the 

experiment. The bottom photo shows the physical 
hardware, and was taken at the same time as the GUI 
screenshot. In the GUI, robots and objects are depicted 
as small and large circles, respectively. Robot goal 
locations are indicated by cross-hairs, and lines leading 
to the goal locations depict the trajectories. When 
robots form a network as described in Section 2, it is 
indicated by a color change. Hence robots within a 
network have a common color, and this color will differ 
between networks. 
 
In the experiment presented, all five robots are initially 
located at the near end of the table (i.e. bottom of the 
GUI screen). Communication and sensing ranges were 
limited to 0.75 m. Robot colors indicate that 2 networks 
have formed, one with the 2 robots in the bottom left 
and one with the 2 robots in the bottom right. As the 
experiment progresses, the robots follow their 
trajectories to reach their goal locations at the far end of 
the table. Throughout the experiment, robots planned an 
average of 3.4 times, and planning times were an 
average of 9 ms.  
    

 
 
Figure 5: Example experiment on the MARS test-
platform involving 5 robots and 3 obstacles.  
 
Successful planning was demonstrated in more complex 
simulations involving up to 12 planetary rovers in a 
bounded workspace that contained 12 static and moving 
obstacles, (see [10]). 
 
 

7. FREE-FLOATING ROBOT PLANNING 
 
This section details planner implementation issues, 
provides a brief note on the 3D visualization, and gives 
results from simulations of free-floating robots in a 3D 
environment. 

GUI Planners Controllers Visualization ( ( (   ) ) ) 

Vision 

 
7.1 Free-Floating Robots Planner Implementation 
 
Free-Floating Robot Model - A simple cube-shaped 
robot equipped with 6 independent on/off thrusters was 
used to model a space robot in simulation. Note this 



To implement this in practice, one must create a list of 
milestones to get from me to mg, the milestone defining 
the goal states of each robot. Each milestone in this list 
corresponds with the change in actuation necessary for 
obtaining the bang-off-bang control sequence. 

does not allow for any change in orientation.  Future 
work will include additional thrusters to allow roll, 
pitch and yaw variation. 
 
The state of the robots can be described by X = (x1, x2, 
x3) ∈ ℜ3 representing the position with respect to the 
inertial frame. Milestones are specified by the state of 
the k robots at a particular time, (X0, X1, ... , Xk, t).  

 

t 

t 

t 

me            m0      m1  m2  m3 m4       m5          mg 

t 

t 

t 

u1 

u2 x3 

x1 

u3 

x2 

x1 
Figure 6: State-space model of the free-floating robot 

x2  
Milestone Generation - To generate a new milestone for 
the road map, thruster control inputs are randomly 
selected that will propagate robots to new states. First, 
the time for which the thrusters will be actuated, (tact), is 
randomly selected where: 

x3 

[ ]maxmin ,tttact ∈  
Figure 7: Example of actuation required to move one 
robot from (0, 0, 0) to a goal state. The series of 
milestones required is {mp, m0, m1, mm3, m4, m5, mg} 

 
Next, the control inputs (ON/OFF) are randomly 
selected for each thruster. We assume that only one of 
two opposite-facing thrusters should be enabled at the 
same time. This can reduce the number of random 
variables. That is, for each pair of opposite-facing 
thrusters, a control input variable uact is selected where: 

 
7.2 Free-Floating Robot Simulations  
To simulate motion planning experiments that involve 
free-floating robots maneuvering in a 3D space 
environment, the test platform described in Section 6 
was augmented to incorporate a 3D visualization. The 
application was coded in C++ and OpenGl. A 
screenshot from the application can be seen in Figures 1 
and 9. As depicted in Figure 4, the application acts only 
as a listener to receive state information. 

 }0,1,1{ −∈actu  
 

uact 1 -1 0 
Thruster 1 ON OFF OFF 
Thruster 2 OFF ON OFF 

  
Table 1: Mapping the random variable uact to thruster 
actuation. 

The applicability of the planner to a 3D environment 
was validated with simulations that include up to 8 
robots and 8 obstacles. A test scenario is provided in 
which robots must cross paths several times. A GUI 
screenshot of the scenario is provided in Figure 8, (Note 
that the third dimension is not displayed here.)  

 
With the random variables selected, a candidate 
milestone m can be generated. Given any parent 
milestone mp, and using 1/s2 dynamics, robot states in m 
can be easily calculated:  
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Endgame Region - The endgame region E in this 
implementation is defined as the subspace that includes 
all milestones me, such that all robots can be propagated 
without collisions from states defined by me to their 
respective goal location via a bang-off-bang control 
sequence. An advantage this sequence has is that it 
allows us to limit the velocity of the robot, making it 
easier to re-plan in the future. 

 
Figure 8: A test scenario involving 8 robots and 8 
obstacles. On the left, four robots denoted by light gray 
circles have formed a network. On the right, two 
networks have formed, each with two robots, (denoted 
by blue and yellow circles). Lines indicate trajectories. 
Obstacles are depicted as dark circles. 

 



The test scenario was simulated 25 times to produce the 
results in Table 2. From these results it is clear that the 
planner was capable of planning on the fly with average 
planning times of 67 ms. An average of 12.2 networks 
were formed throughout each simulation. 

 

 
Avg. number of plans made by each robot 4.77 
Avg. number of robots in each plan 1.84 
Avg. planning time (ms) 67.0 
Avg. number of networks formed  12.2 

 a) 
Table 2: Data from 25 simulations of the test scenario 
depicted in Figure 8. 

 

 
Provided in Figure 9 is a visualization of a simulation of 
4 free-floating robots planning in a bounded 3D 
environment that contains 4 obstacles. The robots have 
formed a network and carried out centralized planning 
to construct trajectories to their respective goals. The 
view has been rotated between screenshots in a 
clockwise direction to provide different points of view 
of the simulation. 
 

b) 8. CONCLUSIONS 

 

 
The motion planning framework presented has 
demonstrated its effectiveness in planning for multiple 
mobile robots within a bounded workspace. It plans 
with a high probability of success in environments 
involving robots, stationary obstacles and moving 
obstacles. Planning times of less than 100 ms allowed 
the robots to re-plan on the fly and react in real-time to 
changes in the environment.  
 
Future work includes incorporating more sophisticated 
methods of modeling the environment into the 
communication system. Another future direction will be 
to investigate the effects of varying the ratio between 
sensor range and communication range. For the 
application to the three-dimensional workspaces, 
planning for all degrees of freedom should be 
incorporated. 

c) 

d) 

 
 
 
 
 
 

 

 
 
 
 
 
 
 
 

e) 
Figure 9: Visualizing a simulation involving 4 robots 
and 4 obstacles. Large gray cubes denote the obstacles. 
Trajectories are denoted by yellow lines that end at 
robot goal locations, (denoted by red cube lattices). 
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