
Dynamic Networks for Motion Planning in Multi-Robot
Space Systems

Christopher M. Clark & Stephen M. Rock

Aerospace Robotics Lab
Department of Aeronautics & Astronautics

Stanford University
{chrisc, rock}@sun-valley.stanford.edu

Jean-Claude Latombe
Department of Computer Science

Stanford Universty
latombe@cs.stanford.edu

KeyWords: Motion Planning, Robotics, Networks

ABSTRACT
A new motion planning framework is presented that enables
multiple mobile robots with limited ranges of sensing and
communication to maneuver and achieve goals safely in
dynamic environments. The framework is applicable to both
planetary rover and free-floating space robot applications. To
combine the respective advantages of centralized and de-
centralized planning, this framework is based on the concept
of centralized planning within dynamic robot networks. As the
robots move in their environment, localized robot groups form
networks, within which world models and robot goals can be
shared. Whenever a network is formed, new information
becomes available to all robots in this network. With this new
information, each robot uses a fast, centralized planner to
compute new coordinated trajectories on the fly. Planning
over multiple robot networks is decentralized and distributed.
The applicability of the framework to planetary rovers is
demonstrated in both simulations and real robot experiments.
Also, the framework’s applicability to free-floating robots in a
3D space environment is demonstrated in simulation.

1. INTRODUCTION

Concepts for future space robotic systems involve many
robots under the direction of a few human operators,
(e.g. assembly of large space structures [1], human-
robot colonies [24]). To enable this type of human-
robot operation, robots must be given a high degree of
autonomy for completing tasks. Many challenges must
be overcome to achieve this level of autonomy. This
research focuses on one of these challenges: multi-robot
motion planning.

When many robots operate in the same environment,
high-level motion planning is required for the robots to
accomplish tasks autonomously. They must be able to
reach their goals while avoiding collisions among
themselves and with static and moving obstacles. In
unknown or partially known environments, it is unlikely
that a system of sensors can provide global knowledge.
In addition, continuous inter-robot communication is
usually not feasible. Instead, only robots that are
sufficiently close to each other can exchange
information, e.g., share their goals and local world
models.

This paper introduces a new planning framework that
exploits the changing communication links between
robots, as the robots move, to combine the respective
advantages of centralized and decentralized planning.

Figure 1: Motion Planning for 4 free-floating robots in
a 3D space environment. Yellow lines denote robot
trajectories that end at goal locations denoted by red
cube lattices. The large gray cubes denote obstacles.

More precisely, our approach is based on dynamic robot
networks that are capable of: 1) forming dynamically
whenever communication and sensing capabilities
permit; 2) sharing world models and robot goals within
each network; and 3) constructing “on the fly”
coordinated trajectories for all robots in each network
using a fast centralized motion planner.

A brief overview of this approach is presented in
Section 2. Then, a background review (Section 3)
justifies the choices made in our approach. We then
describe some aspects of our framework in more detail,
namely the representation of partial world models
(Section 4) and the planning technique used (Section 5).
Section 6 presents the Micro-Autonomous RoverS
(MARS) test-platform and discusses experiments
involving rovers in a 2D workspace. In Section 7,
results from free-floating space robot simulations are
provided.

2. PLANNING IN DYNAMIC NETWORKS

2.1 Network Formation
When any two robots are within communication range
of each other, they establish a communication link.
Define G to be the graph whose nodes are the robots
and edges are the communication links. A network of
robots is any group of k ≥ 1 robots forming a maximal
connected component of G. So, any two robots in a
network can communicate through one or several
communication links, but two robots from different
networks can not.

Figure 2a shows an environment with 5 robots, where 2
networks have formed. In Net1, the top and bottom
robots can exchange information via their
communication links with the middle robot. Because
robots are moving to achieve their goal locations, the
networks are dynamic. Robots may leave networks
and/or form new networks (see Figure 2b). An
application level protocol ensures that at any time
robots in each network can access the local sensing
information of all other robots in the same network, and
hence share a common world model.

F
r
d
m

2
M
o

•

•

•

W
b
u
m
t
c
t
p
o
b
i
r
[

T
e
t
p

S
s
u
d
t
t
t

a) All three robots (grey circles) are at their initial locations.
The two left robots are in communication range and form a
network. Their centralized planners create coordinated
collision-free trajectories for them toward the goals (cross-
hairs). The right robot forms a network by itself, and its
trajectory is planned independently from the other two. The
robots start moving along these trajectories.
 2 0 1
Net
 a)
igure 2: Example

obots depict commu
istinct networks N
oved, and the two n

.2 Planning Proce
otion planning in

f the following ev

 N just got form
networks enter
range.

 A significant cha
a robot in N sens

 A new goal loca
robots in N.

hen such a trigge
etween the robo
pdated world mo
odel and goal of

his information, e
entralized motion
rajectories for all
lanner terminates
ther robots in the
est plan and imme
n this plan. The pl
oadmap (PRM) pl
14] (see Section 5

his process is il
xample involving
riggering event au
rocess, as the first

ince robots also h
hared through a
sing this model.
etect previously u
rajectory followed
riggers a re-plan
he new obstacle or
Net

 with 5 robots. Das
nication links. In a)
et0 and Net1. In b)
etworks in a) have me

ss
 a network N is trig
ents:

ed, i.e., two robo
ed one another’s

nge in the world m
es a new obstacle.

tion is requested f

ring event occurs,
ts in N, so that e
del that combines

every robot. Once r
ach robot runs its
 planner to cons
 robots in the ne
, each robot broadc
network. Each robo
diately starts execu
anner is a single-qu
anner similar to the
).

lustrated in Figure
 3 robots, with
tomatically occurs
 networks get forme

ave limited sensing
network is partial.
As robots move, t
nknown obstacles o
 by a known obstac
operation within th
 change of trajector
Net

b)

hed lines between
the robots form two
, two robots have
rged into Net2.

gered by any one

ts from different
 communication

odel occurs, e.g.,

or one or several

data is exchanged
ach one gets an
 the local world
obots have shared
 own copy of a
truct coordinated
twork. When the
asts its plan to all
t selects the same
ting its trajectory
ery probabilistic-
 one presented in

 3 on a simple
no obstacles. A
at the start of the
d.

, the world model
Planning is done
heir sensors may
r a change in the
le. Such an event
e network where
y was detected.

b) As the robots move along their trajectories, the middle
robot and the right robot enter communication range with
each other, and all three robots now form a larger network.

c) A new plan is made for all three robots in the network. This
plan consists of collision-free trajectories for all three robots.

d) As robots move along their new trajectories, they leave
communication range of each other and some network links
are broken. They keep following the planned trajectories.

Figure 3: Top-down view of a planning example with three
robots. In each of the fours snapshots, the illustration on the
left shows the robots on their trajectories to their respective
goals (cross-hairs). The diagram on the right depicts the
communication range of each robot and the existing
communication links.

3. BACKGROUND REVIEW

Most previous work on multi-robot motion planning
can be grouped into centralized and decentralized
planning [3,27]. While centralized planning considers
all robots together as if they were forming a single
multi-body robot [5,8,26,19,30,31], a decentralized
planner plans for each robot separately before
coordinating the individual plans by tuning the robot
velocities along their respective paths
[2,4,11,16,17,22,25,29]. A variant of decentralized,
called prioritizing planning, plans for one robot at a
time, in some sequence, considering the robots whose
trajectories have already been planned as moving
obstacles [6,12].

Centralized planners can be advantageous because they
allow the possibility of completeness and global
optimization. For example, it was shown in [27] that a
centralized planner based on PRM techniques can
reliably solve problems requiring the tight coordination
of multiple articulated arms, while decentralized
planners based on similar PRM techniques fail often.
On the other hand, centralized planning may take more
time due to the high dimensionality of the configuration
spaces that are searched. A worse drawback is that they
require all information (partial world models and robot
goals) to be centralized in one single place, which is
only possible if the robots have unlimited
communication abilities. This is not the case in many
practical settings.

A major advantage of decentralized planning is that it
allows for distributed planning. Each robot can then
plan its own trajectory using its own partial model of
the environment. If two robots eventually get close to
one another and risk colliding, simple velocity-tuning
techniques or other reactive techniques can be used to
locally coordinate their motions. However, such a fully
distributed approach fails to exploit the fact that
localized groups of robots can exchange information to
improve planning

By searching several configuration spaces of smaller
dimensionality, decentralized planning is potentially
less computationally intensive. But it cannot offer any
completeness or optimality guarantee. Various attempts
have been made to improve the outcome of
decentralized planners (e.g., [4,6,13]). In particular, a
negotiation scheme between localized groups of robots
is used in [4] to assign priority orders to robots, which
allow the decentralized planner to compute trajectories
of reduced lengths. This negotiation scheme
demonstrates the benefits of localized inter-robot
communication, and is the technique most closely
related to the robot network planning framework
presented in this paper. However de-centralized
planning remains intrinsically incomplete.

The planning approach presented in this paper exploits
the respective advantages of centralized and
decentralized planning. In each robot network, it uses a
centralized single-query PRM planner to increase
completeness and still provide fast on-the-fly planning.
However, planning is distributed over the various
networks – hence, planning over multiple networks is
decentralized – to accommodate the fact that robots
from different networks cannot share information. The
triggering event caused by the merging of two
previously distinct networks into a single network leads
the robots in this new network to take advantage of the
information they now share by centrally re-planning
their coordinated trajectories.

Planning with incomplete world models and on-the-fly
re-planning when a sensor detects the presence of a still
unknown obstacle or a change in an obstacle’s
trajectory have previously been described in [14, 18] for
a single robot. We use similar techniques, but extend
them to multiple robot networks.

4. WORLD MODEL

Describing the world model in a concise but useful
form is necessary to allow for information sharing
between robots in the same network. In the
experimental system that we have built, world models
simply consist of a list of robots and their descriptions,
and a list of obstacles and their descriptions. The
following table outlines the information stored in each
list:

World Model Description

1) List of Robot Descriptions
- State (position and velocity)

 - Size (Radius)
- Most Recent Update Time
- Information Source

 - Goal position
- Current Trajectory

2) List of Obstacle Descriptions

- State (position and velocity)
- Size (Radius)
- Most Recent Update Time
- Information Source

Robots report their own size and state, while obstacle
sizes and states are estimated by robot sensors. The
most recent update time is useful when updating world
models with information received from other robots.
The information source is a robot identification number
that indicates which robot sensed (or communicated
with) the object. It is used to keep track of which robots
are currently in the network.

Several assumptions were made to allow such a concise
world model:

• Each robot has access to its own state relative to a

global coordinate system (e.g., GPS).

• Each object is approximated as a circular object to

allow its geometry to be described by a single
parameter, its radius.

• Each obstacle has constant linear velocity estimated

by a robot’s sensor. As in [11], if at any later time its
trajectory is found to diverge by more than some
threshold from the predicted trajectory (either
because the obstacle did not move at constant
velocity, or because the error in the velocity estimate
was too high), then the robot that detects this
divergence calls for the construction of a new plan
within its network. The planner “grows” the obstacles
(and the robots) to allow for some errors in predicted
trajectories of the objects.

• All objects in the environment are easily identifiable

by robot sensors, which can also precisely estimate
their positions and velocities. Any discrepancy
between two local world models can be easily
resolved.

The second assumption is rather easy to eliminate, as it
has been shown before that PRM planners can
efficiently deal with geometrically complex robots and
obstacles (e.g., [26]). In [14], the third assumption has
been shown to be quite reasonable, even when obstacle
velocities change frequently, provided that (re-)
planning is fast enough. The last assumption is more
crucial. In our experimental system, it is enforced by
engineering the vision system appropriately (see
Section 6.2). In the future, it will be important to relax
this assumption by using more general sensing systems
and data fusion techniques [23].

5. MOTION PLANNING ALGORITHM

As indicated earlier, motion planning within a robot
network is done using a centralized single-query PRM
planner (more precisely, several copies of this planner
running in parallel). This planner searches the joint
state×time space C of the k robots in this network. The
state of each robot is defined by the two coordinates of
its center and two velocity parameters, so C has 4k+1
dimensions. This representation can easily be extended
to other robots. For instance, we have implemented a
version of the planner for robots in three-dimensional
space [10]. The planner searches C for a collision-free
trajectory from the initial state of the robots to their goal
state. The resulting trajectory defines the coordinated
motions of the robots to their respective goals.

Our planner searches C by incrementally building a tree
of milestones (the roadmap), as described in [14,15,19].
At each iteration, it selects a milestone m in the current
roadmap, generates a collision-free state m’ at random
in a neighborhood of m in C and, if the path from m to
m’ tests collision-free, installs m’ as a new milestone in
the roadmap. The search terminates when m’ falls into
an “endgame” region around the goal. See [14] for
details.

As in [14,28], our planner satisfies kinodynamic
constraints as follows: to generate each new milestone
m’, it picks a control input at random and integrates the
equations of motion of the robots over a short duration.

We name our planner Kinodynamic Randomized
Motion Planning (KRMP). As shown in [14], under
reasonable assumptions on the free space, the
probability of not finding a plan when one exists
decreases exponentially to 0 as the number of
milestones increases. This is a major advantage over
our previous work in [9,11], which used a decentralized
prioritized planning approach. Note, however, that the
fact that the planner is probabilistically complete does
not imply that the entire system is also probabilistically
complete. The robots use partial world models and thus
need to re-plan their trajectories when they encounter
discrepancies in their model, (e.g. new obstacles). Since
there is no guarantee that a series of complete plans is
itself a complete plan, the robots are not guaranteed to
find a global plan if one exists. While it is unclear to
what extent the notion of completeness applies when

planning for global goals with only partial knowledge
of the environment, it is still desirable to achieve
completeness in the system’s components whenever this
is possible.

The work in [14] also demonstrated empirically that the
above techniques successfully compute trajectories for a
single robot with kinodynamic motion constraints, in
real-time, (i.e. fast enough to be run on the fly). To
enable motion planning within robot networks, KRMP
extends this previous work to accommodate several
robots. Modified techniques are needed to 1) select
milestones for expansion, 2) generate new milestones,
and 3) define the endgame region. Below we present
only the technique we use to generate a new milestone
m’. Not all modifications are presented in this paper.

When planning for multiple robots, one may generate
m’ using the following “parallel” approach: first, pick
the control inputs for all the robots at random; next,
integrate the motions of all the robots concurrently; if
no collision is detected, then record the endpoint as a
new milestone, otherwise pick another set of control
inputs. We found that this technique yields a high
rejection rate, especially in tight space. This led us to
develop the following “sequential” approach: consider
the robots in some order, pick the control input for each
robot and integrate its motion (while considering the
previous robots as moving obstacles); if the motion
collides, pick another control or change the motion of a
previous robot. Our experiments show that this
sequential approach makes it possible to get each new
milestone much faster, without affecting the
probabilistic completeness of the overall planner.

Finally, we take advantage of the various processors
available in a robot network by concurrently running a
separate copy of KRMP on each robot of the network.
Each copy uses a different seed of the random number
generator, hence constructs different roadmaps. We set
the same timeout constraint (typically, a small fraction
of a second) on every robot. Each robot then returns a
plan or its failure to generate one. The same best plan is
selected by the robots and each robot immediately
switches to executing its new trajectory. This is made
possible because we use a PRM planning approach.

6. ROVER PLANNING

To validate our planning approach, it was implemented
on the MARS test-platform. This section describes the
hardware used for rover experiments, followed by a
brief summary of experimental results. For details about
the implementation of the planner on planetary rovers,
refer to [11].

6.1 Micro-Autonomous RoverS Test-Platform
Located in the Aerospace Robotics Lab at Stanford
University, the Micro-Autonomous RoverS (MARS)
test-platform is used to model mobile robots in a two-
dimensional workspace. The platform consists of a
large 12’ x 9’ flat, granite table with six autonomous
robots that move about the table’s surface.

The robots are cylindrical in shape and use two
independently driven wheels that allow them to rotate
on the spot, but inhibit lateral movement
(nonholonomic constraint). Each robot is equipped with
its own planner (copy of KRMP) and controller that are
located off-board.

An overhead vision system is used to track the states of
all objects on the table. The vision system processor
calculates these states and publishes them to all
applications that subscribe (see Figure 4). This makes
global state information available to all robots. To
simulate the limited sensing range that would occur
when sensors are mounted on robots, the object states
are filtered such that robots only receive state
information regarding objects within some
predetermined range of the robot.

Figure 4 shows the computer/network architecture of
the MARS test-platform. All the processing is done off-
board. Two processors are assigned to each robot,
respectively for planning and control. These computers
are connected through a LAN. All communication
within the LAN is accomplished with Real Time
Innovation's Network Data Delivery Service (NDDS)
software. Because a LAN is used for inter-robot
communication instead of a wireless medium, there are
no physical barriers to limit the range of
communication. Hence the communication barrier is
simulated.

NDDS is based on a publish/subscribe architecture. To
broadcast messages by flooding a robot network, the
sender will publish a message to which all robots
subscribe. Before robots can receive their
subscriptions, the messages are filtered so that only
robots within some predetermined range of the sender
will receive the message. This effectively simulates a
discrete physical communication range.

Figure 4: Network architecture of MARS test-platform

6.2 Planetary Rover Experiments
To illustrate the applicability of the planner to a
physical system, real robot experiments with up to 5
robots have been carried out. One example of such an
experiment is illustrated in Figure 5. The top photo is a
screenshot of the GUI taken at one point in the

experiment. The bottom photo shows the physical
hardware, and was taken at the same time as the GUI
screenshot. In the GUI, robots and objects are depicted
as small and large circles, respectively. Robot goal
locations are indicated by cross-hairs, and lines leading
to the goal locations depict the trajectories. When
robots form a network as described in Section 2, it is
indicated by a color change. Hence robots within a
network have a common color, and this color will differ
between networks.

In the experiment presented, all five robots are initially
located at the near end of the table (i.e. bottom of the
GUI screen). Communication and sensing ranges were
limited to 0.75 m. Robot colors indicate that 2 networks
have formed, one with the 2 robots in the bottom left
and one with the 2 robots in the bottom right. As the
experiment progresses, the robots follow their
trajectories to reach their goal locations at the far end of
the table. Throughout the experiment, robots planned an
average of 3.4 times, and planning times were an
average of 9 ms.

Figure 5: Example experiment on the MARS test-
platform involving 5 robots and 3 obstacles.

Successful planning was demonstrated in more complex
simulations involving up to 12 planetary rovers in a
bounded workspace that contained 12 static and moving
obstacles, (see [10]).

7. FREE-FLOATING ROBOT PLANNING

This section details planner implementation issues,
provides a brief note on the 3D visualization, and gives
results from simulations of free-floating robots in a 3D
environment.

GUI Planners Controllers Visualization ((()))

Vision

7.1 Free-Floating Robots Planner Implementation

Free-Floating Robot Model - A simple cube-shaped
robot equipped with 6 independent on/off thrusters was
used to model a space robot in simulation. Note this

To implement this in practice, one must create a list of
milestones to get from me to mg, the milestone defining
the goal states of each robot. Each milestone in this list
corresponds with the change in actuation necessary for
obtaining the bang-off-bang control sequence.

does not allow for any change in orientation. Future
work will include additional thrusters to allow roll,
pitch and yaw variation.

The state of the robots can be described by X = (x1, x2,
x3) ∈ ℜ3 representing the position with respect to the
inertial frame. Milestones are specified by the state of
the k robots at a particular time, (X0, X1, ... , Xk, t).

t

t

t

me m0 m1 m2 m3 m4 m5 mg

t

t

t

u1

u2 x3

x1

u3

x2

x1
Figure 6: State-space model of the free-floating robot

x2
Milestone Generation - To generate a new milestone for
the road map, thruster control inputs are randomly
selected that will propagate robots to new states. First,
the time for which the thrusters will be actuated, (tact), is
randomly selected where:

x3

[]maxmin ,tttact ∈
Figure 7: Example of actuation required to move one
robot from (0, 0, 0) to a goal state. The series of
milestones required is {mp, m0, m1, mm3, m4, m5, mg}

Next, the control inputs (ON/OFF) are randomly
selected for each thruster. We assume that only one of
two opposite-facing thrusters should be enabled at the
same time. This can reduce the number of random
variables. That is, for each pair of opposite-facing
thrusters, a control input variable uact is selected where:

7.2 Free-Floating Robot Simulations
To simulate motion planning experiments that involve
free-floating robots maneuvering in a 3D space
environment, the test platform described in Section 6
was augmented to incorporate a 3D visualization. The
application was coded in C++ and OpenGl. A
screenshot from the application can be seen in Figures 1
and 9. As depicted in Figure 4, the application acts only
as a listener to receive state information.

 }0,1,1{ −∈actu

uact 1 -1 0
Thruster 1 ON OFF OFF
Thruster 2 OFF ON OFF

Table 1: Mapping the random variable uact to thruster
actuation.

The applicability of the planner to a 3D environment
was validated with simulations that include up to 8
robots and 8 obstacles. A test scenario is provided in
which robots must cross paths several times. A GUI
screenshot of the scenario is provided in Figure 8, (Note
that the third dimension is not displayed here.)

With the random variables selected, a candidate
milestone m can be generated. Given any parent
milestone mp, and using 1/s2 dynamics, robot states in m
can be easily calculated:

piactpiact
iact

i xtxt
M

u
x ,,

2

2
++=

piact
iact

i xt
M

u
x ,+=

Endgame Region - The endgame region E in this
implementation is defined as the subspace that includes
all milestones me, such that all robots can be propagated
without collisions from states defined by me to their
respective goal location via a bang-off-bang control
sequence. An advantage this sequence has is that it
allows us to limit the velocity of the robot, making it
easier to re-plan in the future.

Figure 8: A test scenario involving 8 robots and 8
obstacles. On the left, four robots denoted by light gray
circles have formed a network. On the right, two
networks have formed, each with two robots, (denoted
by blue and yellow circles). Lines indicate trajectories.
Obstacles are depicted as dark circles.

The test scenario was simulated 25 times to produce the
results in Table 2. From these results it is clear that the
planner was capable of planning on the fly with average
planning times of 67 ms. An average of 12.2 networks
were formed throughout each simulation.

Avg. number of plans made by each robot 4.77
Avg. number of robots in each plan 1.84
Avg. planning time (ms) 67.0
Avg. number of networks formed 12.2

 a)
Table 2: Data from 25 simulations of the test scenario
depicted in Figure 8.

Provided in Figure 9 is a visualization of a simulation of
4 free-floating robots planning in a bounded 3D
environment that contains 4 obstacles. The robots have
formed a network and carried out centralized planning
to construct trajectories to their respective goals. The
view has been rotated between screenshots in a
clockwise direction to provide different points of view
of the simulation.

b) 8. CONCLUSIONS

The motion planning framework presented has
demonstrated its effectiveness in planning for multiple
mobile robots within a bounded workspace. It plans
with a high probability of success in environments
involving robots, stationary obstacles and moving
obstacles. Planning times of less than 100 ms allowed
the robots to re-plan on the fly and react in real-time to
changes in the environment.

Future work includes incorporating more sophisticated
methods of modeling the environment into the
communication system. Another future direction will be
to investigate the effects of varying the ratio between
sensor range and communication range. For the
application to the three-dimensional workspaces,
planning for all degrees of freedom should be
incorporated.

c)

d)

e)
Figure 9: Visualizing a simulation involving 4 robots
and 4 obstacles. Large gray cubes denote the obstacles.
Trajectories are denoted by yellow lines that end at
robot goal locations, (denoted by red cube lattices).

BIBLIOGRAPHY

[1] D. L. Akin, M. L. Bowden. EVA, Robotic, and Cooperative
Assembly of Large Sapce Structures, Proc. IEEE Aerospace
Conference, 2002.
[2]R. Alami, F. Robert, F. Ingrand, & S.Suzuki. Multi-Robot
Cooperation Through Incremental Plan-Merging, Proc. IEEE Int.
Conf. on Robotics and Automation, p. 2573-2678, 1995.
[3] T. Arai & J. Ota. Motion Planning of multiple mobile robots.
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Syst., p. 1761-
1768, 1992.
[4] K. Azarm & G. Schmidt. Conflict-Free Motion of Multiple Mobile
Robots Based on Decentralized Motion Planning and Negotiation,
Proc. IEEE Int. Conf. on Robotics and Automation, p. 3526-3533,
1997.
[5] J. Barraquand, B. Langlois, & J.C. Latombe. Numerical Potential
Field techniques for Robot Path Planning, IEEE Tr. On Syst., Man,
and Cyb., 22(2):224-241, 1992.
[6] M. Bennewitz, W. Burgard & S. Thrun. Optimizing Schedules for
Prioritized Path Planning of Multi-Robot Systems, Proc. Int. Conf. on
Robotics and Automation, 2001.
[7] Z. Bien & Jihong Lee. A Minimum-Time Trajectory Planning
Method for Two Robots, IEEE Tr. on Robotics and Automation, pg
443-450, 1992.
[8] S.J. Buckley. Fast Motion Planning for Multiple Moving Robots.
Proc. IEEE Int. Conf. on Robotics and Autom., p. 1419-1424, 1989.
[9] C. Clark & S. Rock. Randomized Motion Planning for Groups of
Nonholonomic Robots, Proc. Int. Symp. of Artificial Intelligence,
Robotics and Automation in Space, 2001.
[10] C. Clark, S. Rock & J. C. Latombe. Dynamic Networks for
Motion Planning in Multi-Robot Space Systems, Proc. Int. Symp. of
Artificial Intelligence, Robotics and Automation in Space, 2003.
[11] C. Clark, T. Bretl, & S. Rock. Kinodynamic Randomized Motion
Planning for Multi-Robot Space Systems, Proc. of IEEE Aerospace
Conf., 2002.
[12] M. Erdmann & T. Lozano-Perez. On Multiple Moving Objects,
Proc. IEEE Int. Conf. on Robotics and Automation, p. 1419-1424,
1986.
[13] Y. Guo & L. E. Parker. A Distributed and Optimal Motion
Planning Approach for Multiple Mobile Robots, Proc. IEEE Int.
Conf. on Robotics and Automation, p. 2612-2619, 2002.
[14] D. Hsu, R. Kindel, J.C. Latombe, & S. Rock. Randomized
Kinodynamic Motion Planning with Moving Obstacles, Int. J. of
Robotics Research, 21(3):233-255, March 2002.
[15] D. Hsu, J.C. Latombe, & R. Motwani. Path planning in
expansive configuration spaces, Proc. IEEE Int. Conf. on Robotics
and Automation, p. 2719-2726, 1997.
[16] K. Kant & S. Zucker. Toward efficient Trajectory Planning: The
path-velocity decomposition, Int. J. of Robotics Research, 5(3):72-
89,1986.
[17] S. Kato, S. Nishiyama, & J. Takeno. Coordinating mobile robots
by applying traffic rules, Proc. IEEE/RSH Int. Conf. on Intelligent
Robots and Systems, p. 1535-1541, 1992.
[18] J.J. Kuffner. Autonomous Agents for Real-Time Animation. PhD
Thesis, Computer Science Dept., Stanford U., 1999.
[19] S.M. LaValle & S.A. Hutchinson. Optimal Motion Planning for
Multiple Robots Having Independent Goals, IEEE Tr. on Robotics
and Automation, 14:912-925, 1998.
[20] S.M. LaValle & J.J. Kufner. Randomized Kinodynamic
Planning,” Int. J. of Robotics Research, 20(5):278-300, 2001.
[21] Lee, Lee, & Park. Trajectory Generation and Motion Tracking
for the Robot Soccer Game, Proc. IEEE Int. Conf. on Intelligent
Robots and Systems, p. 1149-1154, 1999.
[22] V.J. Lumelsky & K.R. Harinarayan. Decentralized Motion
Planning for Multiple Mobile Robots: The Cocktail Party Model,
Autonomous Robots J., 4:121-135, 1997.
[23] P. Moutarlier & R. Chatila. Stochastic Multisensory Data Fusion
for Mobile Robot Location and Environment Modelling. Proc. Int.
Symp. on Robotics Research, Tokyo, 1989.
[24] P. S. Schenker, T. L. Huntsberger, P. Pirjanian & E. T.
Baumgartner. Planetary Rover Developments Supporting Mars
Exploration, Sample Return and Future Human-Robotic Colonization,
Proc. 10th Conf. on Advanced Robotics, p. 31-47, 2001.
[25] D. Parsons & J. Canny. A Motion Planner for Multiple Mobile
Robots, Proc. IEEE Int. Conf. on Robotics and Autom., p. 8-13, 1992
[26] G. Sánchez & J.C. Latombe. On Delaying Collision Checking in
PRM Planning : Application to Multi-Robot Coordination, Int. J. of
Robotics Research, 21(1):5-26, Jan. 2002.

[27] G. Sánchez-Ante & J.C. Latombe. Using a PRM Planner to
Compare Centralized and Decoupled Planning for Multi-Robot
Systems, Proc. IEEE Int. Conf. on Robotics and Autom.., 2002.
[28] S. Sekhavat, P. Svetska, J.P. Laumond, & M.H. Overmars.
Multilevel Path Planning for Nonholonomic Robots Using
Semiholonomic Subsystems. Int. J. of Robotics Res., 17:840-857,
1998.
[29] T. Siméon, S. Leroy, & J.P. Laumond. Path Coordination for
Multiple Mobile Robots: a Geometric Algorithm, Proc. Int. Joint
Conf. on Artificial Intelligence, 1999.
[30] P. Svestka, & M.H. Overmars. Coordinated Motion Planning for
Multiple Car-Like Robots Using Probabilistic Roadmaps, Proc. IEEE
Int. Conf. on Robotics and Autom., p. 1631-1636, 1995.
[31] C.W. Warren. Multiple Path Coordination using Artificial
Potential Fields, Proc. IEEE In. Conf. on Robotics and Autom., p.
500-505, 1990.

	Abstract
	1. Introduction
	2. Planning in dynamic networks
	��
	a)b)
	Figure 2: Example with 5 robots. Dashed lines between robots depict communication links. In a) the robots form two distinct networks Net0 and Net1. In b), two robots have moved, and the two networks in a) have merged into Net2.

	3. Background Review
	4. World Model
	5. Motion Planning Algorithm
	6. Rover Planning
	
	6.1 Micro-Autonomous RoverS Test-Platform

	7. Free-Floating Robot Planning
	
	Free-Floating Robot Model - A simple cube-shaped robot equipped with 6 independent on/off thrusters was used to model a space robot in simulation. Note this does not allow for any change in orientation. Future work will include additional thrusters to a
	Milestone Generation - To generate a new milestone for the road map, thruster control inputs are randomly selected that will propagate robots to new states. First, the time for which the thrusters will be actuated, (tact), is randomly selected where:
	Endgame Region - The endgame region E in this implementation is defined as the subspace that includes all milestones me, such that all robots can be propagated without collisions from states defined by me to their respective goal location via a bang-off-

	8. Conclusions
	Bibliography

