
Motion Planning for Formations of Mobile Robots

T D Barfoot
Controls and Analysis Group

MD Robotics

C M Clark
Department of Aeronautics and Astronautics

Stanford University

<tim.barfoot@utoronto.ca>

41 Old Mill Drive
Toronto, Ontario, Canada

M6S 4J8
T (416)-766-0886

Motion Planning for Formations of Mobile Robots

T D Barfoot

Controls and Analysis Group

MD Robotics

9445 Airport Road

Brampton, Ontario, Canada L6S 4J3

<tim.barfoot@utoronto.ca>

C M Clark

Department of Aeronautics and Astronautics

Stanford University

Durand Building, 496 Lomita Mall

Stanford, CA, USA 94305-4035

<chrisc@sun-valley.stanford.edu>

Submitted to

Robotics and Autonomous Systems

– 15 January, 2003 –

Keywords

Motion Planning, Robot Formations, Mobile Robots, Nonholonomic Constraint

Abstract

This paper is concerned with planning the motion of mobile robots in formation, which means certain

geometrical constraints are imposed on the relative positions and orientations of the robots throughout their

travel. Specifically, a method of planning motion for formations of mobile robots with nonholonomic con-

straints is presented. The kinematic equations developed allow a certain class of formations to be maintained

while the group as a whole exhibits motion. The work was validated using the Stanford Micro-Autonomous

Rovers Testbed.

1 Introduction

Networks of mobile robots for planetary exploration [5] and terrestrial applications are currently under much
investigation. A key element in the control of such networks is motion planning [18], wherein trajectories are
computed to avoid costly collisions. The ability to maintain a specific formation of robots is of particular
importance in space exploration where data may need to be collected simultaneously from a distributed array of
instruments (e.g., seismology, meteorology, three dimensional vision). The very nature of exploration dictates
that such arrays of instruments may often need to be relocated in the work environment. This paper investigates
the kinematics of formations of mobile robots, that is, how a certain class of geometrical configurations of mobile
robots can be maintained during motion. Once such a geometrical configuration of the formation is defined, the
equations of this paper allow the network of robots to be treated as a single large robot. Existing single-robot
motion planners, controllers or a tele-operator can be used to specify the reference trajectory of the group as a
whole. Given this reference trajectory each robot in the formation is able to compute its individual trajectory.
This may have particular relevance for tele-operation of such a network from Earth where communication
bandwidth is low and latencies are high.

In this approach we explicitly plan the trajectories of every robot in the formation [6]. A controller is
implemented for each robot to ensure it tracks its planned trajectory, in contrast to maintaining some fixed
distance to a leader. This allows us to specifically alter the formation’s shape while turning [8] to accommodate
the nonholonomic constraint of the robots. This is accomplished by setting up a curvilinear coordinate system
and ensuring that the “distances” between robots are enforced in this curvilinear coordinate system rather than
in the usual rectilinear coordinate system. The curvature of the curvilinear coordinate system is precisely the
instantaneous curvature of the reference trajectory. When a formation is turning, this method quite naturally
plans for robots on the “outside” to speed up and robots on the “inside” to slow down which is what one would
naturally expect.

An overview of our approach is as follows. A reference trajectory is provided by a supervisory entity
(e.g., a motion planner or tele-operator). Offsets from this reference trajectory (in curvilinear coordinates)
are provided for each robot. Based on these offsets and the reference trajectory, each robot computes its own
trajectory around which it closes a control loop.

This paper is organized as follows. We first review the literature and classify our approach using various
characteristics. We then discuss static formations, those which we simply would like to maintain during motion.

This is followed by dynamic formations, those which we would like to alter during motion. An example simulation
is provided, followed by experimental results from the MARS Testbed, discussion, and conclusions.

2 Review

There have been several approaches to maintaining formations of mobile robots including behaviour-based
methods [2], potential field methods [3, 25], virtual structures [23], leader-follower [24, 15], and neural networks
[17]. This paper is most similar to the leader-follower work (e.g., [12]) in that we use a reference trajectory and
define the motion of each individual robot relative to this trajectory. We do not advocate any particular feedback
control method to enable each robot to actually track its planned trajectory (there are many possibilities
including [21]). Michaud et al. [20] provide a detailed set of characteristics to classify robot formation work,
which we will adopt to place our motion planning approach in the context of other methods:

Perceptual Characteristics: We do not assume one robot in the formation can sense the locations of other
robots [11, 16, 20] but rather that each robot can sense its own location relative to a common global reference
frame [4, 5]. In our experimental work this is accomplished by means of an overhead camera positioning system
[10, 9]. However, our approach does not preclude a robot sensing the relative locations of other robots to improve
the estimate of its own global position. Since we are assuming each robot can determine its own global position,
inter-robot communication is not necessary but the approach does not prohibit the use of communication in a
practical implementation to improve position estimates. Communication is, however, necessary to communicate
the planned motion of a reference trajectory to each of the robots. This can be thought of as a hierarchical
assumption about communication in that a supervisory entity is able to communicate directly with each of the
individual robots.

Formation Characteristics: Our approach is able to support an arbitrary geometrical configuration of robots.
As we will see, this shape will be slightly altered when the formation is turning. As the geometrical distances
between robots vary slightly with time, our approach can be classified as flexible rather than rigid. This has
implications on the candidate applications of our formations. For example, it may not be appropriate for
cooperative carrying situations where each robot holds a corner of a large rigid object. As mentioned above,
our motion planning approach uses global positioning rather than relative positioning but we do plan the
individual robot trajectories relative to the trajectory of an arbitrary common reference point, which makes
our formations point-referenced rather than neighbour-referenced [11, 20](where each robot maintains position
relative to one or more neighbours). A further refinement on the classification scheme of Michaud et al. [20]
might be to distinguish between the methods used for state estimation and state control. Our approach uses
global positioning but the motion planning is relative to a common reference trajectory.

Control Characteristics: Our architecture is best classified as hierarchical rather than purely decentralized. A
reference trajectory is planned which is communicated to each of the individual robots who determine their own
individual trajectories. The approach is essentially a geometric one [23, 6, 7, 8]. An individual feedback control
loop is built for each robot to ensure it follows its planned trajectory [15, 21]. The approach is homogeneous in
that each robot can use the exact same algorithm except for changes in parameters (e.g., different offsets from
a common reference point).

Our approach allows a static formation to be maintained while moving as described above. It also supports
a dynamic formation [14, 12, 19] which might include a change from one shape to another shape. This could
be useful if, for example, distributed data needs to be collected at different resolutions and thus the formation
must change scale. Or, the formation may need to be nominally very wide (to collect data) but must become
narrower to fit between two obstacles. A clear advantage of using motion planning for dynamic formations is
that maneuvers can be planned ahead of time to avoid costly collisions [10, 9]. This may also be useful for
tele-operation where the operator simply wants the formation to become larger but does not want to manually
program each robot nor worry about collisions.

We address the feasibility [1, 22] of particular formations to a certain degree; by planning motion it is
possible to know whether a particular formation can follow a particular trajectory without violating certain
physical constraints imposed by the robot’s structure (e.g., actuator limits, finite robot size). We do not tackle
the issue of assembling formations from random initial conditions [20]. Obstacle avoidance [14, 13, 20, 15] is
also not addressed but we note that this could be handled by the reference trajectory planner.

3 Static Formations

A common model for a mobile robot with a nonholonomic constraint in Cartesian inertial space is the following:

ẋc = vc cos θc, ẏc = vc sin θc, θ̇c = vcKc (1)

where
[

xc yc θc

]T
are the coordinates of the robot, vc is the current speed, and Kc is the curvature of

the trajectory the robot is following (which is a monotonic function of the steering angle of the robot). The
nonholonomic constraint of this system, implied in (1), is

−ẋc sin θc + ẏc cos θc = 0 (2)

In general the speed and curvature of the robot are limited so we have the additional constraints

|Kc| ≤ Kc,max, |vc| ≤ vc,max (3)

Note that for an ideal differentially driven robot the curvature, K, is not limited (it can turn on the spot). The
first thing we must note about a geometrical formation of mobile robots is that the limits of equation (3) on the
group as a whole are different than those on the individual robots. For example, consider figure 1 depicting four
differentially driven mobile robots in a square. Simply because the individual robots can turn on the spot does
not imply that the square formation can turn on the spot (while maintaining the square). In fact, to maintain
a perfect square (including the orientation of the robots) the only possible motion is in a straight line.

In order to turn the formation, a concession must be made. We suggest that one approach is to maintain
the formation in curvilinear coordinates rather than in the original rectilinear coordinate system. This takes
advantage of the nonholonomic constraint imposed on each robot. It also ensures that, for a static formation
which does not turn sharper than a threshold curvature, the individual robot trajectories will not collide. This
approach could be advantageous, for example, in a data collection task where a particular left-right offset
between robots is required to ensure accurate data. Figure 1 shows what the formation would look like while
turning. By taking this approach we may steer the formation and thus trace any trajectory (subject to the
nonholonomic constraint and the constraints on speed and curvature). We introduce an arbitrary reference
point, C, within the formation whose coordinates serve as a single set of reference coordinates for the group.
This point could be the center of the formation, one of the robots in the formation, or any other point. All robots
in the formation will be described relative to this reference point (but in curved space for reasons described
above).

The kinematics equations for the reference point are now given by equations (1)-(3) where Kc,max and vc,max

are functions of the specific formation. For the remainder of this paper we assume that the trajectory (and
control inputs) of the reference point, C, are known. That is, we assume that

[

xc(t) yc(t) θc(t)
]T

,
[

vc(t) Kc(t)
]T

(4)

are given (t is time). These may be obtained by an existing motion planning algorithm or controller. For
convenience, the control inputs can be written as a function of distance, dc. Using equation (4),

vc(dc), Kc(dc), dc(t) =

∫ t

0

vc(τ)dτ (5)

Figure 1: (left) Square formation. (right) Square formation while turning.

This allows the geometry of the reference trajectory to be described independently of the speed along that
trajectory. We would now like to compute the trajectory for each of N robots in a formation relative to the

reference point C. Figure 1 depicts the
[

pi qi

]T
coordinates of robot i relative to the reference point, C. If

[

pi qi

]T
is constant then we arrive at the following control inputs for robot i in order to remain in formation

vi(si) = vc(si)

(

1 − qiKc(si)

)

(6)

Ki(si) =
Kc(si)

1 − qiKc(si)

where si(t) = dc(t) + pi (see Appendix for derivation). Together with

ẋi = vi cos θi, ẏi = vi sin θi, θ̇i = viKi (7)

these equations describe the kinematics of robot i. Note, we must check that

|Ki| ≤ Ki,max, |vi| ≤ vi,max (8)

at all points on the trajectory to ensure
[

vc(dc) Kc(dc)
]T

is a valid reference trajectory. If not, the trajectory
cannot be implemented by robot i and this part of the formation cannot be maintained.

An advantage of this approach is that the shape of the formation can be described independently of the

reference trajectory. This implies that it is possible to compute the reference trajectory,
[

vc(dc) Kc(dc)
]T

, in
real-time. To do so, the reference point, C, must be the furthest forward point in the formation (in the direction
of travel) or some individual robots will require knowledge about the reference trajectory that has not yet been
determined. An equivalent condition is that the pi must all be opposite in sign to vc.

4 Dynamic Formations

The more general case is to allow the shape of the formation to change over time. For example, this might be
necessary to allow the group to fit through a small opening. This approach handles the general case very nicely

by allowing
[

pi qi

]T
to be a function of time, or equivalently, distance. To simplify matters we again define

the distance travelled by robot i along the reference trajectory as

si(t) = dc(t) + pi(t) (9)

where we notice that pi(t) now changes with time. We also now have qi(t) as a function of time but we will
work instead with qi(si). It becomes necessary to determine all of the following quantities before computing
the trajectory of robot i

si(t), qi(si),
dqi

dsi

(si),
d2qi

ds2

i

(si) (10)

Figure 2 interprets these quantities graphically. Once they have been determined, we may compute the local
trajectory of robot i as the following

vi = SQvc (11)

Ki =
S

Q

Kc +

(

1 − qiKc

)

d2qi

ds2

i

+ Kc

(

dqi

dsi

)2

Q2

with

S = sgn
(

1 − qiKc

)

(12)

Q =

√

(

dqi

dsi

)2

+

(

1 − qiKc

)2

(13)

Figure 2: Graphical depiction of dynamic robot trajectory and associated quantities.

where all quantities are evaluated at si(t) not dc(t). Together with equations (7) these describe the kinematics
of robot i. We again must ensure the limits in equation (8) are not exceeded at all points on the trajectory.

The factor, sgn
(

1 − qiKc

)

, in both of the above equations accounts for the fact that a robot might have to move

backwards to maintain formation. Notice that when the curvature of the reference trajectory, Kc, is zero, the
space is not curved and equation (11b) simplifies to

Ki =

d2qi

ds2

i
(

1 +

(

dqi

dsi

)2
)

3

2

(14)

which is a common expression for curvature. Thus we may interpret the two terms of equation (11b) as stemming
from the curvature of the reference trajectory (left) and the curvature of the maneuver (right).

A major advantage of this approach is that we may design formation maneuvers independently of the
reference trajectory. A library of transformations may be built up and used repeatedly with any reference
trajectory (e.g., switch from a square to a line, magnify the current shape, or even permute positions within
the same formation).

5 Example Maneuver

It will be useful to give an example of a maneuver within a formation. One possibility is to increase the
coordinate qi,o by an amount δqi = qi,f − qi,o over a distance, δsi = si,f − si,o. To do this we may use the
following trajectory

qi(si) =

qi,o 0 ≤ si ≤ si,o

qi,o + δqib
2

i (3 − 2bi) si,o < si ≤ si,f

qi,f si,f < si

(15)

where bi =
si−si,o

δsi
. This in turn allows us to compute

dqi

dsi

(si) =

0 0 ≤ si ≤ si,o

6 δqi

δsi
bi(1 − bi) si,o < si ≤ si,f

0 si,f < si

(16)

d2qi

ds2

i

(si) =

0 0 ≤ si ≤ si,o

6 δqi

δs2

i

(1 − 2bi) si,o < si ≤ si,f

0 si,f < si

(17)

Figure 3 shows this maneuver carried out while the formation is turning. Now that we have this maneuver
worked out, we may use it as many times as we like, for any reference trajectory. We simply need to use
equations (15)-(17) in (11) to compute the trajectory of robot i either ahead of time or online.

Figure 3: An example maneuver. Robot i moves further away from the reference point during a turn.

Notice that in figure 3 not only does the qi increase (in magnitude) for each robot but so does the pi coordinate.
This was not explained above but was accomplished by slowing down (or speeding up) each robot while still
tracing out the same trajectory. Figure 4 depicts the formation during extended maneuvers at various times.

Figure 4: Snapshots of two extended formation maneuvers. In the bottom one the two rovers on the right are
required to go backwards to stay in formation in the curvilinear coordinates.

6 Experiment

The Micro-Autonomous RoverS (MARS) Testbed (Figure 5) at Stanford University models rovers in a two-
dimensional workspace and was used to carry out the formation planning experiments. The platform consists
of a large 3m x 2m flat, granite table with six autonomous robots that move about the table’s surface.

Figure 5: The Micro-Autonomous RoverS (MARS) Testbed.

The robots are cylindrical in shape and use two independently driven wheels that allow them to rotate on
the spot, but inhibit lateral movement so as to induce the nonholonomic constraint of equation (2). Each robot
has its own motion planner located off-board. Control signal processing is also done off-board, and the control
signals are sent to the individual robots via a wireless RC signal.

All communication within the MARS platform is accomplished with Real Time Innovation’s Network Data
Delivery Service (NDDS) software. NDDS is based on a publish/subscribe architecture. An overhead vision
system is used to provide position and velocity sensing. Three cameras with infrared filters are used to detect
LEDs mounted on the top surface of robots and obstacles. Each robot/obstacle has a distinct pattern of LEDs
to distinguish it from other robots/obstacles. The vision system updates the robot’s position and velocity at a
rate of 15Hz.

The testbed features a Graphical User Interface (GUI) designed in Java/Swing. It provides a top-down
view of the table including graphical representations of robots and obstacles (see Figure 6). Setting robot goal
locations is accomplished with a drag and drop system. New goal locations are sent to the respective motion
planner so trajectories can be constructed. For further details on the MARS Testbed, see [9].

In order to construct the reference trajectory that the formation will follow, a Probabilistic Road Map (PRM)
planner similar to that described in [9] and [10] was implemented. The planner provides real-time generation of
trajectories that satisfy the necessary dynamic and kinematic constraints (e.g. the nonholonomic constraint).

For real-time formation planning experiments, a single “Leader” robot is used to construct the reference
trajectory. The reference point, C, coincides with this Leader. A collision-free reference trajectory for the
Leader robot is constructed using the PRM planner. When checking for collisions, the planner assumes that
the Leader is a circular robot with an effective radius equal to the largest distance from the Leader to any other
robot in the formation (Euclidean distance). For a sample maneuver refer to figure 6.

After the Leader constructs the reference trajectory, it communicates this trajectory to all other robots
in the formation. Assuming robots have knowledge of the Leader’s and their own initial position, they can
calculate their offsets from the Leader’s initial location. This provides the static offset values pi and qi depicted
in Figure 1. Knowing the Leader/reference trajectory and their own formation offsets, each robot can plan its
trajectory according to equations (6) through (8).

Figure 6 depicts a typical static formation maneuver involving three robots and three stationary obstacles.
Photos of the maneuver are presented with their corresponding screen-shots of the GUI below. The three robots,
located in the bottom left corner of the image in Figure 6 (left column), begin in a triangle formation. Once
the start command is given, the Leader robot constructs a collision-free trajectory to the desired goal location.

In Figure 6 (middle two columns), the formation is progressing successfully towards the goal. Before reaching
the goal, the user has moved the desired goal location of the formation to illustrate the real-time planning. In
Figure 6 (right column), the formation is continuing along its new trajectory to the goal. Note that the goal

Figure 6: A typical static formation maneuver. Top row shows time progression of hardware formation. Bottom
row shows corresponding graphical display. The large circles represent obstacles and the small circles represent
robots. The symbol, ⊕, indicates the goal which is dynamic. Note, the reference trajectory has been altered in
real-time in the right most column by moving the goal location up and to the right.

relocation occurred far enough in advance to allow all robots in the formation to know the new reference
trajectory in a timely fashion.

7 Discussion

The approach we have taken in this paper is to explicitly plan the motion for each robot in the formation. We
believe this provides an advantage over previous methods, particularly for the case of dynamic formations, as
we may plan to avoid collisions during complex formation maneuvers.

Another novelty of our method is that we allow the distances between robots to change (by design) when
the formation turns. This was done to incorporate the nonholonomic constraint associated with the robots.
This feature may provide a disadvantage for applications where the robots are trying to cooperatively carry
large objects. For these applications, methods that attempt to maintain constant distances between robots may
prevail [23]. The advantage of this feature is that we may very simply compute the trajectories of every robot in
the formation given the reference trajectory. In fact, we may consider the entire formation to be one robot with
the same form of nonholonomic constraint as the individual robots. This not only provides a nice symmetry
but allows a great many single robot methods to be recycled and applied at the formation level. We must
reiterate that the limits on speed and curvature of the entire formation (e.g., equation (3)) are not identical for
a formation and its constituent robots.

The equations provided allow a precomputed (or real-time) formation maneuver to be combined with a
precomputed (or real-time) reference trajectory at run-time which makes the method very flexible and modu-
lar. This advantage was clearly demonstrated on the MARS Testbed as an existing Probabilistic Road Map
planner [9, 10] was used to compute the reference trajectory for a static formation. This trajectory was altered
in real-time and the formation was able to compensate easily. It should be stressed, however, that any motion
planner (or controller) for a single robot with a nonholonomic constraint could be used to compute the reference
trajectory.

In the static formation case, our approach provides a method to automatically plan the trajectories of all

the robots, given the reference trajectory and the constant offsets from it (in the curvilinear coordinate system).
Other methods, such as input-output feedback linearization [11], have also been successfully used to track a
point slightly displaced from a reference trajectory (in the inertial, Cartesian coordinate system). Thus, for
the static case, our approach may not provide a large advantage over existing methods, in that we have not
reduced the complexity of the problem. In essence, we are capitalizing on the knowledge of the individual robots’
capabilities to generate open loop commands that acknowledge the nonholonomic constraint. We also make the
observation that under our approach, the reference trajectory must also be subject to the same nonholonomic
constraint, an advantage when considering motion planning of the entire formation.

For the dynamic formation case, we feel this approach is particularly advantageous in that we can explicitly
plan the paths of each robot (within the formation). Again, other methods such as input-output feedback
linearization can be used to change formation shape [11]. In the simplest approach, one could discretely change
the offsets (in the inertial, Cartesian coordinate system), and allow the control laws to take care of the transient
behaviour; but this may lead to undesirable collisions. Consider the case where two robots must simply switch
places within a formation which is travelling in a straight line. To use input-output feedback linearization
(where the offsets are instantaneously swapped) will most likely result in a collision (as both the robots will
nominally travel along the straight line that joins them, to their new assigned location). To avoid the collision,
an intermediate set of offsets could be used (e.g., one robot moves to the side) before the final desired offsets
are commanded. However, this requires planning the formation change, something addressed by the planner
presented in this paper. Our approach allows generic formation plans to be worked out in advance and applied
while following an arbitrary reference path. We should again point out that we have not reduced the complexity
of the problem as the individual robot’s trajectories must be individually planned in the dynamic case. However,
if a library of all the desired formation maneuvers is worked out in advance, then at runtime it remains only to
incorporate the reference trajectory information into the plans.

Our experimental validation of this technique has to date involved only static formations. We plan to continue
this validation for dynamic formations on the MARS Testbed. There are several extensions to this work which
we hope to investigate. An example of a dynamic formation maneuver that was designed by hand was provided.
One extension is to use a multirobot planner such as in [9, 10] to plan the formation maneuvers and then combine
these with a reference trajectory (which could be generated by the same planning method). This would fully
automate the process of motion planning for dynamic formations and would accommodate knowledge about
the environments (e.g., obstacles). We would further like to demonstrate the technique using limited visual
capabilities (e.g., directional on-board cameras) rather than an overhead camera for robot localization.

8 Conclusions

A motion planning approach to formations of mobile robots with a nonholonomic constraint was presented. It
was shown that a formation could be treated in the same way a single robot is treated thus making a great
deal of single robot work relevant at the formation level. The method allows the geometry (both static and
dynamic) of a formation to be considered separately from the formation’s overall trajectory by providing a way
to combine these two components. The method was validated on the Stanford MARS Testbed and found to
be very flexible in that an existing trajectory planner was used to generate the reference trajectory for the
formation in real-time.

Acknowledgments

The research was funded in part by the Natural Sciences and Engineering Research Council of Canada.

References

[1] H Ando, I Suzuki, and M Yamashita. Formation and agreement problems for synchronous mobile robots
with limited visibility. In Proceedings of the IEEE International Symposium on Intelligent Control, pages
453–460, Monterey, CA, August 1995.

[2] T Balch and R C Arkin. Behaviour-based formation control for multi-robot teams. IEEE Transactions on
Robotics and Automation, 14(6), 1998.

[3] T Balch and M Hybinette. Social potentials for scalable multi-robot formations. In Proceedings of the 2000
IEEE International Conference on Robotics and Automation, San Francisco, USA, April 2000.

[4] T D Barfoot, C M Clark, S M Rock, and G M T D’Eleuterio. Path-planning for formations of mobile
robots with a nonholonomic constraint. In Proceedings of the 2002 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2819–2824, Lausanne, Switzerland, September 2002.

[5] T D Barfoot, E J P Earon, and G M T D’Eleuterio. A new breed: Development of a network of mobile
robots for space exploration. Montréal, Canada, June 19-21 2001. The 6th International Symposium on
Artificial Intelligence, Robotics and Automation in Space (iSAIRAS).

[6] Calin Belta and Vijay Kumar. Motion generation for formation of robots: A geometric approach. In
Proceedings of the 2001 IEEE International Conference on Robotics and Automation, Seoul, Korea, May
21-26 2001.

[7] David Brock, David Montana, and Andrew Ceranowicz. Coordination and control of multiple autonomous
vehicles. In Proceedings of the 1992 IEEE International Conference on Robotics and Automation, Nice,
France, May 1992.

[8] Qin Chen and J Y S Luh. Distributed motion coordination of multiple robots. In Proceedings of the 1994
IEEE International Conference on Robotics and Automation, volume 3, pages 2315–2320), 1994.

[9] Christopher M Clark, Tim Bretl, and Stephen M Rock. Applying kinodynamic randomized motion planning
with a dynamic priority system to multi-robot space systems. Big Sky, Montana, USA, March 9-16 2002.
IEEE Aerospace Conference.

[10] Christopher M Clark and Stephen M Rock. Randomized motion planning for groups of nonholonomic
robots. Montréal, Canada, June 19-21 2001. The 6th International Symposium on Artificial Intelligence,
Robotics and Automation in Space (iSAIRAS).

[11] Aveek Das, Rafael Fierro, Vijay Kumar, Jim Ostrowski, John Spletzer, and Camillo Taylor. A framework
for vision based formation control. Multi-Robot Systems: A Special Issue of IEEE Transactions on Robotics
and Automation, October 2002.

[12] Jaydev P Desai, Vijay Kumar, and James P Ostrowski. Control of changes in formation for a team of
mobile robots. In Proceedings of the 1999 IEEE International Conference on Robotics and Automation,
Detroit, Michigan, May 1999.

[13] Jaydev P Desai, James P Ostrowski, and Vijay Kumar. Controlling formations of multiple mobile robots.
In Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Leuven, Belgium,
May 1998.

[14] Jaydev P Desai, James P Ostrowski, and Vijay Kumar. Modeling and control of formations of nonholonomic
mobile robots. IEEE Transactions on Robotics and Automation, 17(6):905–908, December 2001.

[15] R Fierro, A K Das, V Kumar, and J P Ostrowski. Hybrid control of formations of robots. In Proceedings
of the 2001 IEEE International Conference on Robotics and Automation, Seoul, Korea, May 2001.

[16] J Fredslund and M J Mataric. A general, local algorithm for robot formations. Multi-Robot Systems: A
Special Issue of IEEE Transactions on Robotics and Automation, October 2002.

[17] K Hirota, T Kuwabara, K Ishida, A Miyanohara, H Ohdachi, T Ohsawa, W Takeuchi, N Yubazaki, and
M Ohtani. Robots moving in formation by using neural network and radial basis functions. In Proceedings
of the 1995 International Conference on Fuzzy Systems, volume 5, pages 91–94, 1995.

[18] Jean-Claude Latombe. Robot Motion Planning. Kluwer, 1991.

[19] Jonathan R Lawton, Brett J Young, and Randal W Beard. A decentralized approach to elementary forma-
tion maneuvers. In Proceedings of the 2000 IEEE International Conference on Robotics and Automation,
San Francisco, USA, April 2000.

[20] François Michaud, Dominic Létourneau, Matthieu Guilbert, and Jean-Marc Valin. Distributed motion co-
ordination of multiple robots. In Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2740–2745, Lausanne, Switzerland, September 2002.

[21] C Samson and K Ait-Abderrahim. Feedback control of a nonholonmic wheeled cart in cartesian space. In
Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, USA,
April 1991.

[22] P Tabuada, G J Pappas, and P Lima. Feasible formations of multi-agent systems. In Proceedings of the
American Control Conference, 2001.

[23] Kar-Han Tan and M Anthony Lewis. Virtual structures for high-precision cooperative mobile robotics
control. Autonomous Robots, 4:387–403, October 1997.

[24] P K C Wang. Navigation strategies for multiple autonomous mobile robots moving in formation. In
Proceedings of the 1989 IEEE International Workshop on Intelligent Robotics and Systems (IROS), pages
486–493, Tsukuba, Japan, September 4-6 1989.

[25] H Yamaguchi and T Arai. Distributed autonomous control method for generating shape of multiple mobile
robot group. In Proceedings of the 1994 IEEE International Workshop on Intelligent Robotics and Systems
(IROS), volume 2, pages 800–807, 1994.

Appendix: Derivations

In this section we provide the derivation of equations (11), including the simplifying case of equations (6), which
describe what local speed, vi, and curvature, Ki, robot i must follow when the overall formation is travelling
with speed, vc, and curvature, Kc. We note from the onset that these derivations rely on the fact that the
curvature of the reference trajectory is piecewise-constant such that our derivation considers Kc to be a constant.
To expand to smoothly varying Kc (i.e., C2 continuous) is certainly possible, but is beyond our scope of this
paper.

Figure 7: Relationship of Cartesian coordinates, (x, y), to curvilinear coordinates, (s, q). Note that the distance
from the reference point C to the pivot point is the radius of curvature, 1/Kc. Also note that the s coordinate
for robot i is always measured along the reference trajectory rather than the robot’s own trajectory.

The derivation relies on our ability to relate the Cartesian coordinates, (xi, yi), to the curvilinear coordinates,
(si, qi). To simplify notation we will drop the subscript, i, but bear in mind each robot will have a different set
of local coordinates. Referring to figure 7 we find that

x =

(

1

Kc

− q

)

sin(sKc) (18)

y =
1

Kc

−

(

1

Kc

− q

)

cos(sKc)

For the first derivatives (in time) of the cartesian quantities we have

ẋ = −q̇ sin(sKc) + ṡ (1 − qKc) cos(sKc) (19)

ẏ = q̇ cos(sKc) + ṡ (1 − qKc) sin(sKc)

and for the second derivatives (in time) of the cartesian quantities we have

ẍ = −
(

q̈ + ṡ2Kc(1 − qKc)
)

sin(sKc) + (s̈(1 − qKc) − 2ṡq̇Kc) cos(sKc) (20)

ÿ =
(

q̈ + ṡ2Kc(1 − qKc)
)

cos(sKc) + (s̈(1 − qKc) − 2ṡq̇Kc) sin(sKc)

For the speed (for robot i) we will require the identity

ẋ2 + ẏ2 , q̇2 + ṗ2(1 − qKc)
2 (21)

which is straightforward to prove (and is left to the reader). The speed is then given by

v =
(

ẋ2 + ẏ2
)

1

2 =
(

q̇2 + ṗ2(1 − qKc)
2
)

1

2 = Qvc (22)

where we note that the speed on the reference trajectory is simply vc = ṡ and we have defined

Q =

(

(

dq

ds

)2

+ (1 − qKc)
2

)
1

2

(23)

Figure 8: Depiction of when the q coordinate is longer than the radius of curvature, 1/Kc. In this case both
the resulting curvature and speed for robot i are of the opposite sign to the reference trajectory.

where dq/ds = q̇/ṡ. It is straightforward to plug the above derivatives into the standard expression for curvature
(for robot i) in Cartesian coordinates

K =
ẋÿ − ẍẏ

(ẋ2 + ẏ2)
3

2

(24)

to arrive at

K =
Kcṡq̇

2 + (1 − qKc)(ṡq̈ − s̈q̇) + Kcṡ
(

q̇2 + ṡ2(1 − qKc)
2
)

(q̇2 + ṡ2(1 − qKc)2)
3

2

(25)

If we divide the numerator and denominator by a factor of ṡ3 and note that

d2q

ds2
=

ṡq̈ − s̈q̇

ṡ3
(26)

then we may write

K =
1

Q

Kc +

(

1 − qKc

)

d2q
ds2

+ Kc

(

dq
ds

)2

Q2

(27)

Equations (27) and (22) are almost the same as those in equations (11) except that we have neglected to account
for the case depicted in figure 8. It is possible to have the q coordinate be larger than the radius of curvature
of the reference trajectory, 1/Kc whereupon the robot must have curvature and speed opposite in sign to the
reference trajectory in order to maintain formation. This is equivalent to saying

1 − qKc < 0 (28)

Thus, to arrive at equations (11) from (27) and (22), we multiply these latter two equations by

S = sgn(1 − qKc) (29)

which accounts for the sign of (1 − qKc).
There are a few simplifying cases to equations (27) and (22) worth mentioning. First, when the q coordinate

is constant we have
d2q

ds2
=

dq

ds
= 0 (30)

such that

K =
Kc

1 − qKc

, v = (1 − qKc)vc (31)

which are equations (6). Note that we do not have to worry about including S to account for the situation
when 1 − qKc < 0 as these expressions already take care of that case.

Another simplifying case of interest is when the reference trajectory is a straight line in Cartesian space such
that Kc = 0. In this case the (x, y) coordinates and the (s, q) coordinates are exactly the same and so we have

K =

d2q
ds2

(

1 +

(

dq
ds

)2
)

3

2

, v =

(

(

dq

ds

)2

+ 1

)
1

2

vc (32)

Finally, a case that has not been mentioned explicitly is the case when 1 − qKc = 0. Here the robot is
positioned exactly at the pivot point of the reference trajectory whereupon

K → ∞, v → 0 (33)

Infinite curvature implies that the robot must turn on the spot to maintain formation which is certainly possible
for several common styles of mobile robot (including those used in the experiment section of this paper) but
not possible for others.

Timothy D Barfoot is currently working in the Controls and Analysis Group at MD Robotics,
Brampton, Canada. Previously, he was an Assistant Professor in the Space Robotics Group at the
University of Toronto Institute for Aerospace Studies. He received his B.A.Sc. in the Aerospace
Option of Engineering Science at the University of Toronto. His Ph.D. thesis, obtained from
the Institute for Aerospace Studies at the University of Toronto, focused on the coordination of
multiple mobile robots with application to space exploration. His current research interests lie
in the area of experimental mobile robotics.

Christopher M Clark is currently a Ph.D. candidate in the Aerospace Robotics Laboratory,
located in the Department of Aeronautics and Astronautics, Stanford University. After finishing
a B.Sc. in Engineering Physics at Queen’s University, he worked as a Control Systems Designer
at Sterner Automation, Toronto, Canada. He received his M.Sc. in Mechanical Engineering
at the University of Toronto where he focused on the application of Neural Networks to PID
controlled Robots.

