
DYNAMIC ROBOT NETWORKS:

A COORDINATION PLATFORM FOR MULTI-ROBOT

SYSTEMS

a dissertation

submitted to the department of aeronautics and astronautics

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Christopher Michael Clark

May 2004

c© Copyright by Christopher Michael Clark 2004

All Rights Reserved

ii

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Stephen M. Rock
(Principal Adviser)

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Jean-Claude Latombe

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Claire Tomlin

Approved for the University Committee on Graduate

Studies:

iii

Abstract

A large number of tasks, from manufacturing to planetary exploration, have been

successfully accomplished using single robot systems. Many of these tasks could be

completed faster, more reliably, and on a larger scale using a cooperating team of

autonomous mobile robots. However, robots must be able to coordinate their actions

before cooperation is possible.

This work aims to enable robots with the ability to coordinate their actions for

safe navigation in dynamic, unknown environments. Specifically, the work focuses on:

1) the coordination of multiple robots when sensing and inter-robot communication

are limited and 2) multi-robot motion planning in dynamic, unknown environments.

First, a new coordination platform is introduced - Dynamic Robot Networks - that

facilitates centralized robot coordination across ad hoc networks. As robots move

about their environment, they dynamically form communication networks. Within

these networks, robots can share local sensing information and coordinate the actions

of all robots in the network.

Second, a fast motion planner called within robot networks is presented. The

planner is a probabilistic roadmap (PRM) motion planner augmented with new sam-

pling strategies. These strategies decrease the planner’s run time to enable on-the-fly

planning - a key requirement for navigation in environments that are unknown a priori

and contain moving obstacles.

Simulations and real robot experiments are presented that demonstrate: 1) cen-

tralized robot coordination across dynamic robot networks, 2) on-the-fly motion plan-

ning to avoid moving and previously unknown obstacles, and 3) autonomous robot

navigation towards individual goal locations.

iv

Acknowledgments

Throughout my time at Stanford University, I have been lucky to be a member of

the Aerospace Robotics Laboratory (ARL). Professor Robert Cannon first invited me

to join the ARL in 1998, and I am indebted to him for this reason. He is a great

engineer, role-model and story-teller.

Students in the ARL made it a great place to work. As both researchers and col-

laborators, the ARL gang made my Ph.D. experience truly unique. In particular Tim

Bretl and Jack Langelaan deserve to be recognized for their friendship and integral

contributions during the most difficult and frustrating years of this process. Tim has

been both a great climbing partner and research partner. Jack is one of the most

dependable people I know.

The staff of the ARL as well as the Aeronautics and Astronautics Department are

a wonderful group of people, who do an incredible amount of work for the students. In

particular, I want to thank Godwin Zhang, Jane Lintott, Sally Gressens, Aldo Rossi,

Shreann Ellsworth and Dana Parga for all their help and for their encouragement.

I want to thank Professor Rock for advising me and funding my research through-

out my time at Stanford. He gave me the freedom and the encouragement to pursue

my own ideas and to manage my own research. Most notably, he provided a family-

friendly environment that helped me balance my family life with my studies.

Professor Jean-Claude Latombe provided me with the inspiration for my research

directions. He is an incredible source of knowledge, and provided excellent guidance

on technical details and publication writing. I am especially thankful for all the time

he provided me in reworking this dissertation.

Professor Claire Tomlin sat on both my defense and reading committees. She was

v

able to provide in-depth analysis of my work, despite my late hour requests. She is

also my favorite instructor at Stanford.

I am grateful to Professor Gunter Niemeyer for sitting in on my defense committee

with such short notice. I appreciate the time and effort as well as his insightful

comments.

Various organizations have provided resources, financial and otherwise, to support

my research. I would like to thank the people at Real-Time Innovations (RTI), whom

I also got a chance to work with. In particular, I would like to thank Arnab, Rajive,

Gerardo and Stan. I sincerely appreciate their support.

Those who deserve my greatest thanks are my family. My mother Elaine provided

an incredible support net while growing up. My father Albert showed me how to

get here by setting a perfect example. My brothers and sisters: Eric, Kevin, Laurie,

Raymund and Sen-Mei have all encouraged me along the way.

My second parents, Romel and Lilia, have always helped out whenever asked.

They visited us on a regular basis and helped watch our kids whenever I had an

important deadline.

My two children were both born at Stanford. My son Jaden gave me inspiration

and happiness whenever times were difficult. Everyday he made me laugh. My

recently born daughter, Sequoia, is a true joy.

Most importantly, my wife Christine, gave love, support and sacrifice during what

most consider a very selfish endeavor. Without her support, I wouldn’t have even

applied to Stanford. Her counselling always helped me put things in perspective and

she always took care of our family (including me) when times were tough. She made

my Stanford experience enjoyable, fun and full of love.

vi

Contents

Abstract iv

Acknowledgments v

1 Introduction 1

1.1 Related Work . 2

1.1.1 Coordination within a Group Architecture 2

1.2 Problem Statement . 5

1.2.1 Particular Implementation . 8

1.3 Proposed Approach . 9

1.3.1 Dynamic Robot Networks . 9

1.3.2 Motion Planning . 11

1.3.3 Coordination and Cooperation 12

1.4 Contributions . 16

1.4.1 System Control . 16

1.4.2 Technical Contributions . 17

1.4.3 System Validation . 17

2 Dynamic Robot Networks 18

2.1 Introduction . 18

2.2 Ad Hoc Networks for Mobile Robots 19

2.3 Dynamic Robot Network Platform 21

2.3.1 Platform Description . 21

2.3.2 Platform Requirements . 24

vii

2.4 Communication Protocol . 27

2.4.1 Single Coordination Process 27

2.4.2 Multiple Coordination Processes 33

3 Multi-Robot Motion Planning 37

3.1 Introduction . 37

3.2 Related Work . 38

3.2.1 Multi-Robot Motion Planning 38

3.2.2 Multi-Robot Planning with PRMs 40

3.3 Background on PRMs . 42

3.4 PRM Sampling Strategies . 44

3.5 New Sampling Strategies . 46

3.6 RoadMap Milestone Selection . 47

3.6.1 Milestone Selection Techniques 47

3.6.2 Results . 50

3.7 Milestone Generation . 53

3.7.1 Serial Vs. Parallel Expansion 53

3.7.2 Simulation Results . 57

3.8 Defining the Endgame Region . 59

3.8.1 Proposed Endgame Region . 60

3.8.2 Results . 64

3.9 Probabilistic Completeness . 66

3.10 Summary . 67

4 Experiment Implementation 68

4.1 Introduction . 68

4.2 Hardware Platform . 69

4.3 Software Architecture . 72

4.4 Motion Planner Implementation . 74

4.4.1 Rover Implementation . 74

4.4.2 Space Robot Implementation 78

viii

5 Results 81

5.1 Introduction . 81

5.2 Robot Simulation . 82

5.2.1 Rover Test Scenarios . 82

5.3 Space Robot Simulation Scenarios . 85

5.4 Robot Experiment . 87

6 Conclusions and Future Research 92

6.1 Conclusions . 92

6.2 Contributions . 95

6.2.1 System Control . 95

6.2.2 Technical Contributions . 95

6.2.3 System Validation . 96

6.3 Future Work . 96

6.3.1 Task Planner Implementation 96

6.3.2 Large Object Manipulation 97

6.3.3 World Model Fusion . 97

6.3.4 Network Subdivisions . 98

A Randomized Motion Planning Theory 99

A.1 Milestone Expansion . 99

Bibliography 104

ix

List of Tables

2.1 World Model Description . 31

4.1 Mapping the random variable uact to thruster actuation. 79

5.1 Rover simulation test scenario data. 82

5.2 Space Robot simulation test scenario data. 85

x

List of Figures

1.1 Centralization versus Decentralization 3

1.2 Communication Region Example . 7

1.3 MARS Rovers . 9

1.4 Motion planning Example . 13

1.5 Site Survey Example. 14

1.6 Large Object Manipulation Example. 16

2.1 Mobile Ad Hoc Networks . 20

2.2 Robot networks example. 22

2.3 Coordination process . 23

2.4 Robot Networks Merging. 25

2.5 Network Routing Topology . 29

2.6 Network Break Time line . 34

2.7 Multiple Network Trigger Time line 35

3.1 Velocity Tuning Example . 39

3.2 Centralized Planning, Decoupled Planning and Prioritized Planning . 41

3.3 Unweighted Vs. Weighted milestone selection strategies 45

3.4 Hyper-grid Milestone Selection . 48

3.5 Multi-Grid Milestone Selection . 49

3.6 Random Cell Milestone Selection . 50

3.7 Sampling Visualization . 51

3.8 Milestone Selection Selection Techniques - Coverage 52

3.9 Roadmap Sampling Techniques - Variance 53

xi

3.10 Serial and Parallel Expansion Methods Scalability 57

3.11 Parallel Vs. Serial Expansion . 58

3.12 Velocity Tuning Counter Examples 59

3.13 Defining variables for Leadability . 61

3.14 Endgame Region Comparison . 64

3.15 Velocity-Tuned Endgame Region . 65

3.16 Exponential Decay of Planner Failure 66

4.1 A MARS rover. 69

4.2 MARS: Micro Autonomous Rovers test platform. 71

4.3 Software Architecture . 72

4.4 Rover description. 75

4.5 State-space model of the free-floating robot. 78

4.6 Space Robot endgame actuation example. 80

5.1 Simulation Test Scenarios . 83

5.2 A multi-level rover scenario . 84

5.3 Visualizing a 3D space robot simulation. 86

5.4 Dynamic Robot Network Experiment 89

xii

Chapter 1

Introduction

Multi-robot systems provide an exciting solution to many real-world problems. Mul-

tiple robots can cooperate to manipulate large objects, survey large areas in a short

amount of time, and provide system redundancy. These functionalities make them

applicable to a variety of tasks including large-scale construction [1], hazardous waste

cleanup [52], and planetary exploration [56].

To enable multiple robots to cooperate and gain additional functionality over sin-

gle robots, several technical difficulties must be overcome. These include enabling

dependable inter-robot communication, fusing sensor data from multiple robots, es-

tablishing a group architecture that allows for the desired cooperation, designing a

software architecture to implement the group architecture, providing a user interface

to command robots, and providing a method for coordinating robot actions.

Of these difficulties, this dissertation focusses on robot coordination - the execu-

tion of simultaneous robot actions without conflict. For example, in robot motion

planning, robots must execute their maneuvers simultaneously without colliding.

Robot coordination is especially difficult within environments that are dynamic

and unknown a priori. For robots to coordinate within such environments, two key

issues must be addressed: limitations in robot sensing and limitations in robot com-

munication. This dissertation presents 1) a new robot coordination platform called

Dynamic Robot Networks to enable coordination despite such limitations, and 2) a

new motion planner that operates within that platform.

1

CHAPTER 1. INTRODUCTION 2

1.1 Related Work

There exists a large body of literature on multi-robot systems. Some research has

focused on system architectures (e.g [59, 44]). Other research has focused on en-

abling specific functionalities. Examples include coordinating robots for large object

manipulation [56, 23], searching large areas for sites of interest with robot formations

[16, 19, 53], sensor network deployment[65, 17], and large area mapping [22, 63]. Most

related to this dissertation is research on motion planning [3, 5, 6, 8, 9, 14, 24, 31,

37, 50, 57, 58, 62, 64], (see Chapter 3 for a more thorough review).

Regardless of the purpose, the method of coordinating robots will depend heavily

on the group architecture of the multi-robot system. Different architectures allow

for different coordination algorithms. For example, it is impossible to implement a

coordination algorithm that plans actions for all robots, when the architecture does

not permit communication between all robots.

The following section discusses such problems and how group architectures affect

robot coordination in general.

1.1.1 Coordination within a Group Architecture

The group architecture of a system “provides the infrastructure upon which collective

behaviors are implemented and determines the capabilities and limitations of the

system” [12]. Thus the selection of an appropriate architecture is essential to mission

success and will depend on the application of interest.

Desired is an architecture that is scalable, fault-tolerant, and allows for centralized

robot coordination. When coordination is centralized, the actions of all robots can

be taken into account when planning the actions of individual robots. This ensures

the avoidance of any robot conflicts (e.g. robots will not collide).

These desired attributes are directly related to two characteristics of an architec-

ture design: centralization/decentralization and communication structure.

CHAPTER 1. INTRODUCTION 3

(a) (b) (c)

Figure 1.1: Centralization versus Decentralization

Centralized vs. Decentralized

Most system architectures are classified as being centralized or decentralized. In

centralized architectures, there exists a single agent that controls the robots. In

decentralized architectures, control responsibilities are divided among the robots.

Within a centralized architecture, a single central agent will have information

about the entire system and will control all agents in the system [40, 52]. Because the

central agent has complete information, centralized coordination algorithms can be

used. Figure 1.1a) provides an illustration of a centralized architecture in which the

central agent, Robot 0, is using centralized coordination to plan actions for all robots.

Examples include the SCOUTS developed for nuclear site inspection [52], and the

NANOWALKERS for nano-scale manipulation and inspection [40]. Unfortunately,

centralized architectures are usually not scalable because a single agent is responsible

for communicating with and processing the control over every other robot. They

suffer from single-point failures in that the whole system will fail if the central agent

fails. They are also not practical for many applications where no single agent has

complete knowledge of the environment and the other agents, as is the case when

limitations in communication are present.

Within decentralized architectures, control responsibility is distributed and each

agent uses local sensing and communication for control [14, 24, 61, 41, 44]. Figure

1.1b) provides an illustration of a decentralized architecture in which each agent plans

its own actions based on information about neighboring robots, (i.e. they use a type

of decentralized coordination). These approaches have been shown to be scalable

CHAPTER 1. INTRODUCTION 4

and fault-tolerant. One example is Behavior-Based Systems [41], in which robots are

equipped with a set of primitive behaviors (e.g. corridor-finding). If individual robots

employ the appropriate behavior(s), desirable group behaviors can result. Related to

this approach are Robot Ant Colony systems [61]. Robots within these systems have

been shown to cooperate and accomplish complex tasks, despite the fact that individ-

ual robots are simple (i.e. they have limited sensing, communication and computation

capabilities). The main issue is that robots don’t generally have complete system in-

formation or communication with all robots in the system. For example, in Figure

1.1 b), no communication link exists between two groups of robots. This makes it

impossible to implement centralized robot coordination.

Beneficial would be a method for maximizing the centralization of coordination

in systems which suffer from limitations in communication. Figure 1.1c) provides

an illustration of a decentralized architecture in which centralized coordination is

implemented. Communication limitations prohibit any communication link between

the two groups of robots. While centralized coordination can not occur between all 5

robots, centralized coordination can occur within each of the two distinct groups of

robots. Also, because a decentralized architecture is used, the system is scalable and

fault-tolerant to single-point failures.

Communication Structure

The type of communication used between robots is usually classified as being implicit

or explicit. Implicit communication occurs through sensing of the world, and is usually

the side-effect of some other action. For example, unmanned aerial vehicles attempt-

ing to maintain a formation can use sensors to detect the flow disturbances caused by

the actions of other vehicles and react accordingly. Explicit communication occurs

directly, usually through a wireless medium (e.g. radio). Some researchers try to do

without explicit communication to allow the use of simple, cost-effective robots. One

example is [4], where motor-schema-based techniques were implemented to provide

a behavior-based strategy that produced globally coherent cooperative behavior in

forage tasks. Other researchers have showed the relative advantages of using explicit

communication to improve group behavior in multi-robot systems [41].

CHAPTER 1. INTRODUCTION 5

While many systems use explicit communication, they are still limited because

robots can only communicate with robots in their local vicinity. Recently, there

has been research in using Mobile Ad-Hoc Networks [10] for multi-robot systems.

Equipped with this type of communication capability, robots can act as routers in

a network to pass information between robots which might not otherwise be able to

communicate, e.g. robots 2 and 4 in Figure 1.1b). This can be used to provide robots

with more information about the system. However, robots are still not guaranteed to

have information about all robots in the system, e.g. robots 0 and 2 in Figure 1.1b).

Research that specifically investigates the application of ad hoc networks to mo-

bile robots has focused on sharing local information to improve performance in the

deployment of robots as sensor networks [65], and on facilitating behavior-based or

reactive multi-robot systems [41]. The research demonstrated improvements in global

behavior made possible by exchanging local sensing information.

Centralized coordination across an ad hoc network (e.g. Figure 1.1c) could benefit

robots operating in dynamic, unknown environments where sensing and communica-

tion are limited. This research presents, for the first time, probabilistic roadmap

(PRM) motion planning [27] that is coordinated in ad hoc robot networks. Several

issues must be resolved to ensure centralized coordination is 1) fault-tolerant to net-

work communication drops caused by network breaks, 2) tolerant to communication

delays caused by information having to hop through the network, and 3) equipped

with a planning algorithm that is fast enough to be run on-line.

1.2 Problem Statement

The problem is to enable safe navigation for multi-robot systems in which robots have

limited sensing and communication and operate in environments that are dynamic,

and unknown.

In this problem, a multi-robot system is comprised of N robots that share a com-

mon workspace. Robots are assigned individual goal locations to which they must

navigate autonomously. Goal locations can be assigned in several ways. An au-

tonomous agent or human operator can assign goal locations on-the-fly in response

CHAPTER 1. INTRODUCTION 6

to sensing information. An agent/operator can also download a series of goal loca-

tions for a robot to visit. This can only occur when a robot is close enough to the

agent/operator such that communication is possible.

Navigation towards a goal location is accomplished by first constructing robot

trajectories. Based on information about the environment that is available at the

time of planning, the trajectories are constructed to be collision-free. Robots will

then follow their trajectories. In doing so, they will continually gain new information

by sensing the environment and communicating with each other. Robots respond to

this new information by replanning new trajectories to ensure the robot motion is

free of collision. Robots must also operate under the following conditions:

1. Unknown Environment – The workspace is unknown a priori.

2. Dynamic Environment – Objects in the workspace may be moving.

3. Limited Communication – Robots are equipped with limited communica-

tion capabilities. They can only communicate directly with other robots that

are within a local region RC of the workspace, where RC depends on the robot

and obstacle locations within the workspace. That is, a robot can communi-

cate directly with any other robot that lies within its region RC , but cannot

communicate directly with any robot outside the region. Because robots will

move in and out of each other’s communication regions, they will only be able

to communicate directly with one another for intermittent periods of time.

4. Limited Sensing – Robots are equipped with limited sensing capabilities.

They can only sense and detect objects in a local region RS of the workspace,

where RS depends on the robot and obstacle locations within the workspace.

That is, a robot can sense any object that lies within its region RS, but cannot

sense any object outside the region.

5. Dynamic Goals – Robot goal locations are re-assigned on-the-fly. New goal

locations can be assigned by an autonomous agent/human operator in response

to new knowledge of the environment. For example, a robot moving to site A

CHAPTER 1. INTRODUCTION 7

Figure 1.2: A Communication Region Example: Dark circles denote robots and grey
shapes denote obstacles in the workspace. The communication region of the centrally
located robot is illustrated (denoted as RC). In this example the communication has
limited omnidirectional range and suffers from obstacle occlusions. Hence, only the
two lower robots can communicate with one another.

detects site B. Since site B is of greater interest, the robot re-assigns its goal

location to be that of site B. For goal locations to be reassigned through a

human operator, the robot must be close enough to an operator such that they

can communicate. In such situations, the operator could download a list of goal

locations to visit. After each location on the list is visited, the robot is assigned

the next goal location on the list.

6. Kinodynamic Constraints – Robot plans must satisfy any kinematic or dy-

namic constraints on the robot’s motion.

Note the size limitations on the region RC can result in intermittent communi-

cation, (an example in which not all robots can communicate is provided in Figure

1.2). Robots will move in and out of each other’s regions, causing communication

links to form and break respectively. In finding a solution to the navigation prob-

lem, this dissertation does not rely on these regions being of any particular shape or

size. Instead, the proposed solution will be one that functions despite the fact that

communication is intermittent. More specifically, the solution will exploit the local

inter-robot communication whenever possible, and be robust to situations where this

same communication is infeasible.

CHAPTER 1. INTRODUCTION 8

1.2.1 Particular Implementation

The Micro-Autonomous RoverS (MARS) test platform was used to implement the

operating conditions. The test platform includes a large 4m x 3m granite table upon

which six rovers (0.1m diameter) operate. This test platform meets the above criteria:

1. Unknown Environment – Robots in the MARS test platform are given no

knowledge of the other robots or obstacles a priori. Once they begin operation,

they begin forming a model of the environment that consists of a list of all

objects on the table including their effective diameter, their state, and their

predicted trajectory.

2. Dynamic Environment – The test platform includes several constant-velocity

moving obstacles that float on air-cushions.

3. Limited Communication – Limited Communication is simulated. All robot

processing is done off-board and communication between robots is accomplished

across a wired local area network. To simulate on-board wireless communica-

tion, the communication is filtered such that robots may only communicate

directly with those robots that are within some radial distance rC of one an-

other. This simulates a circular communication region.

It is possible to simulate communication occlusions,(e.g. those shown in Figure

1.2). However, the system’s functionality does not depend on the actual shape

or size of the communication region, but on the intermittent communication

caused by the limited size of the regions.

4. Limited Sensing – Limited sensing is simulated. Sensing in the test-platform

is accomplished with an overhead vision system that can provide the position

and velocity for any object (robot or obstacle) on the table. To simulate on-

board sensing, a robot only receives the state information of those objects that

are within some radial distance rS. This simulates a circular sensing region. As

with RC , one could include sensing occlusions but without benefit (as above).

CHAPTER 1. INTRODUCTION 9

Figure 1.3: Rovers avoiding obstacles on the MARS test platform.

5. Dynamic Goals – The MARS test platform offers a Graphical User Interface

(GUI) upon which new robot goal locations may be commanded at any time.

1.3 Proposed Approach

To enable safe navigation within multi-robot systems operating under the conditions

outlined above, a solution is proposed based on centralized robot coordination through

Dynamic Robot Networks. In different parts of the workspace, those robots which

can communicate form communication networks to facilitate information exchange,

coordination, and cooperation. Within these networks, centralized motion planning

is invoked to construct feasible, collision-free robot trajectories.

1.3.1 Dynamic Robot Networks

Dynamic Robot Networks is a new coordination platform, i.e. a communication infras-

tructure that defines how robots can coordinate their actions through data exchange.

The platform functions within a decentralized group architecture, but maximizes the

centralization of robot coordination.

Dynamic Robot Networks are mobile ad hoc communication networks in which

the robots become nodes in the network and can act as routers to relay information

through the network. Such networks are formed by robots establishing communication

links whenever possible. This can result in many different networks of robots located

CHAPTER 1. INTRODUCTION 10

in different parts of the workspace. The networks are dynamic in that they can break

or merge with other networks over time.

Within these networks, information is distributed to the point where all robots

in a network share a common model of the world, (although each network in the

workspace will have a different model). Over time, this model will change as new

information about the environment is gained from on-board sensing. In response to

these changes in the model, robots may adapt their navigation plans. In such cases

the network of robots will respond as a whole, by replanning coordinated motion for

all robots in that network.

The benefits of using this robot coordination platform include:

• Centralized Coordination within Networks – The Dynamic Robot Net-

work platform allows centralized coordination within each individual robot net-

work. This increases plan feasibility since plans are constructed with more

knowledge of the environment. Moreover, when coordination is centralized, the

actions of all robots in a network can be taken into account when planning

the actions of individual robots. This prohibits conflicts between robots in a

network (e.g. robots will not collide).

• Increased Scalability – In centralized architectures, a single agent is required

to communicate with all robots in the system. The addition of more robots can

increase the communication responsibility of this agent beyond its capabilities.

The addition of more robots to a Dynamic Robot Network system, where the

architecture is decentralized, will only increase such responsibilities in situations

where a large number of robots are communicating directly with one another,

(i.e. when robots are relatively close to one another.)

• No Single Point Failure – In centralized systems, there exists a single central

agent which is responsible for controlling and communicating with all other

robots. If this robot fails, the entire system will fail. Because no central agent

exists in decentralized systems, this type of single-point failure does not exist.

• Robust to Intermittent Communication – Because robots have limited

CHAPTER 1. INTRODUCTION 11

communication capabilities, they will only be able to communicate when close

enough to one another. As the robots move around the environment, they

will move in and out of communication range of one another yielding intermit-

tent communication. Dynamic Robot Networks allow for the establishment of

communication networks under such conditions. Distributed and centralized

coordination that is robust to intermittent communication can be implemented

within Dynamic Robot Networks by way of a new communication protocol.

The protocol is designed to ensure that robot coordination algorithms can be

called on-the-fly in response to the changes of the environment, but will not be

interrupted by network merges or breaks.

• Robust to Asynchronous Communication – When robots detect changes

in the environment that require them to adapt their coordination plans, they

will propagate the information through the network so that each robot can

learn this new information. Because this propagation requires information to

hop through nodes in the network, delays will be incurred. This results in

different nodes (i.e. robots) learning of new information at different times. A

new communication protocol to be used within Dynamic Robot Networks is

designed such that robot coordination can occur despite such delays.

1.3.2 Motion Planning

Within each robot network that forms, a randomized planning algorithm is invoked

to construct collision-free trajectories for all robots in the network. The algorithm is

a modified Probabilistic Road Map (PRM) planner.

The benefits of using this planner include:

• Speed – The PRM algorithm presented in [34] as a single robot planner has

been modified to provide on-the-fly trajectory construction for multiple robots.

Average planning times are on the order of 20 ms.

• Kinodynamic Constraints – The algorithm considers any significant kine-

matic or dynamic constraints when generating plans.

CHAPTER 1. INTRODUCTION 12

• Probabilistic Completeness – The probability of not finding a plan decreases

exponentially to zero with the number of iterations. This has been proven for

single robot planning, and demonstrated empirically for multiple robots in this

work.

1.3.3 Coordination and Cooperation

One challenging form of robot coordination is cooperation. In this case, the comple-

tion of a high-level goal is desired. This high-level goal will be achieved only after the

coordinated completion of several individual robot goals.

The Dynamic Robot Network coordination platform can be applied to various

types of robot coordination, including instances that involve cooperation. This dis-

sertation focusses on the application of dynamic robot networks to one particular type

of coordination - robot motion planning, (see Example 1 below). To illustrate how the

platform can be applied to instances of robot coordination that involve cooperation,

two examples are provided (Example 2 and Example 3).

All three examples illustrate how information exchange can benefit coordination

within robot networks. However, the examples differ in the manner in which this

information is used for their particular type of coordination.

Example 1: Motion Planning

The purpose of this example is to demonstrate why robot coordination is necessary,

and how Dynamic Robot Networks can be used for coordination.

This example illustrates motion planning through Dynamic Robot Networks. The

information that is exchanged within networks is used to allow centralized motion

planning that ensures robot trajectories are collision-free.

In Figure 1.4(a), all three robots are at their initial locations. The two left robots

are in communication range of one another and establish a network. If robots are

assigned goal locations, their centralized planners create coordinated collision-free

trajectories that lead to the goal locations (b). The right robot forms a network

by itself, and its trajectory is planned independently from the other two. As the

CHAPTER 1. INTRODUCTION 13

(a) (b) (c)

(d) (e) (f)

Figure 1.4: Motion Planning Example: Top-down view of a robot motion planning
example with three robots (grey circles). In each of the fours snapshots, the illus-
tration on the left shows the robots following their trajectories to their respective
goal locations (cross-hairs). Dotted lines indicate communication links exist because
robots are within communication range of one another.

robots move along their trajectories (c), the middle robot and the right robot enter

communication range with each other, and the two networks merge to form a larger

network. Robots within this larger network exchange information such that all robots

share a common model of the world. Based on this model, each robot constructs a

new plan, consisting of trajectories (one for each robot), and the robots select the

best of the three plans to execute (d). They follow these trajectories as shown in (e).

In (f), as robots move along their new trajectories, they leave communication range

of each other and network links are broken. They continue to follow the planned

trajectories.

Example 2: Site Surveillance

The purpose of this example is to demonstrate how cooperation can be used within

Dynamic Robot Networks to optimize global task performance.

In this example, robots are given the high-level goal of visiting all sites of interest

CHAPTER 1. INTRODUCTION 14

(a) (b) (c)

(d) (e) (f)

Figure 1.5: Site Survey Example: Top-down view of a robot formation. Robots are
denoted by black circles, with dashed lines to indicate communication links. Grey
obstacles are scattered throughout the environment. Sites of interest are denoted by
cross-hairs.

they find within a large area. A task planner provides autonomous and dynamic

assignment of individual robot goals (i.e. site locations). The information that is

exchanged within networks is used to optimize goal assignment among robots so that

sites of interest are visited as quickly as possible.

As new information about the environment is sensed, new sites of interest within

the environment are identified. The task planner will assign these sites as goal desti-

nations to the robots. Figure 1.5 provides an example involving four robots that are

searching for sites of interest to investigate. In Figure 1.5 b), the four robots detect

three sites of interest. The task planner, which could either be distributed across the

network or reside on one robot, allocates the tasks of visiting these sites to three of

the four robots. In c), the three robots have moved to their goal destinations which

requires the network to break into two smaller networks. At this point, new sites of

interest are identified and assigned within each of the two networks. This process

repeats itself.

The cooperation within Dynamic Robot Networks is highlighted in Figure 1.5

e). When the two networks merge, information exchange occurs across the network.

CHAPTER 1. INTRODUCTION 15

Based on this information, the task planner assigns goal locations to robots that

minimizes the time to visit the sites of interest (f).

Example 3: Large Object Manipulation

The purpose of this example is to demonstrate how Dynamic Robot Networks can be

used for tasks that require cooperation.

In this example, groups of robots are assigned the task of manipulating large

objects, (e.g. for assembly tasks). The information that is exchanged within networks

is used to allow tight coordination between robots carrying the object. This can be

accomplished through a leader/follower control scheme [19], where state estimation

and control signals are communicated using the ad hoc communication link.

An advantage of using Dynamic Robot Networks is that robots carrying the object

can be represented as a single robot when coordinating with other robots in the

system. This single robot representation will encode the size and dynamics of the

object and robots together.

In Figure 1.6, two pairs of robots are assigned the task of carrying large objects to

desired goal locations. In (a), two robots in the upper right corner are completing a

manipulation task. The multi-robot manipulation, an example of robot cooperation,

is facilitated by the communication link established within the ad hoc robot network.

The two robots in the lower left are merging into a network and cooperating to

move another object (b). Together, they plan a trajectory to the goal location. In

planning, both robots and the object are treated as a single robot. In (c), robots from

the upper-right are moving back toward the bottom left. When close enough, one of

these robots establishes communication with a robot that is carrying the object. This

results in a network merge in which all robots can communicate. As shown in (e),

the two robots on the right replan their trajectories to avoid the robots carrying the

object. They treat the robots carrying the object, and the object, as a single robot

to communicate with and avoid.

CHAPTER 1. INTRODUCTION 16

(a) (b) (c)

(d) (e) (f)

Figure 1.6: Large Object Manipulation Example: Top-down view of multi-robot ma-
nipulation. Robots are denoted by black circles, with dashed lines to indicate com-
munication links. Grey obstacles are scattered throughout the environment. Objects
to manipulate are blue rectangles and their goal locations are rectangular cross-hairs.

1.4 Contributions

In developing this new approach to multi-robot systems, several research contribu-

tions were made that are summarized below. These contributions are categorized into

three areas. The first area, System Control, contains contributions related to high-

level robot coordination. The second area, Technical Contributions are strategies to

improve motion planning algorithm speed. Last, the System Validation contribu-

tions outline the various simulations and experiments that demonstrate the system

performance.

1.4.1 System Control

1. Developed the Dynamic Robot Networks platform that allows for centralized

coordination across ad hoc networks.

2. Developed an application level communication protocol to manage information

sharing and multi-robot coordination across Dynamic Robot Networks.

CHAPTER 1. INTRODUCTION 17

1.4.2 Technical Contributions

1. Identified a method of sampling milestones for roadmap expansion when apply-

ing PRMs to multi-robot planning problems.

2. Introduced a method of generating milestones - serial expansion, which demon-

strates faster roadmap expansion over the traditional method - parallel expan-

sion when applying PRMs to multi-robot planning problems.

3. Developed a new endgame region definition, based on velocity-tuning, for ap-

plying PRMs to multi-rover planning problems. It was demonstrated through

simulation that using the new endgame region increased the likelihood of find-

ing a solution when sampling the PRM. Also, under assumptions specific to this

implementation, it was shown that conditions for belonging to the new endgame

region are easily-calculated.

1.4.3 System Validation

1. Demonstrated, through simulation, on-the-fly motion planning through Dy-

namic Robot Networks. Average planning times on the order of 20 ms were

achieved in scenarios involving up to 12 robots. Within these scenarios, 20 net-

works were merged per minute, demonstrating the platform’s ability to handle

frequent network merges/breaks.

2. Demonstrated, on hardware, on-the-fly motion planning of a group of mobile

robots in an unknown, bounded workspace occupied by stationary and moving

obstacles. This demonstrated planning on-line, assumptions on system mod-

elling were valid, and practicality of system implementation.

Chapter 2

Dynamic Robot Networks

2.1 Introduction

This dissertation aims to enable multiple robots with the ability to navigate in dy-

namic, unknown a priori environments using limited communication and sensing ca-

pabilities. To navigate safely, robots must be able to coordinate their actions to avoid

conflicts (e.g. robot collisions). This chapter presents a new coordination platform -

Dynamic Robot Networks - that enables robot coordination under such conditions.

Subsequent chapters present the implementation of a particular motion planning al-

gorithm that can be used within Dynamic Robot Networks to allow safe movement

of robots towards goal locations.

Dynamic Robot Networks provide a scalable and fault-tolerant coordination plat-

form. A key advantage of this platform is that it enables centralized coordination

across ad hoc robot networks. Centralized robot coordination is desired because ac-

tions of all robots in a network are taken into consideration when planning any single

robot’s actions.

The platform is implemented by way of a new communication protocol. This

protocol handles data exchange and centralized planning across networks. It is robust

to the two main difficulties encountered when coordinating robots across an ad hoc

network: asynchronous communication and communication drops.

In this chapter, mobile ad hoc networks are introduced with a focus on their

18

CHAPTER 2. DYNAMIC ROBOT NETWORKS 19

application to robot systems. Dynamic Robot Networks are then described. Key

issues to be addressed in developing this coordination platform are identified. Finally,

a description of the communication protocol that addresses these issues and allows a

particular implementation of Dynamic Robot Networks is presented.

2.2 Ad Hoc Networks for Mobile Robots

A wireless ad hoc network is a collection of autonomous nodes that communicate with

each other by forming a multi-hop radio network and maintaining connectivity in a

decentralized manner. Each node in a wireless ad hoc network functions as both a

host and a router, and the control of the network is distributed among the nodes. The

network topology is in general dynamic, because the connectivity among the nodes

may vary with time due to node departures, new node arrivals, and the possibility of

having mobile nodes. Critical features, (e.g. network settling time), of such networks

are outlined in [60].

There are two main categories of ad hoc networks: Mobile Ad Hoc Networks and

Smart Sensor Networks. Within Mobile Ad Hoc Networks (MANETs), the nodes of a

network are continuously moving. For this research, robots act as nodes in MANETs.

Figure 2.1 illustrates an example where robots are forming ad hoc networks.

Classically, two types of routing algorithms exist for MANETs, table driven [47]

and source initiated on demand driven [48]. In the table driven approaches, each node

of a network maintains a table that encodes the network topology. By communicating

with other nodes, this table can be continually updated as the topology changes.

Nodes then route messages based on information extracted from the table. In the

source initiated demand driven algorithms, nodes only find routes as they are required.

Each time a message route is required, the node will explore the network through

communication.

Equipped with MANET communication capabilities, robots can act as routers in a

network to pass information between robots which might not be able to communicate

directly. This information could be used to improve the performance of any of the core

capabilities required by autonomous robots including planning, sensing and control.

CHAPTER 2. DYNAMIC ROBOT NETWORKS 20

(a) (b)

Figure 2.1: Mobile Ad Hoc Networks: Nodes in the network are circular robots.
Communication links are indicated by dashed lines. Large gray objects in the envi-
ronment are also depicted. In (a), many robots have formed ad hoc communication
networks. As shown in (b), the mobility of the robots greatly affects the topology
of these networks. For example, Net 0 has grown in size because a single robot has
moved into communication range and joined the network. Net 1 has maintained the
same set of robots, but has changed its topology as a result of one robot’s movement
(i.e. top-most robot in the network). Net 2 has broken because the right-most robot
has moved out of communication range with the central robot. Also, a robot in Net
3 has moved down resulting in the merger of Net 3 and Net 4.

The majority of past research has focussed on sharing local information to improve

performance in the deployment of robots as sensor networks [65], and in facilitating

behavior-based or reactive multi-robot systems [41]. That research demonstrated the

improvement in global behavior made possible by exchanging local sensing informa-

tion. It should be noted that these projects rely less on the well-established MANET

routing protocols and simply broadcast information to all other robots who are local,

(i.e. flooding the network).

While there exists a large amount of research in multi-robot systems that rely

on wireless communication, most assume that communication is reliable throughout

the duration of a robot task Examples include [5, 43, 18, 53]. In [53], an algebraic

representation of vehicle formations is presented based on a class of triangulated

graphs. The representation allows for formation stabilization, collision avoidance and

tracking.

A coordination framework based on artificial potentials is used in [43] to control a

CHAPTER 2. DYNAMIC ROBOT NETWORKS 21

mobile sensor network in a gradient climbing task. The framework allows for gradient

descent towards local maximima/minima of an unknown, noisy environmental (e.g.

a temperature field).

Also, in [18], a state space framework for distributed control of spatially-interconnected

systems. This framework was applied to formation flight experiments [21] in order to

reduce the induced drag.

Coordinated robot planning that requires finite time (as opposed to simpler reac-

tive systems) across ad hoc networks that are dynamic has seen little investigation.

2.3 Dynamic Robot Network Platform

2.3.1 Platform Description

Dynamic Robot Networks provide a new coordination platform that enables cen-

tralized robot coordination within ad hoc robot networks. Within this coordination

platform, every robot will belong to one network, (which could include only that one

robot). As robots move about the environment, they will enter and leave each others

communication range. This causes network merges and network breaks respectively.

By way of ad hoc network routing algorithms, information can be passed between

any two robots in a network, (but not between networks). Assuming world models

can be encoded in a concise manner, (a possible issue for some applications), robots

can use information exchange to share a common world model. This allows for a

centralized coordination process to occur across the network in which the actions are

planned for all robots within that particular network.

A coordination process is a defined series of steps that robots must take to coor-

dinate their actions. Steps include Event Detection, Data Exchange, Model Fusion,

Planning and Plan Execution. A coordination process can be initiated by any robot

in a network, at any time. A robot will initiate such a process in response to changes

in the environment (e.g. two robot networks merge). Once the process is initiated,

all robots in the network participate in each step of the coordination process. The

platform allows for several of these processes to occur concurrently.

CHAPTER 2. DYNAMIC ROBOT NETWORKS 22

Figure 2.2: Example with 5 robots. Dashed lines between robots depict communica-
tion links. In a) the robots form two distinct networks Net0 and Net1. In b), two
robots have moved, and the two networks in a) have merged into Net2.

Network Merges/Breaks

When any two robots are within communication range of each other, they establish

a communication link. Define G to be the graph whose nodes are the robots and

edges are the communication links. A network of robots is any group of k ≥ 1 robots

forming a maximally connected component of G. So, any two robots in a network

can communicate through one or several communication links, but two robots from

different networks can not. Figure 2.2 a) shows an environment with 5 robots, where 2

networks have formed. In Net1, the top and bottom robots can exchange information

via their communication links with the middle robot.

Because robots and objects are moving, the networks are dynamic. The networks

may merge and/or break apart (see Figure 2.2 b). Ad hoc network protocols [10]

ensure that edges in G are established when possible, and that information can be

routed efficiently across these edges. With G established, robots within the network

can communicate and conduct a coordination process.

To facilitate information exchange between robots in a network, it is assumed

that each robot is assigned a unique identification number. Also, when two networks

merge, let the robot with the lower identification number of the two robots that

caused the merge be known as the Lead robot and the other robot that caused the

merge be known as the Secondary robot.

CHAPTER 2. DYNAMIC ROBOT NETWORKS 23

Figure 2.3: Coordination process

Coordination Process

The coordination process that takes place across a robot network is a series of steps

as shown in Figure 2.3. The process is initialized with an Event Detection step. Such

events may include the sensing of new obstacles in the environment, the awareness

of new robots within communication range, or a new goal state request. Information

regarding the event will be broadcasted across the network to allow the Data Exchange

step to occur. This information will include world state information with which each

robot’s world model must be updated. Hence a Model Fusion step is required. Along

with this information will also be sent a “plan request” message (if required). This

informs robots to start constructing a new plan that takes the new event into account.

This starts the Planning step in which robots construct a plan that schedules actions

of all robots in the network. This is followed by robots broadcasting their newly

constructed plans to all other robots. Robots will then implement the best plan of

those broadcasted to carry out the Plan Execution step.

Example

An example of the coordination process involving 5 robots is illustrated in Figure

2.4. Initially, two robot networks are present. Two robots, one within each net-

work, are following trajectories to their respective goal locations (b). Note that these

trajectories collide, but this is undetected because robots are not close enough to

communicate. As the robots follow their trajectories (c), they eventually can commu-

nicate (Event Detection). They begin the Data Exchange step of the process when

CHAPTER 2. DYNAMIC ROBOT NETWORKS 24

the follower robot broadcasts its world model (d). The lead robot then broadcasts a

“plan request” message to all robots in the network (e). Upon receiving this message,

robots merge the newly acquired information (Model Fusion step) and query their

planners (i.e. the Planning step) to construct a set of trajectories for all robots in

the newly formed network (f). As each robot completes its plan, it broadcasts it (i.e.

the Plan Exchange step) for other robots to receive (g). Once a robot receives a plan

from every robot in the network, it picks the best plan based on some established

criteria and uses it for motion (h) to complete the Plan Execution step.

2.3.2 Platform Requirements

To enable centralized robot coordination across an ad hoc robot network, the coor-

dination platform must meet the following requirements:

• On-the-Fly Changes in Network Topology - Robots in the system must

be able to merge and break networks immediately following their detection of

one another through communication probing. Additionally, the network topol-

ogy (i.e. current state of the graph G) must be provided to each robot. These

requirements can be met with Mobile Ad Hoc NETworks (MANETS) [51] tech-

nology.

• World Models are Shared - The platform must ensure that all robots have a

common shared world model before coordination is initiated. This requires that

world models be concise to allow their quick distribution across the network,

while still maintaining all relevant information about the environment. Many

methods of encoding a world model exist [28, 29] including that presented in

this dissertation, but there is no general method that is appropriate for all

applications. This could be a significant issue when implementing the platform

on some systems.

• Responsive Robot Coordination - The platform must allow robots to co-

ordinate their actions in response to different events that may occur, (e.g. new

robots detected, new goal location assigned). Such responsive coordination is

CHAPTER 2. DYNAMIC ROBOT NETWORKS 25

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.4: Robot Networks Merging.

CHAPTER 2. DYNAMIC ROBOT NETWORKS 26

possible given two requirements are met. First, the coordination process must

be fast enough to keep up with frequent events. This is largely dependent on

the coordination algorithm’s running time. Second, robot coordination must

occur promptly in response to events that occur while a previous coordination

process is underway.

• Coordination is Distributed - By running coordination algorithms in par-

allel, the processing can be distributed among the different robots in a net-

work. This has been shown to be advantageous for randomized motion plan-

ning [13], where different methods of implementing Rapidly-exploring Random

Tree (RRT) algorithms in parallel were compared. While all methods sped up

the planning, it was assumed that complete communication was available at all

times. Required is a platform that can take advantage of parallel coordination

within ad hoc communication networks.

• Handle discontinuities in communication - The coordination process must

be robust to robots continually entering and leaving each others range of com-

munication. If network connections are lost or established during any stage of

the coordination process, robots must still complete the process successfully.

• Minimize communication requirements - As the number of robots in a

system increases, so will the communication. This can result in large com-

munication delays, slowing down the entire coordination process and limiting

the system’s ability to respond to changes in the environment. For this rea-

son, both the overhead of handling messages and the quantity of information

communicated must be minimized. Some multi-robot systems that use ad hoc

networking broadcast messages by flooding the network (e.g. [65]). This is

effective for applications using decentralized coordination strategies. In such

applications, robots don’t require information from all other robots in the net-

work before acting. With centralized coordination, where robots must exchange

information with all other robots in the network, better routing algorithms are

required to reduce the quantity and size of messages sent and received by robots.

CHAPTER 2. DYNAMIC ROBOT NETWORKS 27

2.4 Communication Protocol

The core communication requirements listed above (i.e. On-the-fly network main-

tenance) can be handled through MANET technology [51]. Table driven MANET

routing approaches (e.g. [47]) are preferred in which each node in a network stores

a copy of the network topology (i.e. the graph G). This information is required by

robots for two reasons. First, this information allows a robot to construct coordi-

nation plans that consider all robots in the network. Second, knowing the network

topology allows for intelligent data delivery that can reduce the amount of information

broadcasted (i.e. minimize communication requirements).

The challenge then, is to enable responsive, parallel robot coordination across a

robot network in which the network topology can change and communication delays

cause coordination algorithms to run asynchronously. To meet this challenge, an

application level communication protocol has been developed and is described below.

The protocol is described as a step-by-step coordination process that occurs across a

network.

2.4.1 Single Coordination Process

The following subsections detail how each stage of the coordination process can be

implemented on a robot system.

Event Detection

To initiate a coordination process, several triggers are monitored by each robot in the

system. Each trigger is detailed below.

• Network Topology Change - By monitoring the routing table provided by

a MANET table driven routing algorithm, robots can become aware of changes

in the network topology. In particular, the plan manager of a robot can detect

the merging of two networks. When this occurs, two robots (one from each

network) will detect one another. The robot with lower identification number

will broadcast a “network merge request” message, accompanied by its world

CHAPTER 2. DYNAMIC ROBOT NETWORKS 28

model, to the other robot. The other robot will receive this request and will

initiate a coordination process. The process is initiated by sending out a “plan

request” message, accompanied by world model information, to all other robots

in the network (see Data Exchange section).

• World Model - Using local sensors, robots can monitor the environment and

produce a world model upon which coordination is based. As robots move about

the environment, they will continually update this model with new state esti-

mates. Robots must monitor these changes of state that occur in the world

model, to ensure that previously constructed plans are consistent with the

environment. For example, if the velocity of a moving obstacle has changed

significantly from that with which the previous plan was based, then a new

coordination process must be initiated. This is accomplished by broadcasting a

“plan request” message that includes the new world model information.

Also, as robots move closer to any particular object, they will presumably obtain

more accurate sensor readings. They can then use these more reliable state

estimates for future planning. In this manner, uncertainties in sensing are

compensated for by enabling robots with the ability to initiate a coordination

process when better estimates are provided.

• Goal State - Within this coordination platform, robots must have the ability

to accomplish individual goals autonomously. In dynamic environments, these

individual goals will change with time. These goals can originate from some

high level task manager that responds to changes in the environment, or from

some human operator. Robots must respond to new goal requests and trigger

a coordination process by broadcasting a “plan request” message that includes

the new goal location.

Data Exchange

Once an event trigger occurs, the robot that detected the trigger must broadcast the

relevant information (e.g. a change in network topology or new desired goal state),

CHAPTER 2. DYNAMIC ROBOT NETWORKS 29

(a) (b)

Figure 2.5: Network Routing Topology: Using a table-directed routing algorithm,
robots can establish how to send world models of minimum size to reduce communi-
cation delays.

to all other nodes in G. This will insure that network robots have available complete

and updated world models.

In networks with large numbers of robots, bandwidth will be limited. Also, com-

munication latencies will diminish the system’s ability to plan on-the-fly. For these

reasons, it is desirable to broadcast as little information as possible.

Using the network topology information gained from implementing a table driven

routing algorithm, the amount of information broadcasted can be minimized. Con-

sider the case where two networks merge and information sharing is required. Recall

the robot with the lower identification number of the two robots that caused the merge

is known as the Lead robot and the other robot that caused the merge is known as the

Secondary robot. With this terminology, the following rules can be used to minimize

the amount of information broadcasted through the newly formed network.

1. Broadcast two separate messages from the Lead robot. The first message

will be sent to all the Lead robot’s children in the graph G, and will contain

information about the Secondary robot and its children. Conversely, the second

message will be sent to the Secondary robot and its children in G, but will

contain information about the Lead robot and its children.

2. If any robot receives a new message from a parent robot

Then save the information and rebroadcast the message to all children in the

graph G.

CHAPTER 2. DYNAMIC ROBOT NETWORKS 30

Many mobile ad hoc network communication systems are applied to robots for use

as sensor networks or to produce some optimal global behavior (e.g. [65]. In these

applications, a network flooding of information was implemented by broadcasting

information to all who listened. However, by following the rules listed above, each

robot is only sent state, goal and trajectory information about the robots it has no

knowledge of yet. On average, this will reduce the delays on the order of rd/2, where

r is the number of robots in the newly formed network and d is the maximum depth

of the routing tree.

An example scenario is depicted in Figure 2.5. In a), possible communication links

(i.e. edges for G) are presented after two networks have merged. The resulting graph

G is shown in b). The Lead robot responsible for the merge (denoted by the star)

will initiate the coordination process by distributing world models. Note that only

the unknown portions of the robot are received by each robot (depicted by topology

nets shown above each edge in b).

Model fusion

When robots receive world model information obtained from other robots, they must

fuse it with their own world model. This is an important step to ensuring all robots

share a common world model so that centralized coordination can occur.

Describing the world model in a concise but useful form is necessary to allow for

information sharing between robots in the same network. As mentioned above, the

ability to accomplish this is not available to a general system. In the experimental

system described in this dissertation, world models consist of a list of robots and

their descriptions, and a list of obstacles and their descriptions. Table 2.1 outlines

the information stored in each list.

The most recent update time is used for data fusion. When multiple state esti-

mates received from different robots, the most recent information is used.

The information source is a robot ID that indicates which robot sensed (or com-

municated with) the object. It is used to determine if an object is currently being

sensed by a robots in the network, or if it state estimates were obtained by a robot

that no longer belongs to the network.

CHAPTER 2. DYNAMIC ROBOT NETWORKS 31

Table 2.1: World Model Description

1. List of Robot Descriptions

• State (position and velocity)

• Size (Radius)

• Most Recent Update Time

• Information Source

• Goal position

• Current Trajectory

2. List of Obstacle Descriptions

• - State (position and velocity)

• - Size (Radius)

• - Most Recent Update Time

• - Information Source

CHAPTER 2. DYNAMIC ROBOT NETWORKS 32

Several assumptions were made to allow such a concise world model:

• Each object is approximated as a circular object. This allows its geometry to

be described by a single parameter, its radius.

• Each obstacle has constant linear velocity estimated by a robot’s sensor. As

in [12], if at any later time its trajectory is found to diverge by more than

some threshold from the predicted trajectory, then the robot that detects this

divergence initiates a new coordination process within its network. This could

occur because the obstacle did not move at constant velocity, or because the

error in the velocity estimate was too high.

• All objects in the environment are easily identifiable by robot sensors, which

can precisely estimate their positions and velocities. Any discrepancy between

two local world models can be easily resolved.

The first assumption is rather easy to eliminate, as it has been shown before that

PRM planners can efficiently deal with geometrically complex robots and obstacles

(e.g., [54]). In [26], the second assumption has been shown to be quite reasonable,

even when obstacle velocities change frequently, provided that (re-)planning is fast

enough. The last assumption is more crucial. In our experimental system, it is

enforced by engineering the vision system appropriately (Chapter 4). In the future,

it will be important to relax this assumption by using more general sensing systems

and data fusion techniques [42].

Planning

When robots receive a “plan request” message, they will query an algorithm to plan

the actions of all robots in the network. As the number of robots increases, so does the

complexity of the coordination problem. This motivates the use of parallel processing

to conduct robot coordination across the network.

For the implementation presented in this dissertation, parallel processing is used

to solve the motion planning problem (i.e. construct coordinated robot trajectories).

Upon receiving a plan request, Each robot in the network will query a randomized

CHAPTER 2. DYNAMIC ROBOT NETWORKS 33

motion planning algorithm. To parallelize the search for a solution, each robot will

seed its random number generator differently. This results in each robot generating

a different solution to the same motion planning problem.

Once a robot has generated its plan, it will send the plan to all other robots in

the network. After a robot receives the plans created by all other robots, it will select

and implement the best plan out of all those plans. The selection criteria will be

based on some easily-calculated, predetermined cost function. This optimization is a

clear advantage of the system.

Plan Execution

After a robot has selected the optimal plan, it will send this plan to a low-level

controller for execution. Many controllers exist for mobile robot trajectory tracking

and a good resource can be found in [36]. In this reference, feedback linearization

techniques are used to achieve global stabilization of the trajectory tracking error to

zero when implemented on a car-like robot.

2.4.2 Multiple Coordination Processes

One of the main challenges of implementing centralized coordination across an ad hoc

network is that the robots are continuously moving and hence the network topology is

dynamic. Difficulties arise when robots enter and leave one another’s communication

range within a short period of time, (e.g. less than a second.) In these cases, continu-

ous network communication might not be possible throughout the entire coordination

process which can last on the order of 500ms. The planning system must be robust

to such difficulties. What follows is a description how such events are handled, so as

to continue providing responsive distributed planning across the network.

Network Breaks

In the case where a network breaks into two different networks of reduced size, the

coordination process must continue. Because messages are queued and processing of

them is synchronized, it can be assumed that the plan manager will not realize such

CHAPTER 2. DYNAMIC ROBOT NETWORKS 34

Figure 2.6: Network Break Time line: The plan manager will detect an event through
network maintenance monitoring. In this case, a network break is detected and the
network topology records are updated. Thus, the plan manager is informed that it
should not wait to hear any plans from robots no longer within the current network
of reduced size.

a break until after a robot begins its actual planning (i.e. it has queried the planning

algorithm).

At this point the robot’s planner will continue constructing trajectories, even for

those robots that no longer belong to the same network as the robot. However, once

the robot finishes planning, it waits to receive plans from only those robots that

are currently in its new reduced network. For example, if five robots in a network

are planning and one robot leaves, then the four remaining robots will distribute

their plans and implement the best of the four. The fact that the plans consist of

trajectories for five robots will not hinder the coordination process. Note that this

does require robots to update the network with the information that another robot has

CHAPTER 2. DYNAMIC ROBOT NETWORKS 35

Figure 2.7: Multiple Network Trigger Time line: The plan manager will detect an
event through network maintenance monitoring, local sensing and task management.
In any of these cases, a plan trigger is detected and the plan manager stores this
information until the first plan is received. At this point a new coordination process
is triggered.

left communication range and robots should not wait to receive a plan from it. This

can be accomplished through means of a network level routing algorithm protocol as

discussed above.

If the network breaks after plans are completed (i.e. during the plan execution

phase of a coordination process), there will be no ill effects. Each robot executes only

its own plan and doesn’t consider the other robot plans at this point.

New Plan Triggers

It is possible for a new plan trigger (i.e. new desired goal state, new network merge,

or new object state estimates), to occur during a coordination process. In these cases,

CHAPTER 2. DYNAMIC ROBOT NETWORKS 36

it is desirable to plan with this new information as soon as possible. However, robots

cannot simply halt their current coordination process to start a new process based

on the most recent information. This can lead to endless planning with no plan

execution, (i.e. the system may repeatedly halt plan searches as a robot continually

receives new plan triggers.)

The solution presented here is pictured in Figure 2.7. As new triggers occur during

a coordination process (or any time after a coordination process has been initiated),

they are stored until the first completed plan from the original coordination process

is received. At this point the robots execute the first plan and initiate the next

coordination process which takes into account all stored trigger information. This

ensures that plans are given time to finish, but starts the next process promptly.

This system allows for several new triggers to be stored until the next coordination

process begins. Also, it allows for different triggers to be heard by different robots

at different times. Consider an example where two robots, located at opposite ends

of a network, each detect a different plan trigger. Each robot will initiate a separate

coordination process and send out its own “plan request” message with information

regarding the trigger event it detected. Each robot will also begin the planning stage

for the coordination process it initiated. As each robot receives the other robot’s

plan request, it will store it until it gets the first solution to its own plan request.

Once receiving this first plan, it will begin executing the plan and immediately start

planning again to incorporate the trigger received from the other robot. In this

manner, each robot will execute a plan that responds to the trigger it detects, then

construct and execute a plan that responds to both triggers.

For this protocol, the maximum time before a plan is executed for any given trigger

is always less than double the time to carry out one coordination process. This may

occur if a new trigger is detected immediately after the start of a coordination process

initiated by an earlier trigger. This ensures a finite planning time for any new trigger.

Note that due to communication delays, numerous completed plans for a coordi-

nation process may have been sent after the first plan, only to be received after a new

coordination process has begun. In these cases, robots will simply implement them if

they are better than the first, without interrupting the new coordination process.

Chapter 3

Multi-Robot Motion Planning

3.1 Introduction

This dissertation is motivated by the need for navigation capabilities that enable

multiple robots to operate in dynamic, unknown environments. In Chapter 2, a

new coordination platform was described, Dynamic Robot Networks, that facilitates

centralized planning within ad hoc networks. Discussed here is motion planning, an

essential capability for safe robot navigation.

Motion planning is the construction of collision-free trajectories that connect

robots to their individual goal destinations. Motion planning performance can be

characterized by the following algorithm properties: speed, completeness, and opti-

mality. For robots to operate in dynamic, unknown environments where planning

must occur on-the-fly, the primary requirement is algorithm speed.

For multi-robot motion planning, centralized planning is beneficial because the

motion of each robot can be planned while considering the motion of all robots.

Given the Dynamic Robot Network platform, the main difficulty is in developing a

centralized planner that meets the speed requirement.

In [27], a probabilistic roadmap (PRM) planner was introduced that could con-

struct feasible, collision-free trajectories for single robots operating in dynamic en-

vironments. In this chapter, new sampling strategies are presented that decrease

the PRM planner’s run time when applied to multi-robot motion planning problems.

37

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 38

First, an appropriate method of selecting milestones in a PRM is identified. Second,

a new method of generating PRM milestones is described. Finally, a new endgame

region for multi-robot PRMs is presented. What follows is an overview of related

motion planning research, a description of the PRM algorithm, a description of the

new sampling strategies, and simulation results.

3.2 Related Work

Many approaches have been taken to multi-robot motion planning. They are usu-

ally compared based their the algorithm’s speed, completeness and optimality. For

complex problems, it is difficult to meet all of these requirements. In recent years,

Probabilistic Road Map (PRM) planners have gained popularity because of their

speed. However, effective sampling strategies are crucial to achieving successful PRM

planning. Presented below is an overview of multi-robot motion planning, PRMs,

and PRM sampling strategies.

3.2.1 Multi-Robot Motion Planning

Multi-robot motion planners are usually classified according to whether the planning

is decoupled or centralized [3, 55], (see Figure 3.2). Decoupled planners construct

plans for each robot separately before coordinating the individual plans [3, 5, 30, 31,

39, 45, 58]. The coordination step can be accomplished by tuning the robot velocities

along their respective paths (e.g. [30]). Consider the two robots in Figure 3.1. If both

these robots follow their paths with the same velocity, they will collide. However, by

tuning velocities so one robot slows down and the other robot speeds up to pass by,

a collision-free pair of trajectories results. This coordination can be done globally, in

which complete information is available to the planner, or locally (i.e. when robots

come close to one another) [44].

A variant of decoupled planning, called prioritizing planning, plans for one robot

at a time, in some sequence, considering the robots whose trajectories have already

been planned as moving obstacles [9, 14, 20].

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 39

Figure 3.1: Velocity Tuning Example: If both these robots follow their paths with
the same velocity, they will collide. However, by tuning velocities so one robot slows
down and the other robot speeds up to pass by, a collision-free pair of trajectories
results.

Decoupled planning algorithms can be advantageous because they don’t require

robots to have complete system information and are generally fast enough for planning

on-the-fly. However, they are inherently not complete and often can not find solutions

when robots must be tightly coordinated [55].

Centralized planning considers all robots together as if they were forming a single

multi-body robot [6, 11, 37, 46, 54, 62, 64]. Centralized planning is beneficial because

the motion of each robot can be planned while considering the motion of all robots.

Unfortunately, centralized planning is often slow and requires that at least one robot

be provided with complete system information.

In Chapter 2, a new coordination platform was described - Dynamic Robot Net-

works, that facilitates the information exchange necessary for centralized robot mo-

tion planning within ad hoc networks. Given this coordination platform, the main

difficulty is in developing a centralized motion planner that can plan quickly despite

searching configuration spaces with many degrees of freedom.

Recently there has also been research into using mixed integer linear programming

to solve multi-robot path planning (e.g. [8, 50]). These methods result in optimal

trajectories, but still require longer planning times not practical for some on-line

implementations.

In [57], a non-linear model predictive control (NMPC) is used for the control of

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 40

autonomous helicopters. Simulation results exhibited trajectory generation for heli-

copters operating in complex 3D environments, multiple vehicle collision avoidance,

and predator evasion. Computation times ranged from 41 to 173 seconds.

To handle the requirement for speed, a probabilistic roadmap (PRM) planner is

proposed. These planners have been shown to be fast enough to handle dynamic,

unknown environments (e.g. [34]).

3.2.2 Multi-Robot Planning with PRMs

Probabilistic roadmaps (PRMs) have been used to solve path planning problems with

many degrees of freedom successfully [33, 54, 55]. They have also been shown to con-

struct plans that satisfy various constraints (e.g. dynamic, nonholonomic etc.) [34].

They are not complete in the traditional sense. However, under certain assumptions

(e.g. the free space is expansive [27]), they are probabilistically complete. That is, the

probability of failure decreases exponentially to zero with algorithm iterations.

PRMs have been applied to multi-robot motion planning problems, many of which

use decoupled planners. One example is [14], where a single-query PRM algorithm is

used with prioritized planning. Each robot calculates a priority number based on the

occupancy of its neighborhood, (i.e. the more robots/obstacles in its neighborhood,

the higher the planning priority). As robots move into one another’s neighborhood,

the robot with lower priority plans to avoid the higher priority robot. The higher

priority robot continues on its original path. Results demonstrate on-the-fly planning

for up to 15 robots in a cluttered environment.

One example of a centralized approach is presented in [62], where a multi-query

PRM is used. First, a roadmap is constructed for one robot. Then, several of these

roadmaps are combined into a roadmap for the composite robot. The approach

worked well in planning for up to 5 car-like robots in static environments, and has

the advantage of being probabilistically complete.

In [55], centralized and decoupled planning are compared using PRMs. Both

approaches were applied to test scenarios involving 2-6 robot manipulators (12-36

degrees of freedom). Given those scenearios, decoupled planning often failed to find

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 41

(a)

(b)

(c)

Figure 3.2: The trajectories of three robots are constructed and coordinated using
three different methods. To visualize the differences between methods, plotted along
each axis is a trajectory representation for the respective robots. Decoupled planning
is illustrated in (a), where three trajectories are constructed independently, and then
coordinated. Within the trajectory space of all three robots, the resulting three
trajectories are represented as x(t). In (b), prioritized planning is used. Trajectories
are constructed robots one at a time, using the previously constructed trajectories as
obstacles. In (c), centralized planning is depicted where the trajectories of all three
robots are constructed simultaneously.

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 42

any solution. This research demonstrated the advantage of centralized planning when

the motion of multiple robots requires tight coordination.

Given the large amount of research in PRMs, few have investigated how different

sampling strategies can affect planning for multiple robots. Presented below are

descriptions of PRM planning algorithms, some sampling strategies used within these

algorithms, and new sampling strategies specific to multi-robot motion planning.

3.3 Background on PRMs

Methods of sampling the configuration space to generate PRMs are usually classified

according to whether they are single-query or multi-query. To construct a multi-query

PRM, the configuration space is sampled and all resulting configurations that lie in

the free space are retained. These configurations are stored as milestones and are

connected locally by edges to form a roadmap of the free space. This roadmap can

be queried multiple times for different start/goal configuration pairs. First, the start

and goal configurations are connected to a pair of milestones in the roadmap, say

ms and mg. Then, a fast graph search of the roadmap is used to find a path that

connects ms to mg.

The multiple-query PRM planner described above is practical for situations in

which the roadmap need only be constructed once, (i.e. the environment is static).

Queries are very fast, but roadmap construction is slow because the roadmap must

cover the entire configuration space. For many applications, the roadmap construction

step is too slow for on-line implementation (e.g. to avoid moving obstacles).

Another strategy is to use a single-query PRM planner, in which a new roadmap

is constructed for each query. In these planners, less time is spent constructing the

roadmap because only a restricted subset of the configuration space is sampled. This

is usually accomplished by a single-directional search or a bidirectional search. For

a single-directional search, a tree of milestones in grown from the initial configura-

tion until a connection is found with the goal configuration. Two trees are grown

for a bi-directional search, one from the initial configuration and one from the goal

configuration, until a connection between them is found.

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 43

Presented by Hsu [26], is a single-query PRM planner that has shown signifi-

cant success in planning trajectories for a robot operating in dynamic environments.

Results demonstrated on-the-fly planning for real robots that are operating among

moving obstacles. For this reason, Hsu’s algorithm was selected as the core algorithm

for this motion planning research. Then, to increase the algorithms speed when

applying it to multi-robot motion planning problems, new sampling strategies were

developed.

Hsu’s algorithm is represented as Algorithm 1. In this representation, the motion

of the robot is governed by the Equation 3.1. The state of the robot is x such that

x ∈ X, an n-dimensional manifold called the state space. Control inputs to the robot

are represented as u.

ẋ = f(x, u) (3.1)

A milestone is defined by m = (t, x) where x represents the state of the robot r

at time t. The initial milestone m0 defines the initial state of the robot at time zero.

Algorithm 1 Single Query PRM Planner

1. Add initial milestone m0 to roadmap M
2. Until timeout
3. Randomly select a milestone m from M
4. mnew = PROPAGATE(m)
5. Add mnew to the roadmap M
6. If mnew is connected to goal state
7. Return plan connecting mo to the goal state
8. Return null

To start, the roadmap M is rooted at m0 by adding it as the first milestone in M

(step 1 in Algorithm 1). The algorithm iteratively tries to expand M by first selecting

an existing milestone m from M and then propagating it to a new milestone mnew

(step 4). Within the PROPAGATE function, a candidate path from m is generated

by integrating Equation 3.1 with randomly selected values for u. The function iterates

until a collision-free path is found, whereby it returns a milestone mnew defined by

the path endpoint. In step 5, mnew is added to the roadmap M . If there exists a

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 44

simple path from mnew to the goal state, then planner returns a path connecting m0

to the goal state (step 6).

This algorithm can be extended to planning for multi-robot planning using a

centralized or decoupled planning approach, (e.g. [14]). In this dissertation, a coupled

planning approach is taken in which all robots are planned for at once (e.g. [15]).

Specifically, the milestones must define the configuration of all robots being planned

for, m = (t, x1, x2, ...xR) where xr represents the state of robot r at time t. This

approach will be substantially slower (due to the increased size of the configuration

space) but maintains the property of probabilistic completeness.

The remainder of this chapter concerns the development of new sampling strategies

that decrease the algorithm’s running time when a coupled approach is taken.

3.4 PRM Sampling Strategies

In PRM planning, a large amount of time is spent collision-checking. One way to

reduce the amount of collision checking is use better sampling strategies. These

strategies avoid milestone generation in uninteresting areas of the free space. Con-

necting new milestones to the roadmap in such areas requires costly collision-checks,

without greatly expanding the roadmap.

Examples of different sampling strategies that have been applied to multiple-query

PRM planners include multi-stage strategies [32], obstacle-sensitive strategies [2], and

narrow-passage strategies [25]. In [32], a multi-stage strategy approach is taken. For

the initial stage, a uniform distribution of milestones is generated and connected with

edges. In subsequent stages, additional milestones are generated around milestones

that have few or no connections.

An obstacle-sensitive strategy is taken in [2]. Those configurations sampled in the

non-free portion of the configuration space are retained. They are then used as base

points from which to cast rays in a random direction. Along these rays, a search for

free configurations along the free space boundary is conducted.

One example of narrow-passage sampling strategy is found in [25]. First, a

roadmap of the ”dilated” free space is constructed in which narrow passages are

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 45

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

(a)
0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

(b)

Figure 3.3: Unweighted versus Weighted milestone selection strategies: The initial
milestone is in the upper right corner of both configuration spaces. As the roadmap
expands, and more milestones are added, the unweighted approach exhibits a slow
expansion. Clustering is indicated by the high density of milestones located around
the initial milestone. The weighted approach on the right, which was allowed to
expand for the same amount of time, exhibits a more uniform expansion that leads
to greater coverage of the configuration space.

widened. Then, collision-free milestones are generated via local resampling for those

milestones which belong to the dilated free space, but not the original free space.

Several sampling strategies have also been applied to single-query PRM planners.

Both single-directional and bi-directional searches require diffusion strategies to avoid

over-sampling certain areas of the free space. More specifically, the roadmap must

eventually diffuse through the reachable component of the free space, and result in a

uniform distribution of milestones across the components. This uniform distribution

is a requirement in proving the planner’s fast convergence property [27].

To understand how diffusion strategies can affect the speed of coverage, consider

the two examples of roadmap expansions depicted in Figure 3.3. In (a), no sampling

strategy is invoked. Each milestone in the roadmap is given equal probability in

being selected to expand from. This leads to a non-uniform cluster of milestones

that slowly expands to fill the free space. In (b), a particular sampling strategy is

invoked that weights the milestone selection. These weights give milestones in less

densely populated neighborhoods a higher probability of being selected, leading to

faster diffusion.

One diffusion strategy is presented in [35], where a configuration q is randomly

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 46

selected from the configuration space. Then, the milestone m which is closest to q is

obtained. Finally, a new milestone mnew is selected along the line connecting m to q.

Another technique is presented in [27]. First, a milestone m is selected from the

roadmap with probability inverse to the density of milestones in the neighborhood of

m. Second, a new milestone mnew is obtained with a random but uniform sampling of

the neighborhood of m. To speed up the selection of m, milestone density calculations

are approximated through a discretization of the configuration space, (see section

3.5.1).

A similar method ([54]) is applied to planning the motion of multiple robot manip-

ulators with many degrees of freedom Ndof . First, h degrees of freedom are randomly

selected, where h << Ndof . Then, local milestone densities are calculated based only

on the closeness of milestones within the h degrees of freedom. Using these densities

for weighting milestone selection, a milestone m is picked to generate mnew.

3.5 New Sampling Strategies

This research adds new techniques to improve upon the sampling strategy found in

[27], when applied to coupled multi-robot planning. Each of these techniques are

implemented as one distinct step of Algorithm 1:

• Selecting milestones from the roadmap for expansion (Step 3) - to

ensure fast configuration space coverage and sampling uniformity (a requirement

for probabilistic completeness).

• Generating new milestones for the roadmap (Step 4) - in a fast manner

despite the increased number of robots.

• Checking for endgame region inclusion (Step 6) - that is large enough

to improve the chance of finding a solution, yet still easily calculated to reduce

computation time and increase speed.

The next three sections provide details on these techniques.

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 47

3.6 RoadMap Milestone Selection

This research invokes a sampling diffusion strategy for single-query PRM planning

based on one presented in [27], where new milestones are generated in vicinities of the

roadmap that have a low density of milestones. This strategy is a two step process,

first requiring the random selection of a milestone m from the roadmap, followed by

the generation of new milestone in the neighborhood of m.

This section investigates the first step of this process: randomly selecting a mile-

stone from the roadmap (step 3 of Algorithm 1). Presented below are several candi-

date techniques of selecting milestones from the roadmap. Desired is a technique that

leads to a fast, uniform expansion. The faster the expansion, the faster a milestone

will be sampled that has a connection to the goal state. Hence the faster a solution

will be found.

3.6.1 Milestone Selection Techniques

Hyper-Grid Milestone Selection

In this technique, the configuration space is divided into a grid of cells HG. Those

cells that are occupied by milestones form a sub-grid called HGoccupied. A milestone is

selected by 1) randomly selecting a cell c from HGoccupied, and 2) randomly selecting

a milestone from within c. An example is provided in Figure 3.4 (a).

This technique has been shown to work well for single robot PRM planning (e.g.

[34]), and has been extended here for multi-robot planning. This is accomplished by

producing the hyper-grid HG that is the joint configuration space of all robots. If

each robot has D degrees of freedom that are divided into K cells, then a hyper-grid

for R robots will contain KDR hyper-cells.

Given that K must be large enough to provide uniform sampling (e.g. 5 to 10),

a large number of cells would be required to grid the entire configuration space.

However, in many cases, only a small portion of the configuration space need be

searched before a solution can be found. This requires dynamic allocation of memory

for cells. As shown here, this can be accomplished via hashtables that allow for

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 48

(a) (b)

Figure 3.4: Hyper-grid milestone selection for a single robot with 2DOF is shown in
(a): The configuration space is divided into a grid, (see left figure). Blue dots denote
states corresponding to milestones in the roadmap. Of the nine occupied cells in the
case presented, one is randomly selected (denoted by the red square in central figure).
From within that cell, one of the milestones is randomly selected, (denoted by the
red circle in right figure). In (b), weighted hyper-grid selection is used for a single
2DOF robot: Two partial hyper-grids are created one with cells occupied by only a
single milestone and one with cells occupied by more than one milestone, (see left
figure). One of these two hyper-grids is randomly selected, (denoted by red box in
central figure). Then, from within that grid, one of the cells occupied by milestones
is randomly selected, (denoted by the small red square in right figure). From within
this cell, a milestone is randomly selected.

optimal gridcell referencing, (insertion and selection is logarithmic).

Hashtables can also provide an efficient means of weighting the gridcells further.

For example, in Figure 3.4 (b) the gridcells occupied by only a single milestone are

given much higher weighting than all other gridcells.

This is accomplished using two partially allocated hyper-grids. When a new mile-

stone is generated, it is added to the first of the two hyper-grids HG1 only if it will be

the sole milestone to occupy a gridcell, otherwise it is added to the second hyper-grid

HG2+. When sampling to obtain a new milestone, a random (weighted) selection of

one of the two hyper-grids HGi is made, followed by selecting a milestone from HGi

as described above.

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 49

Figure 3.5: Multi-Grid Milestone Selection for three 2DOF robots: Each robot is
allotted a grid to characterize the coverage of its configuration space, (see left fig-
ure with three grids). Blue dots denote states corresponding to milestones in the
roadmap. Of the three robots in the case presented, one is randomly selected (the
grid for robot 2 in the central figure). Then, from within that grid, one of the cells
occupied by milestones is randomly selected, (denoted by the small red square in right
figure). From within this cell, a milestone is randomly selected. This milestone has a
corresponding robot state denoted by red circles in each of the three grids.

Multi-Grid Milestone Selection

This technique was designed to weight the expansion effectively for multi-robot PRM

planning [14]. The hyper-grid technique is modified such that each robot is assigned

its own grid of cells to characterize a coverage of its configuration space. As milestones

are added to the roadmap, these grids are updated to represent the milestone coverage

particular to that robot. To select a milestone for expansion, a robot is randomly

selected followed by random selection of an occupied cell in that robot’s grid. Finally,

a milestone from this cell is selected randomly.

Within each of the R robot grids, there will be KD grid cells, where D is the

degrees of freedom of the robot that are divided up into K cells. In total there will

be R x KD cells.

Random Point Milestone Selection

Used often for Rapidly-exploring Random Trees (RRTs) [38], (a variant of PRM

planning), is random point milestone selection. The idea is to randomly pick a point

in the configuration space, then find the milestone in the roadmap to which it has

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 50

Figure 3.6: Random Cell Milestone Selection for a single 2DOF robot: Within the
2D configuration space, a cell is chosen randomly, (denoted by the red square in left
figure). Next, the closest cell from a randomly subsampled list of cells is selected,
(denoted by red boxes in central figure). Finally, from all milestones in this closest
cell, one is randomly selected (denoted by the red circle in right figure).

the smallest Euclidean distance. A drawback of this technique is that a search for

the milestone with the shortest distance must be done for each expansion.

One way to minimize the effects of this drawback is to only consider a small sample

of randomly selected milestones in the roadmap for each expansion. Also, instead of

picking a point, one can randomly select a gridcell crandom from a discretized grid of

the configuration space, then find the occupied gridcell c that is closest to crandom

using the Manhatten distance metric. From c, a milestone is selected randomly.

3.6.2 Results

To compare the different techniques of milestone selection, simulations were conducted

involving three robots, each with one degree of freedom. Hence, if each robot i is

defined by state xi whose feasible set is [xmin, xmax], then the configuration state of

the system can be defined by [x1, x2, x3], and the product of the three individual

configuration spaces is a cube. Inter- robot collisions are simulated by adding non-

permissible collision regions to the cube.

At the start of each simulation, a point in the configuration space is randomly

selected to be the initial milestone and is added to the roadmap. During each it-

eration of the simulation, a milestone in the roadmap is selected (using one of the

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 51

Figure 3.7: Visualization of milestones sample from a cubic configuration space: This
simulation has three 1DOF robots. Blue dots denote milestones in this configuration
space.

previously discussed techniques). To this milestone, small random variations are ap-

plied resulting in a candidate milestone. If the candidate lies within the boundaries

of the configuration space, (i.e. if xi lies within [xmin, xmax] for all i) and does not lie

in one of the collision regions, then it is added to the roadmap as a new milestone.

In this manner, milestones are continually added to the roadmap which expands over

the configuration space.

To establish a comparison metric, the joint configuration space (i.e. the cube) is

divided into 3375 smaller occupancy cubes. The coverage of the configuration space

is then measured by the number of these smaller cubes occupied by at least one

milestone.

Illustrated in Figure 3.8 are the average configuration space coverages from ex-

panding a roadmap using each of the above mentioned sampling techniques. Aside

from the unweighted case, each technique demonstrates an initial region of fast ex-

pansion, followed by a region of slower expansion. However, the ratio of these two

regions differs greatly between sampling techniques. The multi-grid approach tapers

off quickly to a very slow expansion. The random cell technique (from RRT) provides

a good rate of coverage, especially when considering the composite of three planners

running in parallel. The hyper-grid techniques, (including the dynamically allocated

hyper-grid), demonstrated superior performance. It was not until a majority of the

configuration space was covered before their rate of expansion decreased significantly.

A second metric for comparing these sampling techniques is the uniformity of the

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 52

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time (ms)

N
um

be
r

of
 O

cc
up

ie
d

C
el

ls
Unweighted
Multi−Grid
Hyper−Grid
Weighted Hyper
Random Cell

(a)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time (ms)

N
um

be
r

of
 O

cc
up

ie
d

C
el

ls

Unweighted
Multi−Grid
Hyper−Grid
Weighted Hyper
Random Cell

(b)

Figure 3.8: Milestone Selection Selection Techniques - Coverage: The coverage of
3375 cells hyper cube are shown for various sampling techniques. In a), the coverage
from a single planner is plotted. In b), the composite coverage of three different
planners running in parallel is plotted.

expansion. To measure uniformity, the variance of occupancy cubes - the square of the

average difference between the occupancy of the cubes and the average occupancy,

was used. In Figure 3.9, the variance of occupancy cube milestone density is plotted

as a function of time. It is clear that the unweighted approach leads to a very

non-uniform milestone expansion. The variance increases with time indicating that

some occupancy cubes are occupied by many more milestones than others. Other

techniques demonstrated a slightly increasing variance, indicating a more uniform

milestone expansion (i.e. most areas of the configuration space have generally the

same density of milestones).

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 53

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

900

1000

V
ar

ia
nc

e
−

 o
cc

up
an

ce
 o

f c
el

ls

Time (20 ms intervals)

Unweighted
Multi−Grid
Hyper−Grid
Distance
HashTable
Weighted Hashtable

Figure 3.9: Roadmap Sampling Techniques - Variance: The uniformity of the config-
uration space coverage is measured as the variance of the occupancy of cells.

3.7 Milestone Generation

In [27], a two-step sampling diffusion technique was introduced where new milestones

are generated in vicinities of the roadmap that have a low density of milestones. Dis-

cussed in the previous section was the first step: the random selection of a milestone

m from the roadmap. This section investigates the second step: the generation of

new milestone in the neighborhood of m. Within Algorithm 1, this is referred to

as the PROPAGATE function, (see step 6). This section presents a new method of

generating milestones, called serial expansion, that increases the likelihood of success.

This decreases the number of required collision-checks and speeds up planning.

3.7.1 Serial Vs. Parallel Expansion

Within the PROPAGATE function of Algorithm 1, several candidate paths from m

are generated by integrating Equation 3.1 with randomly selected values for u. The

function iterates until u induces a collision-free path, whereby it returns a milestone

mnew defined by the path endpoint. The order in which the different control inputs

of u are randomly selected can affect the number of collision-checks necessary to

successfully generate a new milestone.

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 54

Previous research for single robot planning has used a parallel approach to mile-

stone generation in that all control inputs are selected simultaneously, followed by

collision checking [34]. If the trajectories connecting states in the existing milestone

to states in the newly generated milestone are collision-free, then the new milestone

is added to the roadmap. For multi-robot planning, the likelihood of successfully

generating new milestones decreases with the number of robots, which in turn slows

down the roadmap expansion.

In this research, a serial approach is introduced. For each robot, the control

inputs are randomly selected and collision-checking is carried out between it and all

previously expanded robots, (refer to Algorithm 2). For example, consider generating

a new milestone by expanding a milestone defined by m(t, xA, xB, xC) for robots A,

B and C. First, the amount of time ∆t between milestones is randomly selected.

Second, a new state x′A is generated by applying random inputs to state xA. Then

x′B is generated and a check is made to ensure that the trajectory from xB to x′B
is collision-free with the trajectory from xA to x′A. Random inputs are continually

used to obtain a new x′B until collision-free trajectories are obtained. Finally a new

state x′C is generated and a check is made to ensure that the trajectory between

xC and x′C is collision-free with the trajectories from xA to x′A and from xB to x′B.

Again, candidate states for x′C are randomly generated until collision-free trajectories

are obtained. What results is a collision-free milestone defined by m′(t′, x′A, x′B, x′C),

where t′ = t + ∆t.

As shown in Algorithm 2, there is also a timeout check. This is used to ensure that

the algorithm does not get stuck in a particularly difficult expansion. For example,

the first robot state expanded could result in a trajectory for which all other robot

state expansions will lead to collision.

The purpose of using serial expansions over parallel expansions is that information

from previous failed state expansions is used for future expansion attempts. That

is, as each individual robot state is expanded, the previous successful robot state

expansions are reused. In contrast, parallel expansion throws out this information at

every expansion attempt.

To further justify the use of serial expansions, equations that predict its superior

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 55

Algorithm 2 Serial Milestone Expansion

1. Set ∆t to be a random time from [0, ∆tmax]
2. For i = 1 to R robots
3. Randomly select a robot r that hasn’t been selected yet
4. While true
5. Randomly select control inputs ur

6. Generate new state x′r by applying ur to xr

7. If path connecting xr to x′r is collision-free
8. Add x′r to new milestone mnew

9. Break while loop
10. If timeout
11. Return null
12. Return new milestone mnew

performance are presented. These equations are based on the following definitions:

Definition Let m be a milestone selected for expansion, where m is defined by the

states of R robot at time t:

m = m(t, x1, x2, ...xR) (3.2)

Definition Let m′ be a milestone resulting from the random propagation of m, where

m′ is defined by a set of R robot states at time t:

m′ = m′(t′, x′1, x
′
2, ...x

′
R) (3.3)

Definition Given the states of two robots, xi and xj, define the probability that

the trajectories produced from random propagations to new states x′i and x′j are

collision-free as:

pij (xi, xj) (3.4)

Definition Given the states of two robots, xi and xj, and a propagated state x′i,

define the probability that the trajectory produced from a random propagation from

xj to a new states x′j will be collision-free with the previously constructed trajectory

from xi to x′i as:

qij(xi, xj, x
′
i) (3.5)

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 56

These two probabilities can be related by summing over all N possible propaga-

tions for robot i, that have probability r(x′i).

pij =
N∑

qij(xi, xj, x
′
i)r(x

′
i) (3.6)

This equation can be simplified by noting that each possible propagation for robot

i will have equal probability 1/N .

pij =
N∑

qij(xi, xj, x
′
i)

1

N
(3.7)

= qij,avg

Using these definitions, the average number of collision checks necessary for expan-

sion can be calculated and compared for parallel and serial expansions, (see Appendix

A for calculations).

The average number of collision checks necessary for a successful parallel expansion

of R robot states is approximated in Equation 3.8. In this expression, pi is the

probability that the ith pair of state expansions is collision-free.

Cavg,parallel =

(
1

∏Cmax
i=1 qi,avg

− 1

) (∑Cmax
l=1 lQl∑Cmax
l=1 Ql

)
+ Cmax (3.8)

Where:

Cmax =
1

2
R(R− 1) (3.9)

Ql,parallel =

(
l−1∏

i=1

pi,avg

)
(1− ql,avg) (3.10)

The average number of collision checks necessary for a successful serial expansion

of R robot states is approximated in Equation 3.11. This equation is a function of qi,

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 57

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200

Number of Robots

N
um

be
r

of
 C

ol
lis

io
n

C
he

ck
s

Parallel Expansion
Seriel Expansion

(a)

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

Number of Robots

N
um

be
r

of
 C

ol
lis

io
n

C
he

ck
s

Parallel Expansion
Seriel Expansion

(b)

Figure 3.10: The average number of collision checks required for a successful expan-
sion. In (a), q = qavg = 0.95. In (b), q = qavg = 0.90

the probability that the ith pair of state expansions is collision-free,

Cavg,serial =
R−1∑

m−1

((
1∏m

i=1 qi

− 1

) (∑m
l=1 lQl∑m
l=1 Ql

)
+ m

)
(3.11)

Where:

Ql,serial =

(
l−1∏

i=1

qi

)
(1− ql) (3.12)

Figure 3.10 illustrates how both of these functions scale with the number of robots.

To compare them, the probabilities qi is approximated as qi,avg. Under this approx-

imation, the Cavg,parallel increases more rapidly with the number of robots R than

Cavg,serial.

3.7.2 Simulation Results

To compare the two methods of expansion, 50 simulations were run in which a

roadmap was expanded continuously for 0.5 seconds. At each milestone expansion,

both the parallel and serial methods were implemented.

For each simulation, data was recorded including qi, qi,avg, and the number of

collision checks during each expansion. With this information, the average number of

collision checks necessary for a successful expansion were predicted based on theorems

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 58

2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

Number of Robots

A
vg

. n
um

be
r

co
lli

si
on

s
/ e

xp
an

si
on

Parallel − Experiment
Parallel − Theory
Serial − Experiment
Serial − Theory

Figure 3.11: Parallel Vs. Serial Expansion.

A.1.3, A.1.4 and compared with the recorded number for each expansion. Results are

plotted in Figure 3.11.

There are two points to be observed from these plots. The first is that for both the

serial and parallel expansions, the theorems accurately predicted the average number

of collision-checks necessary for a successful expansion.

The second point to be observed is the difference in scalability between serial and

parallel expansion methods. That is, as the number of robots increases, the number of

collision-checks required with parallel expansion grows more quickly than with serial

expansion. Note that there is a direct correlation between the number of collision

checks necessary for an expansion and the time taken to complete an expansion.

Thus, on average, serial expansions take less time than parallel expansions.

Note that these results are based on single-body mobile robots, where the majority

of collision checks in an expansion are those between different robots. The reduction

in expansion time experienced with Serial expansions is a result of decreasing the

number of these inter-robot collision checks. When planning for multi-body robots,

the majority of time might be spent performing collision-checks between different

parts of the same robot. In these situations, the effects of Serial expansion could be

diminished.

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 59

Figure 3.12: Velocity Tuning Counter Examples: Three examples of paths that can
not use velocity tuning to become collision-free.

3.8 Defining the Endgame Region

For single-query PRM planning using a single directional search, a tree of milestones

is grown until it connects with the goal state. Whether or not the tree connects

to the goal state is determined by how one defines the endgame region E: a region

of the free space in which all configurations have a simple connection with the goal

configuration. This region is not calculated explicitly. Instead, admissibility tests are

conducted to determine if any configuration belongs to the endgame region.

The method in which an endgame region is defined for a specific planning problem

can significantly alter the success of the planner. A key to successful planning is to

enlarge the endgame region as much as possible [34]. This increases the possibility that

a roadmap will intersect with the endgame region and provide a feasible solution, i.e.

the larger the endgame region, the higher the probability a milestone in the roadmap

will belong to the endgame region and hence the higher the probability of finding a

solution.

A second desired characteristic of the endgame region is that the admissibility

test be easily calculated. This test will occur for every new milestone added to the

roadmap and will greatly affect the speed of the planner.

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 60

3.8.1 Proposed Endgame Region

Previous approaches to defining the endgame region fail to meet the above mentioned

requirements when applied to multi-robot planning problems. In [7], the endgame

region is defined to be a ball of small radius centered at the goal. This works well for

configuration spaces of low dimensionality. However, as the dimensionality increases,

the likelihood of sampling a milestone within the ball of fixed radius decreases rapidly.

For some robots, it is possible to analytically compute one or several canonical

control functions that exactly connect two given points while obeying the kinodynamic

constraints (e.g. [49]). If such control functions are available, one can test if a

milestone belongs to E by checking if the canonical control function generates a

collision-free trajectory connecting m to the goal state. A similar example method is

found in [34], where cubic splines take the place of the control function. The cubic

splines were generated based on k randomly selected end-times. If any of the k splines

were collision-free and satisfied all kinodynamic constraints, the milestone was said

to belong to the endgame region.

This section presents a new endgame region for multiple mobile robot planning

that exploits some geometric properties of a multi-rover system. In doing so, it pro-

vides a region that is not only larger than that described in [14], but easily calculated.

The endgame region presented is based on the concept of velocity-tuning - prescribing

a time parameterization to path to produce collision-free trajectories [30]. This is

accomplished by discretizing the path into trajectory points defined by both space

and time. Allowable velocities (e.g. v ∈ [0, vmax]) must be considered in carrying out

this parameterization.

The new endgame region presented here aims to include those milestones from

which the simple paths that connect them to goal states can be velocity-tuned to

produce a collision-free trajectory set. Specifically, to check if a candidate milestone

m belongs to the endgame region, a test is done to see if the simple paths connecting

robot states in m to their respective goal states can be velocity-tuned. It is essential

that this test rule out non-admissible cases (see Figure 3.12), but still be fast so as

not to slow down the roadmap expansion.

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 61

(a) (b)

Figure 3.13: Defining variables for Leadability

The test is based on the property of Leadability, defined below, that indicates when

paths can be velocity-tuned. Simply stated, robot paths are Leadable if one robot can

take the lead and pass through the intersection(s) of the paths before the other robot.

Provided below are two easy-to-calculate conditions that sufficiently (not necessarily)

demonstrate Leadability for the implementation described in this dissertation. These

conditions are used to develop the endgame region test.

Nomenclature

xi: candidate path for robot i

Vi: volume of the workspace swept by the path xi

U(Vi, Vj): the union of Vi and Vj

ti,U−: time robot i enters U(Vi, Vj)

ti,U+: time robot i leaves U(Vi, Vj)

Definition Consider a pair of paths {xA, xB} for robots A and B. The paths intersect

at U(VA, VB), the union of volumes VA and VB swept out by the respective robot

paths. The path pair {xA, xB} is said to be (A,B)Leadable if there exists a time

parameterization for the paths in which robot A can pass through U(VA, VB) before

robot B enters it, thus forming a collision-free trajectory set.

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 62

Given initial states of the robots are far enough away from U(VA, VB), and given

that enough variability exists in their velocities, then it is fairly easy to show whether

or not a path pair is (A,B)Leadable. The core requirement is that finite values for

times tA,U+ and tB,U− exist such that tB,U− > tA,U+. That is, the time at which robot

B enters U(VA, VB) is after the time at which robot A leaves U(VA, VB).

For this implementation it is assumed that robots have allowable velocity v ∈
[0, vmax]. Furthermore, it is also assumed that robots have infinite acceleration and

that robots can change velocity instantaneously (e.g. stop on the spot). Under these

assumptions, it is straightforward to show that sufficient (not necessary) conditions

for a path pair {xA, xB} to be (A,B)Leadable are:

1. Robot A’s path end location xA,end does not intersect VB.

2. Robot B’s path start location xB,start does not intersect VA.

While this property helps determine whether two paths can be velocity-tuned, it

alone will not provide information on whether a set of R > 2 paths can be velocity

tuned to be collision-free. For this reason, the definition of Leadability is generalized

to any number of robots:

Definition A path set {xA, xB, xC , ...xR} for R robots is said to be (A,B,C, ...R)

Leadable if there exists a time parameterization for the paths in which each robot in

the list xA, xB, xC , ...xR can pass through their path union U(VA, VB, VC , ... VR) before

the next robot in the list enters the union, thus forming a collision-free trajectory set.

To check whether a milestone belongs to the new velocity-tuneable endgame re-

gion, a test is made as to whether the simple paths connecting robot states in the

milestone to the goal states make up a path set that is Leadable. While no formal

proof is presented, it should be clear that a path set is Leadable if each path pair in

the set is Leadable. For example, the conditions (Q,R)Leadable, (Q,S)Leadable and

(R, S)Leadable would imply that the path set {Q,R, S} is (Q,R, S)Leadable.

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 63

To accomplish the endgame region test on a milestone, several steps are carried

out on the set of paths that connect the robot states to thier goal states. First, each

path within the set must be tested for collisions with obstacles in the environment.

If a collision exists, the milestone is rejected.

Second, each pair of paths {xi, xj} within the set is checked whether or not it

is (i, j)Leadable or (j, i)Leadable. If it is neither, the milestone is rejected. Moving

obstacles are also considered in this step as robots that can only be Leadable in one

direction (i.e. the obstacle must lead the robots).

Finally, if all the pairs are Leadable in at least one direction, then the test continues

to see if the set is Leadable. For each path pair that is only Leadable in one direction,

a consistency check is made to ensure that no circularity would prevent the set from

being Leadable (e.g if the only lead conditions are (Q,R)Leadable, (R,S)Leadable

and (S, T)Leadable, then {Q,R, S} is not a Leadable set). If a circularity exists

the milestone is rejected, otherwise the milestone is determined as belonging to the

endgame region.

The endgame region is summarized below. Note that only once the set is deter-

mined as being Leadable (i.e. a solution to the planning problem is found) does the

planner actually assign a velocity profile to the paths.

Definition Let the Endgame Region be defined as the set of all milestones such that

the arc paths connecting robots to their respective goals form a Leadable set. The

following criteria must be satisfied to determine if a milestone belongs to the endgame

region:

1. Each arc path connecting a robot to its respective goal is collision-free with

obstacles.

2. Each pair of arc paths connecting robot states to their respective goals are

Leadable.

3. The ordering of robots produced from leadability constraints is not circular.

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 64

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Robots

A
ve

ra
ge

 T
im

e
pe

r
G

oa
l C

he
ck

 (
m

s)
Velocity Tuning
Single Arc

(a)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Robots

A
ve

ra
ge

 T
im

e
pe

r
G

oa
l C

he
ck

 (
m

s)

Velocity Tuning
Single Arc

(b)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

Number of Robots

A
ve

ra
ge

 T
im

e
pe

r
G

oa
l C

he
ck

 (
m

s)

Velocity Tuning
Single Arc

(c)

1 1.5 2 2.5 3 3.5 4 4.5 5
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Robots

A
ve

ra
ge

 S
uc

ce
ss

 R
at

e
of

 G
oa

l C
he

ck
s Velocity Tuning

Single Arc

(d)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Robots

A
ve

ra
ge

 S
uc

ce
ss

 R
at

e
of

 G
oa

l C
he

ck
s Velocity Tuning

Single Arc

(e)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Robots

A
ve

ra
ge

 S
uc

ce
ss

 R
at

e
of

 G
oa

l C
he

ck
s Velocity Tuning

Single Arc

(f)

Figure 3.14: Endgame Region Comparison: In Figures (a), (b) and (c), the time taken
for goal checking when using both velocity-tuned and non velocity tuned arc paths is
presented. In a), no obstacles were present. Stationary obstacles were present in b),
and moving obstacles were present in c). In figures (d), (e), and (f), the percentage
of candidate milestones found in the endgame region when using both velocity-tuned
and non velocity tuned arc paths is presented. In (d), no obstacles were present.
Stationary obstacles were present in (e), and moving obstacles were present in (f).

3.8.2 Results

Two scenarios were used to evaluate the use of velocity-tuned endgame regions. In the

first scenario, simulations with up to 5 robots were run in which robots and obstacles

were added to random locations of the workspace. In each case the planner was run

for 0.5 seconds, and the number of expanded milestones that belong to the respective

endgame regions was recorded.

Figure 3.14 illustrates the average relative size of the endgame regions for these

experiments. In (a), (b) and (c), the average time it takes to check if the path from

a milestone to a goal state is velocity-tuneable is greater than the average time it

takes to check if that path is collision-free at some nominal velocity. However, the

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 65

(a) (b)

Figure 3.15: Velocity-Tuned Endgame Region: Sample scenarios used to illustrate
increased size of the endgame region attained when using velocity-tuning. The sce-
narios are illustrated as top-down views of environments involving 4 robots (white
circles) and 4 obstacles (gray circles). Goal locations are depicted as gold cross-hairs.
Given the easier scenario in (a), the planner using a velocity-tuned endgame region
produced only 1.3 times more milestones. However in scenario (b), the planner using
a velocity-tuned endgame region produced 22 times more milestones.

average number of milestones with paths to goal states that are velocity tuneable is

greater than those that have collision-free paths with nominal velocity (see (d), (e)

and (f)). Hence, the velocity-tuned endgame region appears larger, but takes longer

to calculate for the average case.

The above experiments show that using a velocity-tuned endgame region yields

only a small relative increase in performance for the average scenario. To highlight the

true advantage, results from two planning scenarios are compared in which one goal

state is more confined than the other. The two scenarios are depicted in Figure 3.15, in

which the environment in (a) has been created by randomly selecting robots, obstacles

and goal locations. In (b), a more constrained goal state was created. In 0.5 seconds

of roadmap expansion, the average planner for case (a) produced 111 milestones

belonging to the non-velocity-tuned endgame region, and 144 milestones belonging

to the velocity-tuned endgame region. However, in case (b), the average planner

produced 1.5 milestones belonging to the non-velocity-tuned endgame region, and 33

milestones belonging to the velocity-tuned endgame region. This example illustrates

the advantage of using a velocity-tuned endgame region when tight-coordination is

required to attain the goal state.

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 66

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Milestones

F
ra

ct
io

n
of

 P
la

n
F

ai
lu

re
s

(a)

0 1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Milestones

F
ra

ct
io

n
of

 P
la

n
F

ai
lu

re
s

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Milestones

F
ra

ct
io

n
of

 P
la

n
F

ai
lu

re
s

(c)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Milestones

F
ra

ct
io

n
of

 P
la

n
F

ai
lu

re
s

(d)

0 500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Milestones

F
ra

ct
io

n
of

 P
la

n
F

ai
lu

re
s

(e)

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Milestones

F
ra

ct
io

n
of

 P
la

n
F

ai
lu

re
s

(f)

Figure 3.16: Exponential Decay of Planner Failure

3.9 Probabilistic Completeness

Given certain assumptions, Hsu’s algorithm is proven to probabilistically complete

[27]. That is, it has an exponentially fast convergence for general motion planning

problems, including multi-robot planning problems. The analysis is based on two

simplifying assumptions: that the configuration space is expansive, and that the cov-

erage converges to a uniform distribution over the configuration space. Because these

assumptions are difficult to verify, experiments have been conducted to demonstrate

the exponential convergence rate of the planner presented in this dissertation.

Simulations were run for 6 different scenarios of varying complexity, involving up

to 5 robots and 10 obstacles within in a 2D workspace. For each simulation, the

planner was allowed to expand until x milestones were added to the roadmap, with

100 searches run for each value of x.

A summary of simulation results are plotted in Figure 3.16 as the ratio of failure

for increasing values of x. As expected for probabilistic complete planners, there is

an exponential decay in the failure rate.

CHAPTER 3. MULTI-ROBOT MOTION PLANNING 67

3.10 Summary

A motion planning algorithm that can be queried by robots within Dynamic Robot

Networks must be fast enough to plan trajectories on-the-fly. Presented here is a prob-

abilistic roadmap planner with new sampling strategies that increase the algorithm’s

running time.

First, an appropriate milestone selection strategy was identified. The hyper-grid

strategy proved to demonstrate a quick uniform roadmap expansion over the free

space. Second, a new method of generating milestones for the roadmap was presented.

This method, called serial expansion, proved faster than the traditional parallel ex-

pansion method for cases with more than 2 robots. Third, a new endgame region

was defined that increases the likelihood of finding a solution for every new milestone

sampled.

With these sampling strategies, a PRM algorithm which has been demonstrated

empirically to be probabilistically complete has been developed that allows for on-the-

fly, centralized planning within a Dynamic Robot Network.

Chapter 4

Experiment Implementation

4.1 Introduction

The purpose of this research is to allow multiple mobile robots to navigate in dynamic

unknown environments. In Chapters 1 through 3, a solution has been proposed based

on using centralized motion planning within Dynamic Robot Networks. To validate

this solution, the Dynamic Robot Networks coordination platform and motion planner

have been implemented on the Micro-Autonomous RoverS (MARS) test platform at

Stanford University.

The MARS test platform consists of 6 mobile robots, several obstacles for robots to

avoid, an overhead sensing system, a graphical user interface, and several workstations

to handle off-board processing (i.e. motion planning and control signal processing).

This chapter first describes the hardware including the robots, their communi-

cation system and their sensing systems. Second, a software architecture based on

robot software agents is described, highlighting the inter-agent communication. Fi-

nally, this chapter provides specifics on implementing the motion planning algorithm

with two particular robots: 1) the MARS rovers and 2) simulated 3D free-floating

robots.

With the fully integrated system, experimental results can be obtained that demon-

strate the effectiveness of the proposed solution (see Chapter 5 for results).

68

CHAPTER 4. EXPERIMENT IMPLEMENTATION 69

Figure 4.1: A rover on the MARS test platform standing beside a quarter.

4.2 Hardware Platform

The Micro-Autonomous RoverS (MARS) test platform at Stanford University was

used to model the rovers in a two-dimensional work-space. The platform consists

of a large 3m x 2m flat, granite table with six autonomous robots that move about

the table’s surface. Each robot has it’s own Motion Planner located off-board. Con-

trol signal processing is also done off-board, and the control signals are sent to the

individual robots via a wireless RC signal.

Rovers

Rovers were custom built within the Aerospace Robotics Lab (ARL). They are cylin-

drical in shape with diameter 0.10 m and height 0.10 m. They are built upon a

circular metal base, raised 2 cm off the ground by two independently driven wheels

and two balance posts. The wheel configuration allows them to rotate on the spot,

but inhibits lateral movement so as to induce the nonholonomic constraint.

Upon the base sits a 6V rechargeable battery pack, and RC receiver. Control

signals are sent via radio signals to the receiver, which relays them to servo motors

that produce maximum speeds of 0.10 m/s . The control signals are sent from an

off-board controller.

A circular metal tray sits on top of the robot. Embedded into this tray is a distinct

pattern of three LEDs, so that the robot can be tracked by overhead cameras.

CHAPTER 4. EXPERIMENT IMPLEMENTATION 70

Sensing

An overhead vision system is used to provide a surrogate sensing system. Three

Pulnix B/W cameras with Infra-Red filters are used to detect LED’s mounted on the

top surface of robots and obstacles. Each robot/obstacle has a distinct pattern of

LEDs to distinguish it from other robots/obstacles.

The output of each of the three cameras is fed into a Matrox Meteor II frame

grabber board that sits within a windows workstation. Camera signals are processed

to track LEDs and estimate robot/obstacle states. The vision system updates object

positions and velocities at a rate of 15Hz. This state information is sent over the

network to any application that requires it.

Interface

The test platform features a Graphical User Interface (GUI) designed in Java/Swing.

It provides a top-down view of the table including graphical representations of robots

and obstacles, (see Figure 4.2). Setting robot goal locations is accomplished with a

drag and drop system. New goal locations are sent to the appropriate robot motion

planner so trajectories can be constructed.

Controller

Each robot has a low-level control module that sits upon a designated workstation.

The module receives trajectories from the motion planner, computes control signals

to follow the trajectory, and sends the control signals to the robots. Control signals

are computed with a closed-loop Proportional Derivative (PD) control scheme which

tracks the desired heading and position of sampled points of the trajectory.

Control signals are sent to robots at a rate of 15 Hz using a wireless radio transmit-

ter. The digital control signals must be converted to analog through a D/A interface

board located in the workstation.

CHAPTER 4. EXPERIMENT IMPLEMENTATION 71

Figure 4.2: MARS: Micro Autonomous Rovers test platform.

Communication

All communication within the MARS platform is accomplished over a wired ethernet

Local Area Network (LAN). Figure 4.2 illustrates the data flow in the platform. To

facilitate inter application communication, a middle-ware software package is used

called Network Data Delivery Service (NDDS). NDDS is a publish/subscribe middle-

ware that sits between applications and the TCP/IP stack.

Simulator

The platform can be modified to allow for multi-robot simulations. The Vision Sys-

tem, the Controller, and the robot, (i.e. The two lower blocks in Figure 4.2, can be

replaced by a software simulation program. Therefore the same Graphical User Inter-

face(GUI) and Motion Planner are used for both physical experiment and simulation.

CHAPTER 4. EXPERIMENT IMPLEMENTATION 72

Figure 4.3: Software Architecture

4.3 Software Architecture

Within the MARS test platform, all computer processing for the robots is done off-

board by way of robot software agents. Each software agent runs on a workstation

and represents the computer processor of a single robot on the table. Inter-robot

communication is simulated by inter-agent communication that is accomplished over

wired ethernet connections.

Data Flow

As mentioned above, NDDS works on a publish/subscribe architecture. Hence every

node on the network can send and receive different data types. Figure depicts the

data flow between agents in the software architecture.

The GUI subscribes to the vision data being published so that it may display

CHAPTER 4. EXPERIMENT IMPLEMENTATION 73

the current locations of objects on the table. It publishes any command signals and

desired goal locations requested by the user.

The Motion Planners subscribe to the vision data and to the command signals

being published. Upon receiving a new command signal, it initiates a planning process

across the motion planners of robots who belong to the same robot network. To

coordinate this planning process, communication between motion planners is required

in which planning information and trajectories are published/subscribed to by the

motion planners. Final trajectories are also published to be received by controllers.

To limit the amount of data sent across the network, Motion Planners only publish

the milestones of the trajectory.

The Controllers subscribe to the vision data and the trajectory data published

by their corresponding Motion Planner. They don’t publish any information on the

NDDS, but send control signals to their corresponding robots via an wireless radio

signal.

Time Synchronization

Robots are building trajectories based on the trajectory information of other robots.

In order to ensure one trajectory is collision-free of another, all processors must have

their clocks synchronized. This is accomplished by sending out an initial start signal

from the GUI. When the start signal is received by any processor connected to the

NDDS network, the processor’s clock will be set to time zero. The time delay induced

by the time it takes for the signal to travel across the network is compensated for by

over constraining the collision checking.

CHAPTER 4. EXPERIMENT IMPLEMENTATION 74

4.4 Motion Planner Implementation

4.4.1 Rover Implementation

When implementing a motion planner for the MARS rover, the most significant con-

straint to be satisfied is the nonholonomic constraint. In this section, this constraint

is described through a mathematical model. This model is used when generating new

milestones in the PRM roadmap, and for the endgame region admissibility tests.

Rover Model

The PRM motion planner constructs feasible trajectories based on a robot model

that takes into account any significant dynamic or kinematic constraints. The MARS

rovers have an extremely fast acceleration, and hence a controller can track any desired

wheel velocity step response (within the range [vmin, vmax]) with a very short settling

time. Thus the main physical constraint is not the dynamics of the rover, but the

nonholonomic kinematics described by Equation 4.1. In this equation, θ represents the

robot’s heading, while ẋ1 and ẋ2 represent velocities within a 2 dimensional Cartesion

coordinate system, (see Figure 4.4).

tan θ =
ẋ1

ẋ2

(4.1)

This constraint can be reformulated as a function of the left and right wheel

velocities vright and vleft:

ẋ1 =
vright + vleft

2
cos θ (4.2)

ẋ2 =
vright + vleft

2
sin θ

θ̇ = vright − vleft

CHAPTER 4. EXPERIMENT IMPLEMENTATION 75

Figure 4.4: Rover description.

Milestone Generation

One of the main advantages of using the PRM planner presented in Chapter 3 is that it

takes nonholonomic constraints into consideration while planning. This consideration

occurs at the milestone generation stage of planning, (refer to Algorithm 1 in Chapter

3).

A milestone m is described by a set of R robot states:

m = m(t,X1, X2, X3, ..., XR) (4.3)

where each state is described by two cartesian coordinates and orientation.

Xi = Xi(x1, x2, θ) i = 1..R (4.4)

The generation of a new milestone is initiated by selecting an existing milestone

(i.e. the parent milestone) from the roadmap. This milestone is propagated to a new

milestone (i.e. the child) by applying randomly selected piecewise control inputs U

to the parent milestone for a random amount of time δt ∈ [tmin, tmax]. Each robot

state within the parent milestone is propagated by:

Xi,child = f(Xi,parent, Ui, δt) i = 1..R (4.5)

For any rover i, control inputs are left and right wheel velocities:

CHAPTER 4. EXPERIMENT IMPLEMENTATION 76

Ui = [ui,j ui,j] j = right, left (4.6)

ui,j ∈ [vmin, vmax]

By applying these control inputs, the nonholonomic constraint dictates that the

propagation function f in Equation 4.5 produce circular arc paths with constant

radius of curvature r. The radius r (as seen in Figure 4.4) can be calculated with

geometry as follows:

ri =
ui,right + ui,left

−ui,right + ui,left

(4.7)

The new state of the ith robot in a candidate milestone can then be described by:

x1,child = x1,parent + r(+ sin θchild − sin θparent) (4.8)

x2,child = x2,parent + r(− cos θchild + cos θparent)

θchild = θparent +
u1 + u2

2R
δt

tchild = tparent + δt

CHAPTER 4. EXPERIMENT IMPLEMENTATION 77

Endgame Region

Once a candidate milestone is added to the roadmap, a admissibility test is done

to see whether or not it lies within the endgame region. To accomplish this, an

endgame milestone is constructed whose robot states are defined by the individual

goal positions x1,goal and x2,goal of the robots.

Xi,goal = g(Xi,child, x1,goali, x2,goali) i = 1..R (4.9)

To calculate Xi,goal, (i.e. to implement g), a circular arc path is constructed that

connects the child state Xi,child to the goal state [x1,goal x2,goal]. Geometry provides

the radius of curvature:

rgoal =
∆x2

1 + ∆x2
2

2∆x2 cos θ − 2∆x1 sin θ
(4.10)

∆x1 = x1,goal − x1,child

∆x2 = x2,goal − x2,child

With the radius of the robot c known, the remaining terms in the goal state of

the robot can be calculated:

θgoal = 2 arcsin

√
∆x2

1 + ∆x2
2

2rgoal

(4.11)

tchild = tparent + δt

If the arc connecting Xi,child to Xi,goal is collision-free for i = 1..R, then the new

child milestone belongs to the endgame region and a solution is found.

CHAPTER 4. EXPERIMENT IMPLEMENTATION 78

Figure 4.5: State-space model of the free-floating robot.

4.4.2 Space Robot Implementation

This section details the planner implementation for free-floating space robots oper-

ating in a 3D environment. First, the robot is modelled and dynamic equations are

provided. Using these dynamics, the method for milestone generation is provided,

followed by a description of the endgame region.

Free-Floating Robot Model

The free-floating robot is modelled as a simple cube-shaped robot equipped with

6 independent on/off thrusters. Future work could include additional actuators to

allow roll, pitch and yaw variation. The state of the R robots can be described

by X representing the position with respect to the inertial frame. Milestones are

specified by both the state of the R robots and the time robots reach those states

(X0, X1, ..., XR, t).

Xi = Xi(x1, x2, x3) ∈ <3 i = 1..R (4.12)

The dynamics of the free-floating robot are those of a 1/s2 plant.

Mẍj = Fthruster j+ − Fthruster j− j = 1, 2, 3 (4.13)

CHAPTER 4. EXPERIMENT IMPLEMENTATION 79

Table 4.1: Mapping the random variable uact to thruster actuation.

uact +1 -1 0
Thruster 1 ON OFF OFF
Thruster 2 OFF ON OFF

Milestone Generation

To generate a new milestone for the road map, thruster control inputs are randomly

selected that will propagate robots to new states. First, the time for which the

thrusters will be actuated, (tact), is randomly selected where:

tact ∈ [tmin, tmax]

Next, the control inputs (ON/OFF) are randomly selected for each thruster. To

prevent the possibility that two opposite-facing thrusters will both be enabled at the

same time, only one random variable will be used for both of them. That is, for each

pair of opposite-facing thrusters, a control input variable uact is selected where:

uact ∈ [−1, 0, +1]

With the random variables selected, a candidate milestone mnew can be generated.

Given any parent milestone m, and using 1/s2 dynamics, robot states in mnew can be

easily calculated:

xi,new =
uact,i

2M
t2act + ẋitact + xi (4.14)

ẋi,new =
uact,i

M
tact + ẋi (4.15)

Endgame Region

The endgame region E is defined as the subspace of the configuration space that

includes all milestones me in which robots are propagated without collisions from

states defined by me to their respective goal location via a bang-off-bang control

CHAPTER 4. EXPERIMENT IMPLEMENTATION 80

Figure 4.6: Example of actuation required to move one robot from (0, 0, 0) to a goal
state. The series of milestones required is {mp,m0,m1,m3,m4,m5,mg}.

sequence. An advantage this sequence has over a bang-bang sequence is that it allows

us to limit the velocity of the robot, making it easier to replan in the future.

To implement this in practice, one must create a list of milestones to get from me

to mg, the milestone defining the goal states of each robot. Each milestone in this list

corresponds with the change in actuation necessary for obtaining the bang-off-bang

control sequence. An example control sequence is provided in Figure 4.6.

Chapter 5

Results

5.1 Introduction

This chapter presents results that demonstrate the success of the Dynamic Robot Net-

work platform in enabling multiple robots to navigate autonomously towards their

individual goals. Results were obtained by implementing the Dynamic Robot Net-

works coordination platform and a PRM planner (see Chapters 2 and 3 respectively)

into the Micro-Autonomous Rovers test platform (see Chapter 4).

First, simulations of a particular motion planning problem are presented. Results

demonstrate the motion planner’s fast running time, and the coordination platform’s

ability to conduct coordination that is tolerant to network breaks and merges. Also

provided are visualizations of rovers navigating through a walled-in, multi-level en-

vironment. Within these scenarios, robots conduct clock-driven, rather than event-

driven, robot coordination. This type of coordination exemplifies the platform’s abil-

ity to handle frequent replans as well as providing an optimization strategy.

Second, simulations of free-floating space robots are presented that motivate the

use of Dynamic Robot Networks use for such applications. These simulations demon-

strate how the motion planner can be extended for operation within 3D environments.

Finally, real robot experiments are documented that demonstrate: 1) on-the-fly

network merges/breaks, 2) on-the-fly centralized robot coordination within robot net-

works, 3) avoidance of moving and previously unknown obstacles, and 4) autonomous

81

CHAPTER 5. RESULTS 82

Table 5.1: Rover simulation test scenario data.

.
Average Number of Robots per plan 2.12
Average Planning Time (ms) 17.3
Average Number of plans per robot simulation 5.07
Average number of networks formed per simulation 49.4

robot navigation towards individual goal locations.

5.2 Robot Simulation

5.2.1 Rover Test Scenarios

Because hardware experiments could only be run with a limited number of robots and

obstacles, simulations were run to characterize the performance of the system. To ac-

complish this, a particular test scenario was chosen that highlights the characteristics

of the coordination platform and motion planner.

In this scenario, 12 rovers of diameter 5cm are operating in a 2m x 3m flat

workspace amidst 6 stationary and 6 moving circular obstacles of diameter 7cm.

To add complexity to the scenario, 4 of the moving obstacles were directed towards

a network of 2 robots with little room to maneuver, (see middle of Figure 5.1). Also,

2 networks of 2 robots were placed between a row of 3 obstacles and a workspace

boundary. The scenario was run 25 times with different initial random seeds. Despite

the apparent difficulty of the scenario, the planner demonstrated fast planning times

(an average of 17.3 ms), while planning for up to 5 robots in a network. This fast

planning time enables the on-the-fly planning capabilities required for operation in

dynamic, unknown environments.

To provide an idea of the level of complexity, robots formed on average 49 different

networks throughout simulations that lasted several minutes. This illustrates the

ability for centralized coordination despite the merging and breaking of networks to

merge and break over time.

CHAPTER 5. RESULTS 83

(a) (b)

Figure 5.1: Simulation Test Scenarios

In Figure 5.2, a visualization of robots navigating in a walled-in, multi-level envi-

ronment is provided. Within these scenarios, robot coordination within networks is

not only triggered through event detection, but by a single robot that requests new co-

ordination plans with a set frequency. Not only does this demonstrate the platform’s

ability to coordinate robot actions at a frequent rate, but that replanning can be used

to attain better trajectories (according to some pre-determined cost-function).

The example involves 4 rovers. The goal locations for the rovers are located

in the middle of the environment’s central platform. As shown in Figure 5.2, initial

robot trajectories lead robots over drop-offs in unexplored regions of the environment.

However, as the rovers traverse these areas, they learn more about the environment.

With new information, robots construct new plans that allow for safe movement.

This process continues until robots eventually reach their goals.

In attempt to optimize trajectories, one robot within each network (e.g. that with

the lowest priority number), calls for a new plan every 2.0 seconds. Robots compare

the newly constructed plan with the currently implemented plan. They implement

the better of these plans, where the better plan is determined by some predetermined

cost function. This assumes the previous constructed plan is still feasible. If not,

then no comparison is carried out and the new plan is implemented.

CHAPTER 5. RESULTS 84

(a) (b) (c)

(d) (e) (f)

Figure 5.2: A multi-level rover scenario: In (a), four rovers are tasked with the
problem of navigating towards the goal locations marked on the mid-level platform,
(middle-right in figure). Initial trajectories depicted in (b) are shown to collide and
lead robots over drop-offs. As rovers come together, they merge networks and learn
more about the environment. New trajectories are then constructed with this infor-
mation. As rovers move along their paths, they continue to replan in search of shorter
paths to their respective goal, (see (d)). In (e), all four rovers merge into one network
to generate the final trajectories that lead robots to their goals (d).

CHAPTER 5. RESULTS 85

Table 5.2: Space Robot simulation test scenario data.

.
Average Number of Robots per plan 1.84
Average Planning Time (ms) 67.0
Average Number of plans per robot simulation 4.77
Average number of networks formed per simulation 12.2

5.3 Space Robot Simulation Scenarios

To illustrate the applicability of the planner to a 3D environment, simulations with

up to 8 free-floating space robots and 8 obstacles were carried out. A test scenario is

provided in which robots must cross paths several times. A GUI screen-shot of the

scenario is provided in Figure 5.1, (Note that the third dimension is not displayed

here.) The test scenario was simulated 25 times to produce the results in Table 2.

From these results it is clear that the planner was capable of planning on the fly

with average planning times of 67 ms. An average of 12.2 networks were formed

throughout each simulation, demonstrating the complexity of the problem.

In comparison with the rover simulation data, the planning times were slower

despite planning for fewer robots. This can mostly be attributed to the endgame

region definition outlined in the previous chapter. The bang-off-bang control sequence

produced efficient trajectories, but the overhead in calculating them was substantial.

In the future, it is recommended that robots use a spline function to connect candidate

milestones to the goal state as done in [26].

In Figure 5.3, a visualization of a simulation involving 4 robots and 4 obstacles is

provided. Large gray cubes denote the obstacles. Trajectories are denoted by yellow

lines that end at robot goal locations, (denoted by red cube lattices). Note that

in this simulation, all robots are continually in communication range of each other

(no communication lines are drawn) and hence only one network is formed at the

beginning.

CHAPTER 5. RESULTS 86

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.3: Visualizing a 3D space robot simulation.

CHAPTER 5. RESULTS 87

5.4 Robot Experiment

In the simulations above, it was shown how the platform could produce coordina-

tion plans quickly to avoid robot collisions and allow robots to achieve goal states.

However, to truly validate the Dynamic Robot Network platform’s ability to handle

on-the-fly robot coordination in unknown, dynamic environments, hardware experi-

ments are required. Such experiments demonstrate the following necessities for real

world implementation:

• Valid System Modelling- The system dynamics and kinematics used to con-

struct trajectories must be accurate enough such that trajectories will be track-

able.

• Valid Assumptions- Any assumptions, such as the conciseness of the world

model, must remain true for the system to work.

• Practical Implementation- The motion planning system must be easy to

implement.

To exemplify the system’s ability to function on real hardware, an experiment is

documented below in which five rovers and four obstacles were placed on the MARS

test-platform. The experiment is depicted in Figure 5.4, where a series of screen-

shots of the GUI are on the left with the corresponding hardware photos on the right.

As shown in the screen-shots, four of the robots are lined up on the left rail of the

test-platform and their goals are located in a line on the right side. The top two

of these four robots are close enough to form a local communication network. The

goal locations for these two robots are located on the other side of the platform, but

swapped such that the lines connecting these two robots to their goal locations will

intersect. Likewise, the bottom two of these four robots are also close enough to form

their own network and have a similar ”swapped” goal configuration. The fifth robot,

located in the upper right, has a goal location in the upper left so that its direct route

will cross paths with the top left robots. Initially, there are three static obstacles in a

line down the middle of the test-platform, and another obstacle located in the bottom

right that will be set moving across the table once the experiment begins.

CHAPTER 5. RESULTS 88

(a)

(b)

(c)

(d)

CHAPTER 5. RESULTS 89

(e)

(f)

(g)

(h)

Figure 5.4: Dynamic Robot Network Experiment

CHAPTER 5. RESULTS 90

Once the experiment begins, the two robots in the bottom portion of the screen-

shots form a network and construct a pair of trajectories. These trajectories illustrate

the use of a velocity-tuned endgame region where the uppermost robot of the pair

simply waits for the other robot to pass by along it’s trajectory, (see Figures 5.4a

though 5.4c). In Figure 5.4c, the bottom robot is finally close enough to detect

the moving obstacle heading directly towards it. At this point, it communicates

this information with the other robot in its network (i.e. they both update their

world models) and construct a new set of trajectories that avoid the obstacle (see

Figure 5.4d). With their paths clear, the bottom robots follow their new trajectories

successfully to their goal destinations (see Figures 5.4e though 5.4h).

In the top portion of the screen-shots, the two robots on the left form a network

and construct their initial trajectories with no knowledge of the surrounding obsta-

cles(see Figure 5.4a). At this point the trajectory for the top robot passes directly

through the central obstacle. Once the lower robot in the pair moves close enough to

sense this obstacle, it communicates its world model with the upper robot and they

construct a new set of trajectories (see Figure 5.4b).

The robots continue to follow these trajectories until the the right-most robot of

the pair comes within communication range with the fifth robot that started in the

upper-right corner. Once these robots can communicate, they merge networks to a

new larger network that includes all three robots. After the merge, robots construct

new trajectories, (see Figure 5.4c). The new plan requires the robots to break this

recently formed network. That is, as the robots follow the trajectories, they move out

of communication range of one another (see Figure 5.4d). When the network reforms

(Figure 5.4e), no replanning is required since the robots remember their trajectories

are already collision-free. In Figures 5.4f through 5.4h, the three robots continue to

their goal destinations.

To summarize, not only does this experiment illustrate that the planner can func-

tion on real robots (thus meeting the above mentioned criteria), but it highlights the

following characteristics of the robot coordination platform:

CHAPTER 5. RESULTS 91

1. On-the-Fly Network Merges/Breaks - For example, the three robots in

the top portion of the screen-shots merged into a network, broke this network,

and then re-merged as robots moved in and out of communication range.

2. On-the-Fly Centralized Coordination - Planning times were all less than 50

ms which enabled robots to plan new trajectories as they moved. One example

of this occurred between Figures 5.4a and 5.4b, when the top two robots on the

left had to replan to avoid the middle stationary obstacle that was initially out

of sensing range.

3. Avoidance of Moving and previously unknown Obstacles - The two

bottom robots within planned together within their network to avoid an obstacle

heading directly for them, (see bottom of Figure 5.4d).

4. Autonomous Robot Navigation - Through Dynamic Robot Network coor-

dination, all robots were able to successfully attain their goal state, (see Figure

5.4h).

Chapter 6

Conclusions and Future Research

6.1 Conclusions

Multi-robot systems have received much attention because of their potential to ac-

complish a variety of complex tasks through cooperation. Example tasks include

large-scale construction, hazardous waste cleanup, and planetary exploration. How-

ever, to deploy a team of autonomous robots, they must be able to navigate safely.

This dissertation presents a new coordination platform that allows multiple mo-

bile robots to navigate in environments that are both unknown and dynamic. The

development of this platform required a new method of robot coordination, new

multi-robot motion planning techniques, and validation through experiment.

Robot Coordination

For multiple robots to navigate safely, several issues must be addressed. Two of the

key issues are: discontinuous communication and limited sensing. These limitations

make it difficult for robots to exchange information and coordinate their actions.

To resolve these issues, a new coordination platform for multiple mobile robots is

introduced - Dynamic Robot Networks. That is, when robots are within communi-

cation range of one another, they establish a communication network in which local

sensing information is shared, and robot motion is coordinated through centralized

planning. An application level communication protocol is used to manage information

92

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH 93

sharing and the coordination process across the network.

Results indicate the platform functions well even when frequent network merges

or breaks occur. Successful robot coordination was carried out successfully under

such conditions, allowing robots to achieve their goal states.

While these results highlighted successful motion planning across ad hoc robot

networks, the platform does facilitate other types of coordination. In the future,

instances of coordination that involve cooperative behavior will be implemented. Ex-

amples include robots working together to construct large structures or search large

areas. In both of these examples, coordinating actions across ad hoc robot networks

is beneficial when robots have limited communication capabilities.

One of the most valuable aspects of this research is that the platform can be used

for coordination between different types of autonomous devices. The platform makes

use of a growing technology, ad hoc communication networks, that is finding its place

in autonomous devices everywhere, (e.g. passive sensors, unmanned aerial vehicles).

As heterogeneous devices become required to work together, such a coordination

platform will prove invaluable.

Consider autonomous rescue vehicles merging on the scene of an accident, all try-

ing to accomplish their portion of the rescue task in an efficient manner. Coordinating

the actions of all devices will be crucial to a successful rescue. Ideally the type of

coordination implemented among Dynamic Robot Networks will translate to such

applications.

Motion Planning

Required for safe navigation is motion planning, the construction of collision-free

trajectories that lead robots to their individual goal locations. To operate in dy-

namic, unknown environments, the motion planning must be fast enough for on-line

implementation.

To meet this requirement, a randomized algorithm with high processing speed is

used. Originally presented in [26], the algorithm is a probabilistic roadmap (PRM)

planner. This research has augmented the planner with sampling strategies specifi-

cally developed for multi-robot planning problems.

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH 94

Results indicate decreased planning times over previous sampling strategies. When

implemented within the Dynamic Robot Network platform, average planning times

were on the order of 20 ms. This enabled on-the-fly planning for avoidance of moving

obstacles.

With the improved planning times achieved by the sampling strategies presented

in this dissertation, there is still an upper bound on the number of robots that can

be planned for at once.

Experiment

To validate the performance of the Dynamic Robot Network platform, it was im-

plemented on the Micro Autonomous Rovers (MARS) test platform. The platform

consists of small rovers, several obstacles for rovers to avoid, an overhead sensing sys-

tem, a graphical user interface (GUI), and several workstations to handle off-board

processing.

Experiments involving up to 5 robots demonstrated on-the-fly network merges/breaks,

centralized robot coordination within robot networks, avoidance of moving and previ-

ously unknown obstacles, and autonomous robot navigation towards individual goal

locations. Moreover, experiments indicated that system modelling was relatively ac-

curate, assumptions on the system were valid, and the platform is practical in that it

can be implemented easily.

In using the MARS platform, several simplifying assumptions are made on the

communication and sensing capabilities of robots. Most notably, a global sensing

system was used to estimate all object states. This information was then distributed

to robots according to whether objects were close enough to the robots.

While these assumptions do not affect how coordination would occur across net-

works, they would affect how state estimation and modelling are accomplished. Fu-

ture work should include an investigation into how different object state estimation

algorithms can be incorporated across Dynamic Robot Networks.

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH 95

6.2 Contributions

Several research contributions were made in developing the Dynamic Robot Network

coordination platform. The three categories of contributions include System Con-

trol - high-level robot coordination, Technical Contributions - strategies to improve

motion planning algorithm speed, and System Validation - various simulations and

experiments that demonstrate the system performance.

6.2.1 System Control

1. Developed the Dynamic Robot Networks platform that allows for centralized

coordination across ad hoc networks.

2. Developed an application level communication protocol to manage information

sharing and multi-robot coordination across Dynamic Robot Networks.

6.2.2 Technical Contributions

1. Identified a method of sampling milestones for roadmap expansion when apply-

ing PRMs to multi-robot planning problems.

2. Introduced a method of generating milestones - serial expansion, which demon-

strates faster roadmap expansion over the traditional method - parallel expan-

sion when applying PRMs to multi-robot planning problems.

3. Developed a new endgame region definition, based on velocity-tuning, for ap-

plying PRMs to multi-rover planning problems. It was demonstrated through

simulation that using the new endgame region increased the likelihood of find-

ing a solution when sampling the PRM. Also, under assumptions specific to this

implementation, it was shown that conditions for belonging to the new endgame

region are easily-calculated.

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH 96

6.2.3 System Validation

1. Demonstrated, through simulation, on-the-fly motion planning through Dy-

namic Robot Networks. Average planning times on the order of 20 ms were

achieved in scenarios involving up to 12 robots. Within these scenarios, 20 net-

works were merged per minute, demonstrating the platform’s ability to handle

frequent network merges/breaks.

2. Demonstrated, on hardware, on-the-fly motion planning of a group of mobile

robots in an unknown, bounded workspace occupied by stationary and moving

obstacles. This demonstrated planning on-line, assumptions on system mod-

elling were valid, and practicality of system implementation.

6.3 Future Work

6.3.1 Task Planner Implementation

To increase the autonomy of Dynamic Robot Networks, a high-level task planner is

required. The platform allows for centralized coordination across ad hoc networks,

and is designed to handle more complex tasks than the motion planning examples pre-

sented earlier. The implementation of a task planner would allow robots to complete

such tasks.

As an example, consider an autonomous construction scenario in which robots

are required to survey a remote area, clear the area for construction, relocate parts

to the site, and construct a structure. This would involve the completion of a large

number of sub-tasks, (e.g. get part A and move it to location X,Y). It would be

the responsibility of the task planner to assign these sub-tasks as individual robot

goals. Ideally the sub-task ordering and robot assignments would minimize some cost

function.

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH 97

6.3.2 Large Object Manipulation

One ability that multi-robot systems have over single robot systems is they can ma-

nipulate larger objects through cooperation. This can prove beneficial in tasks like

the remote construction of large structures.

Dynamic robot networks promise to be an excellent platform providing the nec-

essary information for tight coordination between robots carrying an object. As

discussed in Chapter 1, the platform has an advantage in that robots carrying an

object can be represented as a single robot when coordinating with other robots in

the system. This single robot representation will encode the size and dynamics of the

object and robots together.

More importantly, the single robot representation should allow for high bandwidth

communication between the robots that make up the single robot. A high data rate

of control/estimatation signals is required to carry out most manipulation tasks, and

the ad hoc communication link established between these robots should meet this

requirement.

6.3.3 World Model Fusion

Describing the world model in a concise but useful form is necessary to allow for

information sharing between robots in the same network. In the experimental sys-

tem described in this dissertation, world models consist of a list of robots and their

descriptions, and a list of obstacles and their descriptions. However, the ability to

model the world for any general environment is not available.

Required for world model fusion is the combining of environment object state

estimates acquired through relative sensing. A key issue to address is the “Cor-

respondence Problem”, the difficulty in resolving whether measurements from two

sensors (e.g from two different robots) are of the same object. Because the sensing

capabilities on the MARS test platform were accurate, the issue was not a problem

for our implementation. However, field robots are not usually equipped with such

accurate sensing/estimation systems.

One possibility is to implement a Multi-Robot SLAM algorithm (Simultaneous

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH 98

Localization and Mapping) across the robot networks. Some successful work has been

done in fusing state estimates from different vehicles [63], however it has not been

implemented across ad hoc communication networks. Such a step would eliminate

the need for a GPS style system, which is not always available, (e.g in planetary

exploration).

6.3.4 Network Subdivisions

Within a robot network, every robot’s sensing information is relayed to every other

robot in the network. This is important when robots are relatively close to one

another and tight coordination is required. However, if robots on opposite ends of a

network are moving apart from one another, it is not clear if their actions need to

be coordinated. This prompts the idea of splitting up networks into subdivisions, in

which robots from different subdivisions are not explicitly coordinated.

Required would be a method of determining where divisions should be made. This

appears to be a difficult problem with no obvious solution. Initial candidate solutions

will most like include heuristics. However, further investigation is needed.

Appendix A

Randomized Motion Planning

Theory

A.1 Milestone Expansion

Theorem A.1.1 Given pij is the probability of no collision between any two robots

at states xi and xj, the average number of random expansions necessary to achieve

a collision-free set of state expansions for R robots using a parallel expansion method

is:

kavg,parallel =
1

∏R
i=1,j=i+1 pij(xi, xj)

(A.1)

Proof In parallel expansion, the probability of randomly selecting collision-free state

expansions for R robots is the product of the probabilities of each pair of robots

having collision-free expansions:

Pparallel = p12p13p23p14p24p34...p(R−1)R =
R∏

i=1,j=i+1

pij(xi, xj) (A.2)

The expected number of random expansions necessary to achieve a collision-free

99

APPENDIX A. RANDOMIZED MOTION PLANNING THEORY 100

set of state expansions is:

kavg,parallel =
1

Pparallel

=
1

∏R
i=1,j=i+1 pij(xi, xj)

(A.3)

Theorem A.1.2 Given qij is the probability of no collision between robot j’s expan-

sion from state xj to x′j and the previously constructed expansion of some robot i, the

average number of random expansions necessary to achieve a collision-free set of state

expansions for R robots using a parallel expansion method is:

kavg,serial =
R∑

j=2

1
∏j−1

i=1 qij(xi, xj, x′i)
(A.4)

Proof The probability that the state expansion of robot j will be collision-free with

previous state expansions of robots 1 through j − 1 is:

Pj = q1jq2jq3j...q(j−1)j =
j−1∏

i=1

qij(xi, xj, x
′
i) (A.5)

On average, the number of random expansions necessary to achieve a state expan-

sion of robot j that is collision-free with state expansions of robots 1 through j − 1

is:

kavg,j =
1

Pj

=
1

∏j−1
i=1 qij(xi, xj, x′i)

(A.6)

The total number of expansions necessary, on average, can be calculated by sum-

ming over j robots.

kavg,serial =
R∑

j=2

kavg,j =
R∑

j=2

1
∏j−1

i=1 qij(xi, xj, x′i)
(A.7)

APPENDIX A. RANDOMIZED MOTION PLANNING THEORY 101

Theorem A.1.3 Given pi is the probability that the ith pair of state expansions is

collision-free, the average number of collision checks necessary for a successful parallel

expansion of R robot states is:

Cavg,parallel =

(
1

∏Cmax
i=1 pi

− 1

) (∑Cmax
l=1 lQl∑Cmax
l=1 Ql

)
+ Cmax (A.8)

Where:

Cmax =
1

2
R(R− 1) (A.9)

Ql,parallel =

(
l−1∏

i=1

pi

)
(1− pl) (A.10)

Proof The average number of collision checks necessary to attain a successful expan-

sion can be broken down into the number of collision checks for failed expansions CF

and the number for the completed expansion CS.

Cavg,parallel = (kavg,parallel − 1)CF,parallel + CS (A.11)

For a successful series of collision checks, there must be Cmax = R(R − 1)/2

collision checks, one for each pair of robots.

CS = Cmax =
1

2
R(R− 1) (A.12)

The average number of collision checks for a failed series of collision-checks can

be calculated by considering the probability of failure for each collision-check. The

probability that the kth collision-check between robot j and robot k is unsuccessful is

a product of the probability of success between robots 1...j and robots 1...k − 1 and

the probability of failure between robot j and robot k.

Qkj,parallel = (p12p13...p1R)(p23p24...p2R)...(pj(j+1)pj(j+2)...pj(k−1)(1− pjk)) (A.13)

APPENDIX A. RANDOMIZED MOTION PLANNING THEORY 102

=

(
R∏

i=2

p1i

) (
R∏

i=3

p2i

)
...

k−1∏

i=j+1

pji

 (1− pjk)

=

j−1∏

n=1

R∏

i=n+1

pni

 ·

k−1∏

i=j+1

pji

 (1− pjk)

To simplify this expression, note that the maximum number of collision checks

possible is Cmax = R(R − 1)/2, i.e. the number of possible collisions between R

robots in an expansion. Given the collision check between the two robots is the lth

collision check of i = 1...Cmax maximum collision checks.

Ql,parallel =

(
l−1∏

i=1

pi

)
(1− pl) (A.14)

Thus, for a failed expansion, the average number of collision-checks is:

CF,parallel =
Ql + 2Q2 + 3Q3 + ...CmaxQCmax

Ql + Q2 + Q3 + ...QCmax

(A.15)

=

∑Cmax
l=1 lQl∑Cmax
l=1 Ql

The total number of collision-checks, on average for a successful parallel expansion

is:

Cavg,parallel =

(
1

∏Cmax
i=1 pi

− 1

) (∑Cmax
l=1 lQl∑Cmax
l=1 Ql

)
+ Cmax (A.16)

APPENDIX A. RANDOMIZED MOTION PLANNING THEORY 103

Theorem A.1.4 Given qi is the probability that the ith pair of state expansions is

collision-free, the average number of collision checks necessary for a successful serial

expansion of R robot states is:

Cavg,serial =
R−1∑

m−1

((
1∏m

i=1 qi

− 1

) (∑m
l=1 lQl∑m
l=1 Ql

)
+ m

)
(A.17)

Where:

Ql,serial =

(
l−1∏

i=1

qi

)
(1− ql) (A.18)

Proof The average number of collision checks necessary to attain a successful serial

expansion can be obtained by noting that a serial expansion is simply a series of

smaller parallel expansions, where the probabilities pi must be replace by qi.

Cavg,serial =
R−1∑

m−1

Cavg,parallel(Cmax = m, pi = qi) (A.19)

=
R−1∑

m−1

((
1∏m

i=1 qi

− 1

) (∑m
l=1 lQl∑m
l=1 Ql

)
+ m

)

Bibliography

[1] D. L. Akin and M. L. Bowden. Eva, robotic, and cooperative assembly of large

space structures. Proceedings of the IEEE Aerospace Conference, March 2002.

[2] N.M. Amato and Y. Wu. A randomized roadmap metho for path and manimpu-

lation planning. Proceedings of the IEEE International Conference on Robotics

and Automation, pages 113—120, 1996.

[3] T. Arai and J. Ota. Motion planning of multiple mobile robots. Proceedings

of the IEEE/RSJ International Conference on Intelligent Robots and Systems,

pages 1761—1768, 1992.

[4] R. C. Arkin. Cooperation without communication: Multiagent schema-based

robot navigation. Journal of Robotic Systems, 9(3):351—364, 1992.

[5] K. Azarm and G. Schmidt. Conflict-free motion of multiple mobile robots based

on decentralized motion planning and negotiation. Proceedings of the IEEE

International Conference on Robotics and Automation, pages 3526–3533, 1997.

[6] J. Barraquand, B. Langlois, and J. C. Latombe. Numerical potential field tech-

niques for robot path planning. IEEE Transactions. On Systems, Man, and

Cybernetics, 22(2):224—241, 1992.

[7] J. Barraquand and J. C. Latombe. Nonholonomic multibody mobile robots:

Controllability and motion planning in the presence of obstacles. Algorithmica,

10(2), 1993.

104

BIBLIOGRAPHY 105

[8] J. S. Bellingham, M. Tillerson, M. Alighanbari, and J. P. How. Cooperative path

planning for multiple uavs in dynamic and uncertain environments. Proceedings

of the IEEE Conference on Decision and Control, Dec 2002.

[9] M. Bennewitz, W. Burgard, and S. Thrun. Optimizing schedules for prioritized

path planning of multi-robot systems. Proceedings of the IEEE International

Conference on Robotics and Automation, 2001.

[10] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva. A performance

comparison of multi-hop wireless ad hoc network routing protocols. Proceedings

of the 4th ACM/IEEE Interanational Conference on Mobile Computing and Net-

working, 1998.

[11] S.J. Buckley. Fast motion planning for multiple moving robots. Proceedings of the

IEEE International Conference on Robotics and Automation, pages 1419—1424,

1989.

[12] Y. U. Cao, A.S. Fukunaga, A. B. Kahnb, and F. Meng. Cooperative mobile

robotics: Antecedants and directions. Autonomous Robots, 4:1—23, 1997.

[13] S. Carpin and E. Pagello. On parallel rrts for multi-robot systems. Proceedings

of the 8th Conference of the Italian Association for Artificial Intelligence, pages

834—841, Sept 2002.

[14] C. Clark and S. Rock. Randomized motion planning for groups of nonholonomic

robots. Proceedings of the International Symposium. of Artificial Intelligence,

Robotics and Automation in Space, 2001.

[15] C. Clark, S. Rock, and J. C. Latombe. Dynamic networks for motion planning

in multi-robot space systems. Proceedings of the International Symposium of

Artificial Intelligence, Robotics and Automation in Space, 2003.

[16] C. M. Clark and T. Barfoot. Motion planning for formations of mobile robots.

Journal of Robotics and Autonomous Systems, 2004.

BIBLIOGRAPHY 106

[17] J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage control for mobile

sensing networks. IEEE Transactions on Robotics and Automation, 2002.

[18] R. DAndrea and G. E. Dullerud. Distributed control design for spatially inter-

connected systems. IEEE Transactions on Automatic Control, 48(9), Sep 2003.

[19] J. P. Desai, J. Ostrowski, and V. Kumar. Controlling formations of multiple

mobile robots. In Proceedings of the International Conference on Robotics and

Automation, pages 2864—2869, 1998.

[20] M. Erdmann and T. Lozano-Perez. On multiple moving objects. Proceedings of

the IEEE International Conference on Robotics and Automation, pages 1419—

1424, 1986.

[21] J. M. Fowler and R. D’Andrea. Distributed control of close formation flight.

Proceedings of the IEEE Conference on Decision and Control, Dec 2002.

[22] K. Frengene, R. Madhavan, and L. E. Parker. Incremental multiagent robotic

mapping of outdoor terrains. Proceedings of the IEEE International Conference

on Robotics and Automation, 2002.

[23] A. S. Pereira G., V. Kumar, and M. F. M. Campos. Decentralized algorithms

for multirobot manipulation via caging. Fifth International Workshop on Algo-

rithmic Foundations of Robotics (WAFR), pages 242—258, 2002.

[24] Y. Guo and L. E. Parker. A distributed and optimal motion planning approach

for multiple mobile robots. Proceedings of the IEEE International Conference on

Robotics and Automation, pages 2612—2619, 2002.

[25] D. Hsu, L. Kavraki, J. C. Latombe, R. Motwani, and S. Sorkin. On finding nar-

row passsages with probabilistic roadmap planners. Robotics: The Algorithmic

Perspective, A K Peters, pages 141—153, 1998.

[26] D. Hsu, R. Kindel, J. C. Latombe, and S. Rock. Randomized kinodynamic mo-

tion planning with moving obstacles. International Journal of Robotics Research,

21(3):233—255, March 2002.

BIBLIOGRAPHY 107

[27] D. Hsu, J. C. Latombe, and R. Motwani. Path planning in expansive configura-

tion spaces. Proceedings of the IEEE International Conference on Robotics and

Automation, pages 2719—2726, 1997.

[28] L. Hughes. Collected grounded reperesentations for robots. Proceedings of Fifth

International Conference on Distributed Autonomous Robotics Systems (DARS

2000), pages 79—88, 2000.

[29] D. Jung and A. Zelinsky. Grounded symbolic communication between heteroge-

neous cooperating robots. Autonomous Robots, 8(3):269—292, 2000.

[30] K. Kant and S. Zucker. Toward efficient trajectory planning: The path-velocity

decomposition. International Journal of Robotics Research, 5(3):72—89, 1986.

[31] S. Kato, S. Nishiyama, and J. Takeno. Coordinating mobile robots by applying

traffic rules. Proceedings of the IEEE/RSH International Conference on Intelli-

gent Robots and Systems, pages 1535–1541, 1992.

[32] L.E. Kavraki. Probabilistic roadmaps for path planning in high-dimensional

configuration spaces. Ph.D. Thesis, Computer Science Dept.,Stanford University,

1994.

[33] L.E. Kavraki, P. Svestka, J.C. Latombe, and M. Overmars. Probabilistic

roadmaps for path planning in high-dimensional configuration spaces. IEEE

Transactions on Robotics and Automation, 12(4):566—580, 1996.

[34] R. Kindel. Motion Planning for Free-Flying Robots in Dynamic and Uncertain

Environments. PhD thesis, Stanford University, 2001.

[35] J. J. Kuffner. Autonomous agents for real-time animation. PhD Thesis, Com-

puter Science Dept., Stanford U., 1999.

[36] J.P. Laumond. Robot Motion Planning and Control, previously published as

Lecture Notes in Control and Information Sciences 229. Springer, 1998.

BIBLIOGRAPHY 108

[37] S.M. LaValle and S.A. Hutchinson. Optimal motion planning for multiple robots

having independent goal. IEEE Transactions on Robotics and Automation,

14:912—925, 1998.

[38] S.M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. Interna-

tional Journal of Robotics Research, 20(5):278—300, 1998.

[39] V. J. Lumelsky and K.R. Harinarayan. Decentralized motion planning for mul-

tiple mobile robots: The cocktail party model. Autonomous Robots Journal,

4:121—135, 1997.

[40] S. Martel and I. Hunter. Nanofactories based on a fleet of scientific instruments

configured as miniature autonomous robots. Journal of Micromechatronics, 2003.

[41] M. J. Mataric. Using communication to reduce locality in distributed multi-

agent learning. Journal of Experimental and Theoretical Artificial Intelligence,

10(3):357—369, 1998.

[42] P. Moutarlier and R. Chatila. Stochastic multisensory data fusion for mobile

robot location and environment modelling. Proceedings International Symposium

on Robotics Research, Tokyo, 1989.

[43] P. Ogren, E. Fiorelli, and N. E. Leonard. Cooperative control of mobile sen-

sor networks: Adaptive gradient climbing in a distributed environment. IEEE

Transactions on Automatic Control, 2003.

[44] L. E. Parker. Alliance: An architecture for fault tolerant multi-robot coordi-

nation. IEEE Transactions on Robotics and Automation, 14(2):220—240, Apr

1998.

[45] D. Parsons and J. Canny. A motion planner for multiple mobile robots. Proceed-

ings of the IEEE International Conference on Robotics and Automation, pages

8—13, 1992.

[46] J. Peng and S. Akella. Coordinating multiple robots with kinodynamic con-

straints along specified paths. In J. D. Boissonnat, J. Burdick, K. Goldberg, and

BIBLIOGRAPHY 109

S. Hutchinson, editors, Algorithmic Foundations of Robotics V (WAFR 2002),

pages 221—237. Springer–Verlag, 2003.

[47] C. E. Perkins and P. Bhagwat. Highly dynamic destination-sequenced distance-

vector routing (dsdv) for mobile computers. Computer Communications Review,

pages 234—244, Oct 1994.

[48] C. E. Perkins and E. Royer. Ad-hoc on-demand distance vector routing. Pro-

ceedings of 2nd IEEE Workshop on Mobile Computing Systems and Applications,

pages 234—244, Feb 1999.

[49] J.A. Reeds and L.A. Shepp. Optimal paths for a car that goes forwards and

backwards. Pacific Journal of Mathematics, 145(2):367—393, 1990.

[50] A. Richards and J. P. How. Aircraft trajectory planning with collision avoidance

using mixed integer linear programming. Proceedings of the American Control

Conference, May 2002.

[51] E. Royer and C. K. Toh. A review of current routing protocols for ad-hoc mobile

wireless networks. IEEE Personal Communications Magazine, pages 46—55,

Apr 1999.

[52] P. E. Rybski, S. A. Stoeter, M. Gini, D. F. Hougen, and N. P. Papanikolopou-

los. Performance of a distributed robotic system using shared communications

channels. IEEE Transactions on Robotics and Automation, pages 713—727, Oct

2002.

[53] R. O. Saber, W. B. Dunbar, and R. M. Murray. Cooperative control of multi-

vehicle systems using cost graphs and optimization. Proceedings of the 2003

American Controls Conference, Jan 2003.

[54] G. Sanchez and J. C. Latombe. On delaying collision checking in prm planning

: Application to multi-robot coordination. International Journal of Robotics

Research, 21(1):5—26, Jan 2002.

BIBLIOGRAPHY 110

[55] G. Sanchez-Ante and J. C. Latombe. Using a prm planner to compare central-

ized and decoupled planning for multi-robot systems. Proceedings of the IEEE

International Conference on Robotics and Automation, 2002.

[56] P. S. Schenker, T. L. Huntsberger, P. Pirjanian, and E. T. Baumgartner. Plane-

tary rover developments supporting mars exploration, sample return and future

human-robotic colonization. Proceedings of the 10th Conference on Advanced

Robotics, pages 31—47, 2001.

[57] D. H. Shim, H. J. Kim, and S. Sastry. Decentralized reflective model predictive

control of multiple flying robots in dynamic environment. Proceedings of the

IEEE Conference on Decision and Control, Dec 2003.

[58] T. Simeon, S. Leroy, and J. P. Laumond. Path coordination for multiple mobile

robots: a geometric algorithm. Proceedings of the International Joint Conference

on Artificial Intelligence, 1999.

[59] R. Simmons, T. Smith, M. B. Dias, D. Goldberg, D. Hershberger, A. Stentz, and

R. Zlot. A layered architecture for coordination of mobile robots. Multi-Robot

Systems: From Swarms to Intelligent Automata, 2002.

[60] M. W. Subbarao. Wireless communications technology group, nist. White paper

- Wireless Communications Technology Group, NIST, Oct 1999.

[61] J. Svennebring and S. Koenig. Trail-laying robots for robust terrain coverage. In

Proceedings of the International Conference on Robotics and Automation, 2003.

[62] P. Svestka and M.H. Overmars. Coordinated motion planning for multiple car-

like robots using probabilistic roadmaps. Proceedings of the IEEE International

Conference on Robotics and Automation, pages 1631–1636, 1995.

[63] S. Thrun. Multi-robot slam with sparse extended information filters. Proceedings

of the 11th International Symposium of Robotics Research, Oct 2003.

BIBLIOGRAPHY 111

[64] C.W. Warren. Multiple path coordination using artificial potential fields. Pro-

ceedings of the IEEE International Conference on Robotics and Automation,

pages 500–505, 1990.

[65] A. Winfield. Distributed sensing and data collection via broken ad hoc wireless

connected networks of mobile robots. Proceedings of 5th International Sympo-

sium on Distributed Autonomous Robotic Systems, pages 273—282, 2000.

