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Abstract

This paper presents a Probabilistic Road Map (PRM) motion planning algorithm to
be queried within Dynamic Robot Networks - a multi-robot coordination platform
for robots operating with limited sensing and inter-robot communication.

First, the Dynamic Robot Networks (DRN) coordination platform is introduced
that facilitates centralized robot coordination across ad hoc networks, allowing safe
navigation in dynamic, unknown environments. As robots move about their envi-
ronment, they dynamically form communication networks. Within these networks,
robots can share local sensing information and coordinate the actions of all robots
in the network.

Second, a fast single-query Probabilistic Road Map (PRM) to be called within
the DRN platform is presented that has been augmented with new sampling strate-
gies. Traditional PRM strategies have shown success in searching large configuration
spaces. Considered here is their application to on-line, centralized, multiple mobile
robot planning problems. New sampling strategies that exploit the kinematics of
nonholonomic mobile robots have been developed and implemented. First, an appro-
priate method of selecting milestones in a PRM is identified to enable fast coverage
of the configuration space. Second, a new method of generating PRM milestones is
described that decreases the planning time over traditional methods. Finally, a new
endgame region for multi-robot PRMs is presented that increases the likelihood of
finding solutions given difficult goal configurations.

Combining the DRN platform with these new sampling strategies, on-line cen-
tralized multi-robot planning is enabled. This allows robots to navigate safely in
environments that are both dynamic and unknown. Simulations and real robot ex-
periments are presented that demonstrate: 1) speed improvements accomplished
by the sampling strategies 2) centralized robot coordination across dynamic robot
networks, 3) on-the-fly motion planning to avoid moving and previously unknown
obstacles, and 4) autonomous robot navigation towards individual goal locations.

Key words: Multi-Robot Systems, Robot Coordination, Motion Planning,
Probabilistic Road Maps, Robot Networks, Ad Hoc Communication Networks
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1 Introduction

Motion planning is the construction of collision-free trajectories that connect
robots to their individual goal destinations. Motion planning performance can
be characterized by several algorithm properties: speed, completeness, and
optimality. For robots operating in dynamic, unknown environments, planning
must occur on-the-fly and the primary requirement is algorithm speed.

For multi-robot motion planning, coupled planning is beneficial because the
motion of each robot can be planned while considering the motion of all robots.
However, coupled planning can be slow, making on-the-fly planning difficult
to achieve. Decoupled planning is fast, but is not complete. This paper first
presents a robot coordination platform called Dynamic Robot Networks to en-
able centralized motion coordination despite limitations in sensing and com-
munication. While the motion coordination is centralized, the platform allows
for both decoupled and coupled PRM motion planning to occur in parallel,
distributed across the robot network. Thus taking advantages of both ap-
proaches.

In the past, Probabilistic Road Map (PRM) planners have shown the ability
to plan quickly for systems with many of degrees of freedom. Here, PRMs are
applied to coupled multiple mobile robot motion planning problems. Several
PRM sampling strategies are evaluated with a particular single-query PRM
planner, (originally introduced by Hsu [16]). The planner in [16] can construct
feasible, collision-free trajectories for robots operating in dynamic environ-
ment, but does not address planning for more than 2 robots. This research
adds new techniques that improve upon existing sampling strategies when ap-
plied to coupled multi-robot planning. Listed below are the key steps in the
single-query PRM algorithm, in which these techniques are implemented:

• Selecting milestones from the roadmap for expansion - Special tech-
niques of selecting milestones for expansion to ensure fast configuration
space coverage and sampling uniformity.

• Generating new milestones for the roadmap - The average number
of collision-checks necessary to successfully generate a new milestone is ex-
ponential with the number of robots. This paper presents a new milestone
generation technique that, decreases this exponential complexity.

• Checking for endgame region inclusion - An endgame region of greater
size will improve the chance of finding a solution. Also, determining if a
roadmap milestone belongs to the endgame region must be easily calculated
to reduce computation time. A new endgame region is presented that is sub-
stantially larger than traditional definitions, allowing for increased chance
of finding a solution when goal configurations are highly constrained.
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Implementing these techniques leads to decreased planning time and allows
for on-the-fly robot planning. What follows is an overview of related motion
planning research, an overview of the DRN platform, a description of the PRM
algorithm, a description of the new sampling strategies, and results.

2 Related Work

The many approaches to multi-robot motion planning are usually compared
based their the algorithm’s speed, completeness and optimality. For complex
problems, it is difficult to meet all of these requirements. Probabilistic Road
Map (PRM) planners have recently gained popularity because of their speed.
However, effective sampling strategies are crucial to achieving successful PRM
planning. Presented below is an overview of multi-robot group architectures,
multi-robot motion planning, PRMs, and PRM sampling strategies.

2.1 Group Architecture

The method of coordinating robots will depend heavily on the group archi-
tecture of the multi-robot system. Most architectures are classified as being
centralized or decentralized.

Within a centralized architecture, a single agent has information about the
entire system and controls all agents in the system. Because this agent has
complete information, centralized coordination algorithms can be used. Figure
1 (a) provides an illustration in which one agent, Robot 0, plans actions for all
robots. One example is the NANOWALKERS multi-robot system developed
for nano-scale manipulation and inspection [28]. Unfortunately, centralized
architectures are usually not scalable because a single agent is responsible for
communicating with and processing the control over every other robot. They
suffer from single-point failures in that the whole system will fail if the central
agent fails. They are also not practical for many applications where no single
agent has complete knowledge of the environment and the other agents, as is
the case when limitations in communication are present.

Within decentralized architectures, control responsibility is distributed and
each agent uses local sensing and communication for control [10][14][29][30][40].
Figure 1 (b) provides an illustration in which each agent plans its own actions
based on information about neighboring robots, (i.e. they use a type of decen-
tralized coordination). These approaches have been shown to be scalable and
fault-tolerant. One example is Behavior-Based Systems [29], in which robots
are equipped with a set of primitive behaviors (e.g. corridor-finding). If individ-
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(a) (b) (c)

Fig. 1. Centralization Versus Decentralization

ual robots employ the appropriate behavior(s), desirable group behaviors can
result. Related to this approach are Robot Ant Colony systems [40]. Robots
within these systems have been shown to cooperate and accomplish complex
tasks, despite the fact that individual robots are simple (i.e. they have limited
sensing, communication and computation capabilities). The main issue is that
robots don’t generally have complete system information or communication
with all robots in the system.

While the group architecture defines the inter-robot relationships of a system,
it is largely a function of the communication structure. Furthermore, within
the group architecture, robot coordination can be facilitated by implementing
a coordination platform - a communication infrastructure that determines how
robots coordinate their actions through data exchange

In this research, a coordination platform is proposed that uses a commu-
nication infrastructure based on Mobile Ad-Hoc Networks (MANETs) [35].
Equipped with MANET communication capabilities, robots can act as routers
in a network to pass information between robots which might not otherwise
be able to communicate, e.g. robots 2 and 4 in Figure 1 (b). This provides
individual robots with more information about the environment and the other
robots. This information could be used to improve the performance of any
of the core capabilities required by autonomous robots including planning,
sensing and control.

Coordination across an ad hoc network can benefit robots operating in dy-
namic, unknown environments where sensing and communication are limited.
Consider the example in Figure 1 (c). Communication limitations prohibit
any communication link between the two groups of robots. While centralized
coordination can not occur between all 5 robots, it can occur within each of
the two distinct groups of robots. Also, because a decentralized architecture
is used, the system is scalable and fault-tolerant to single-point failures.

To implement this type of coordination, several issues must be resolved to
ensure the coordination is 1) fault-tolerant to network communication drops
caused by network breaks, 2) tolerant to communication delays caused by
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information having to hop through the network, and 3) equipped with a plan-
ning algorithm that is fast enough to be run on-line. This research aims to
provide a coordination platform, i.e. DRN, that addresses these issues.

2.2 Multi-Robot Motion Planning

Multi-robot motion planners are usually classified according to whether the
planning is decoupled or coupled [2] [37]. Decoupled planners construct plans for
each robot separately before coordinating the individual plans [2] [3] [21] [22]
[27] [31] [39]. The coordination step can be accomplished by tuning the robot
velocities along their respective paths (e.g. [21]). Consider two robots whose
paths cross. If both these robots follow their paths with some nominal velocity,
their is possibility of collision. However, by tuning velocities so one robot slows
down and the other robot speeds up to pass through the intersection first, a
collision-free pair of trajectories can result. This coordination can be done
globally, in which complete information is available to the planner, or locally
(i.e. when robots come close to one another) [30].

A variant of decoupled planning, called prioritizing planning, plans for one
robot at a time, in some sequence, considering the robots whose trajectories
have already been planned as moving obstacles [7] [10] [13]. In [7], trajectories
were constructed for each robot in a specific order such that each trajectory is
collision-free of previously constructed trajectories. A search routine was used
to find the order that provides shorter paths and in some cases was essential
to finding a solution.

Decoupled planning algorithms can be advantageous because they don’t re-
quire robots to have complete system information and are generally fast enough
for planning on-the-fly. However, they are inherently not complete and often
can not find solutions when robots must be tightly coordinated [37].

Reactive style planning is one type of decoupled planning that has proven
suitable for many applications because it is fast, enabling real-time planning.
A common reactive approach is Potential fields [23]. This approach has been
applied to both single robots and extended to multi-robot applications [42]
including robot soccer [19]. A major drawback of potential fields, is their
susceptibility to deadlock.

Another drawback of decoupled planners is that they usually fail to find glob-
ally optimal solutions because they do not use global knowledge. Hence, many
algorithms exist that search for near-optimal solutions. One example [14], uses
the method of altering velocities with D* to produce a distributed planner that
tries to optimize trajectories. Also in [3], negotiations between localized groups
of robots are used to assign priority orders to robots, that when applied to
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the planning algorithm, results in reduced trajectory lengths. The negotiation
scheme in [3] demonstrates the benefits of localized inter-robot communica-
tion, and is the research most closely related to the robot network system
presented later in this paper.

Coupled planning considers all robots together as if they were forming a single
multi-body robot [4] [9] [24] [32] [36] [41] [42]. Coupled planning is beneficial
because the motion of each robot can be planned while considering the motion
of all robots. Unfortunately, coupled planning is often slow and requires that at
least one robot be provided with complete system information. This becomes a
problem when robots are operating in dynamic unknown environments where
there is a requirement for fast, online planning.

Recently there has been research into using mixed integer linear programming
to solve multi-robot path planning (e.g. [6], [34]). These methods result in
optimal trajectories, but still require longer planning times not practical for
some on-line implementations.

In [38], a non-linear model predictive control (NMPC) is used for the control of
autonomous helicopters. Simulation results exhibited trajectory generation for
helicopters operating in complex 3D environments, multiple vehicle collision
avoidance, and predator evasion. Computation times ranged from 41 to 173
seconds.

To handle the requirement for speed, a single-query probabilistic roadmap
(PRM) planner is proposed. In this case, the planner is queried within DRNs
as a centralized planner that concurrently employs both coupled and decoupled
approaches to plan trajectories for all robots in the network.

2.3 Multi-Robot Planning with PRMs

Probabilistic roadmaps (PRMs) have been used to solve path planning prob-
lems with many degrees of freedom successfully [18] [36] [37]. They have also
been shown to construct plans that satisfy various constraints (e.g. dynamic,
nonholonomic etc.) [20]. They are not complete in the traditional sense. How-
ever, under certain assumptions (e.g. the free space is expansive [16]), they are
probabilistically complete. That is, the probability of failure decreases quickly
(e.g. exponentially) to zero with time.

PRMs have been applied to multi-robot motion planning problems, many
of which use decoupled planners. One example is [10], where a single-query
PRM algorithm is used with prioritized planning. Each robot calculates a
priority number based on the occupancy of its neighborhood, (i.e. the more
robots/obstacles in its neighborhood, the higher the planning priority). As
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Algorithm 1. Single Query PRM Planner
1. Add initial milestone m0 to roadmap M
2. Until timeout
3. Randomly select a milestone m from M
4. mnew = PROPAGATE(m)
5. Add mnew to the roadmap M
6. If mnew is connected to goal state
7. Return plan connecting mo to the goal state
8. Return null

robots move into one another’s neighborhood, the robot with lower priority
plans to avoid the higher priority robot. The higher priority robot continues on
its original path. Results demonstrate on-the-fly planning for up to 15 robots
in a cluttered environment.

One example of a coupled approach is presented in [41], where a multi-query
PRM is used. First, a roadmap is constructed for one robot. Then, several
of these roadmaps are combined into a roadmap for the composite robot.
The approach worked well in planning for up to 5 car-like robots in static
environments, and has the advantage of being probabilistically complete.

In [37], coupled and decoupled planning are compared using PRMs. Both
approaches were applied to test scenarios involving 2-6 robot manipulators (12-
36 degrees of freedom). Given those scenearios, decoupled planning often failed
to find any solution. This research demonstrated the advantage of coupled
planning when the motion of multiple robots requires tight coordination. Aside
from [37], few have investigated how different sampling strategies can affect
planning for multiple robots.

2.4 Background on PRMs

PRMs are usually classified according to whether they are single-query or
multi-query. To construct a multi-query PRM, a time-intensive pre-processing
step is required to construct the roadmap. Once completed, this roadmap can
be queried many times to search for trajectories from any pair of start/goal
configurations. However, for many applications the roadmap construction step
is too slow for on-line implementation (e.g. to avoid moving obstacles).

For a single-query PRM planner, a new roadmap is constructed for each query.
In these planners, less time is spent constructing the roadmap because only a
restricted subset of the configuration space is sampled. This is usually accom-
plished by a single-directional search or a bidirectional search. For a single-
directional search, a tree of milestones in grown from the initial configuration
until a connection is found with the goal configuration. Two trees are grown
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for a bi-directional search, one from the initial configuration and one from the
goal configuration, until a connection between them is found.

In Hsu [15], a single-query PRM planner was developed to successfully plan
trajectories for a robot operating in dynamic environments. Results demon-
strated on-the-fly planning for real robots that are operating among moving
obstacles. Hsu’s algorithm is represented as Algorithm 1. In this representa-
tion, the motion of the robot is governed by the Equation 1. The state of the
robot is x such that x ∈ X, an n-dimensional manifold called the state space.
Control inputs to the robot are represented as u.

ẋ = f(x, u) (1)

A milestone of the roadmap is defined by m = (t, x) where x represents the
state of the robot r at time t. The initial milestone m0 defines the initial state
of the robot at time zero.

To start, the roadmap M is rooted at m0 by adding it as the first milestone
in M (step 1 in Algorithm 1). The algorithm iteratively tries to expand M by
first selecting an existing milestone m from M and then propagating it to a
new milestone mnew (step 4). Within the PROPAGATE function, a candidate
path from m is generated by integrating Equation 1 with randomly selected
values for u. The function iterates until a collision-free path is found, whereby
it returns a milestone mnew defined by the path endpoint. In step 5, mnew is
added to the roadmap M . If there exists a simple path from mnew to the goal
state, then planner returns a path connecting m0 to the goal state (step 6).

This algorithm can be extended to planning for multi-robot planning using a
coupled or decoupled planning approach, (e.g. [10]).

Within DRNs, a centralized planning approach is taken in which all robots
are planned for at once (e.g. [11]). Each robot has information about all other
robots in the network, and can then plan the trajectories of all robots using a
coupled or decoupled approach. The decoupled approach is a direct extension
of [15], in which the planner constructs trajectories for one robot at a time.
In the coupled approach, the milestones must define the configuration of all
robots being planned for, m = (t, x1, x2, ...xR) where xr represents the state of
robot r at time t. This approach will be slower than a decoupled approach (due
to the increased size of the configuration space) but maintains the property of
probabilistic completeness. Section 4 of this paper concerns the development
of new sampling strategies that decrease the algorithm’s running time when a
coupled approach is taken. Section 3 describes the DRN coordination platform.
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(e) (f) (g) (h)

Fig. 2. Robot Coordination Example

3 Dynamic Robot Networks

Dynamic Robot Networks is a coordination platform that functions within a
decentralized group architecture, but maximizes the centralization of coordina-
tion between robots.

Dynamic Robot Networks are mobile ad hoc communication networks in which
the robots become nodes in the network and can act as routers to relay infor-
mation through the network. Such networks are formed by robots establishing
communication links whenever possible. This can result in many different net-
works of robots located in different parts of the workspace. The networks are
dynamic in that they can break or merge with other networks over time.

Information is distributed within networks to the point where all robots in a
network share a common model of the world, (although each network in the
workspace will have a different model). Over time, this model will change as
new information about the environment is gained from on-board sensing. In
response to these changes in the model, robots may adapt their navigation
plans. In such cases the network of robots will respond as a whole, by re-
planning coordinated motion for all robots in that network.

3.1 Platform Description

Within the Dynamic Robot Networks coordination platform, every robot will
belong to one network, (which could include only that one robot). As robots
move about the environment, they will enter and leave each others communi-
cation range. This causes network merges and network breaks respectively.
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Fig. 3. Coordination Process

Within each network (not between networks), information can be passed be-
tween any two robots by way of ad hoc network routing algorithms. Assuming
world models can be encoded concisely, (a possible issue for some applica-
tions), robots can use information exchange to share a common world model.
This allows for a centralized coordination process to occur across the network
in which the actions are planned for all robots within that particular network.
A coordination process is a defined series of steps that robots must take to co-
ordinate their actions. Steps include Event Detection, Data Exchange, Model
Fusion, Planning and Plan Execution, (see Figure 3).

A coordination process can be initiated by any robot in a network, at any time.
A robot will initiate such a process in response to changes in the environment
(e.g. two robot networks merge). Once the process is initiated, all robots in
the network participate in each step of the process. The platform allows for
several processes to occur concurrently.

3.2 Network Merges/Breaks

When any two robots are within communication range of each other, they
establish a communication link. Define G to be the graph whose nodes are
the robots and edges are the communication links. A network of robots is
any group of k ≥ 1 robots forming a maximally connected component of G.
So, any two robots in a network can communicate through one or several
communication links, but two robots from different networks can not. Figure
2 (a) shows an environment with 5 robots, where 2 networks have formed. In
the network on the right, the top and bottom robots can exchange information
via their communication links with the middle robot.

Because robots and objects are moving, the networks are dynamic. The net-
works may merge (see Figure 2 (c) and/or break apart. Ad hoc network pro-
tocols [8] ensure that edges in G are established when possible, and that infor-
mation can be routed efficiently across these edges. With G established, robots
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(a) (b)

Fig. 4. Data Exchange Step: After two networks merge (a), the information within
the each of the previous networks is distributed so all robots in the newly formed
network have a common world model (b).

within the network can communicate and conduct a coordination process.

To facilitate information exchange between robots in a network, it is assumed
that each robot is assigned a unique identification number. Also, when two
networks merge, let the robot with the lower identification number of the two
robots that caused the merge be known as the Lead robot and the other robot
that caused the merge be known as the Secondary robot.

3.3 Coordination Process

The coordination process that takes place across a robot network is a series of
steps as shown in Figure 3. The process is initialized with an Event Detection
step. Such events may include changes to the: 1) Network Topology - e.g. a
new robot is in communication range and joins the network, 2) World Model
- e.g. the sensing of new obstacles in the environment, and 3) Goal State - e.g.
a new goal state is requested by one of the robots in the network.

Information regarding the detected event will be routed across the network
with the Data Exchange step. This information will include world state infor-
mation (i.e. object state estimates, estimate confidence levels, object sizes, and
object trajectories), with which each robot’s world model must be updated.
Using the network topology information gained from implementing a table
driven routing algorithm [35], the amount of information broadcasted can be
minimized. An example of the data exchange that occurs when two networks
merge is depicted in Figure 4. When robots receive world model information
obtained from other robots, they must fuse it with their own world model (i.e.
the Model Fusion step).

Along with the world state information will also be sent a “plan request”
message (if required). This informs robots to start constructing a new plan that
takes the new event into account. This starts the Planning step in which robots
construct a plan that schedules actions of all robots in the network. Here, a
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Probabilistic Road Map (PRM) motion planning algorithm augmented with
new sampling strategies [11] has been implemented. To carry out the planning
step, each robot in the network calls a PRM planner to construct trajectories.
Some robots can call a coupled PRM planner to maximize completeness, while
others can call a decoupled PRM planner to maximize planning speed. Because
the algorithm uses a random search, each robot will produce a different plan
(i.e. a different set of trajectories). This step is followed by robots broadcasting
their newly constructed plans to all other robots.

Each robot in the network will receive the plan constructed by all other robots
in the network. Robots will then implement the best plan of those received to
carry out the Plan Execution step. Further details of each step can be found
in [11].

An example of the coordination process involving 5 robots is illustrated in
Figure 2. Initially, two robot networks are present. Two robots, one within
each network, are following trajectories to their respective goal locations (b).
Note that these trajectories collide, but this is undetected because robots are
not close enough to communicate. As the robots follow their trajectories (c),
they eventually can communicate (Event Detection). They begin the Data
Exchange step of the process when the follower robot broadcasts its world
model (d). The lead robot then broadcasts a “plan request” message to all
robots in the network (e). Upon receiving this message, robots merge the
newly acquired information (Model Fusion step) and query their planners (i.e.
the Planning step) to construct a set of trajectories for all robots in the newly
formed network (f). As each robot completes its plan, it broadcasts it for other
robots to receive (g). Once a robot receives a plan from every robot in the
network, it picks the best plan based on some established criteria and uses it
for motion (h) to complete the Plan Execution step.

3.4 Multiple Coordination Processes

One of the main challenges of implementing centralized coordination across
an ad hoc network is that the robots are continuously moving and hence the
network topology is dynamic. Difficulties arise when robots enter and leave
one another’s communication range within a short period of time, (e.g. less
than a second). In these cases, continuous network communication might not
be possible throughout the entire coordination process which can last on the
order of 500ms. The planning system must be robust to such difficulties. What
follows is a description how such events are handled, so as to continue providing
responsive, distributed planning across the network.
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3.4.1 Network Breaks

In the case where a network breaks into two different networks of reduced size,
the coordination process must continue. Because messages are queued and
processing of them is synchronized, it can be assumed that the plan manager
will not realize such a break until after a robot begins its actual planning (i.e.
it has queried the planning algorithm).

At this point the robot’s planner will continue constructing trajectories, even
for those robots that no longer belong to the same network as the robot.
However, once the robot finishes planning, it waits to receive plans from only
those robots that are currently in its new reduced network. For example, if five
robots in a network are planning and one robot leaves, then the four remaining
robots will distribute their plans and implement the best of the four. The
fact that the plans consist of trajectories for five robots will not hinder the
coordination process. Note that this does require robots to update the network
with the information that another robot has left communication range and
robots should not wait to receive a plan from it. This can be accomplished
through means of a network level routing algorithm protocol, (i.e. the Data
Exchange step).

If the network breaks after plans are completed (i.e. during the plan execu-
tion phase of a coordination process), there will be no ill effects. Each robot
executes only its own plan and doesn’t consider the other robot plans at this
point.

3.4.2 Multiple Triggers

It is possible for a new plan trigger (i.e. new desired goal state, new network
merge, or new object state estimates), to occur during a coordination process.
In these cases, it is desirable to plan with this new information as soon as pos-
sible. However, robots cannot simply halt their current coordination process
to start a new process based on the most recent information. This can lead to
endless planning with no plan execution, (i.e. the system may repeatedly halt
plan searches as a robot continually receives new plan triggers.)

The solution presented is as follows. As new triggers occur during a coordina-
tion process (or any time after a coordination process has been initiated), they
are stored until the first completed plan from the original coordination process
is received. At this point the robots execute the first plan and initiate the next
coordination process which takes into account all stored trigger information.
This ensures that plans are given time to finish, but starts the next process
promptly.

This system allows for several new triggers to be stored until the next coor-
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Fig. 5. Multiple trigger time-line

dination process begins. Also, it allows for different triggers to be heard by
different robots at different times. Consider an example where two robots, lo-
cated at opposite ends of a network, each detect a different plan trigger. Each
robot will initiate a separate coordination process and send out its own “plan
request” message with information regarding the trigger event it detected.
Each robot will also begin the planning stage for the coordination process it
initiated. As each robot receives the other robot’s plan request, it will store it
until it gets the first solution to its own plan request. Once receiving this first
plan, it will begin executing the plan and immediately start planning again
to incorporate the trigger received from the other robot. In this manner, each
robot will execute a plan that responds to the trigger it detects, then con-
struct and execute a plan that responds to both triggers. See Figure 3.4.2 for
an example time-line.

For this protocol, the maximum time before a plan is executed for any given
trigger is always less than double the time to carry out one coordination
process. This may occur if a new trigger is detected immediately after the
start of a coordination process initiated by an earlier trigger. This ensures
a finite planning time for any new trigger. Note that due to communication
delays, numerous completed plans for a coordination process may have been
sent after the first plan, only to be received after a new coordination process
has begun. In these cases, robots will simply implement them if they are better
than the first, without interrupting the new coordination process.

4 PRM Sampling Strategies

In PRM planning, a large amount of time is spent collision-checking. One way
to reduce the amount of collision checking is use better sampling strategies.
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These strategies avoid milestone generation in uninteresting areas of the free
space. Connecting new milestones to the roadmap in such areas requires costly
collision-checks, without greatly expanding the roadmap.

Examples of different sampling strategies that have been applied to multiple-
query PRM planners include multi-stage strategies [19], obstacle-sensitive
strategies [1], and narrow-passage strategies [17]. Several sampling strategies
have also been applied to single-query PRM planners. Both single-directional
and bi-directional searches require diffusion strategies to avoid over-sampling
certain areas of the free space. More specifically, the roadmap must eventu-
ally diffuse through the reachable component of the free space, and result
in a uniform distribution of milestones across the components. This uniform
distribution is required to prove the planner’s fast convergence property [16].

There are two main approaches to diffusion. One approach is to first select
a milestone m from the roadmap with probability inverse to the density of
milestones in the neighborhood of m. Then, a new milestone mnew is obtained
with a random but uniform sampling of the neighborhood of m.

To speed up the selection of m, milestone density calculations are approxi-
mated through a discretization of the configuration space. A common tech-
nique is to use a Hyper-Grid of the configuration space [16]. In this technique,
the configuration space is divided into a grid of cells. A milestone is selected
by 1) randomly selecting a cell c from all those cells which are occupied, and
2) randomly selecting a milestone from within c.

This method has been extended for multi-robot planning by using hashtables
to dynamically allocate the memory for the cells that discretize the large con-
figuration space. Hashtables can also provide an efficient means of weighting
the gridcells further [12].

A technique similar to Hyper-Grid milestone selection has been applied to
planning the motion of multiple robot manipulators with many degrees of
freedom Ndof [36]. First, h degrees of freedom are randomly selected, where
h << Ndof . Then, local milestone densities are calculated based only on the
closeness of milestones within the h degrees of freedom. Using these densities
for weighting milestone selection, a milestone m is picked to generate mnew.
This technique, Multi-Grid selection, is also applied to multiple mobile robot
planning in [10].

The other main diffusion approach derives techniques from the closely related
Rapidly-exploring Random Trees (RRTs) [25], (a variant of PRM planning). In
these techniques, a configuration q is randomly selected from the configuration
space. Then, the milestone m which is closest to q is obtained. Finally, a new
milestone mnew is selected along the line connecting m to q. A drawback of
these techniques is that a search for the milestone with the shortest distance
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Fig. 6. Milestone Selection Selection Techniques - Coverage: The coverage of 3375
cells hyper cube are shown for various sampling techniques. In (a), the coverage
from a single planner is plotted. In (b), the composite coverage of three different
planners running in parallel is plotted. In (c), the uniformity of the configuration
space coverage is measured as the variance of the occupancy of cells.

must be done for each expansion. One way to minimize the effects of this
drawback is to only consider a small sample of randomly selected milestones
in the roadmap for each expansion. Also, instead of picking a point, one can
randomly select a gridcell crandom from a discretized grid of the configuration
space, then find the occupied gridcell c that is closest to crandom using the
Manhatten distance metric. From c, a milestone is selected randomly.

Based on Algorithm 1, this research invokes sampling strategies broken down
into the three components used to 1) Select new milestones for expansion,
2) Generate new milestones by expanding from an existing milestone, and
3) Defining the endgame region that determines if newly generated milestones
are connected to the goal configuration. The next three sections describe these
components, with improved techniques to speed up planning.

4.1 RoadMap Milestone Selection

In identifying an appropriate selection technique for multi-robot planning, the
different diffusion techniques mentioned above were compared via simulations.
The simulations involved three robots, each with one degree of freedom. The
resulting joint configuration space C is a cube. Portions of C are non-free to
simulate robot collisions. To establish a comparison metric, the joint configu-
ration space (i.e. the cube) is divided into 3375 smaller occupancy cubes. The
coverage of the configuration space is then measured by the number of these
smaller cubes occupied by at least one milestone. Simulations are conducted
by expanding the PRM from a randomly selected point in C, using the dif-
ferent sampling techniques above. To summarize, each technique is compared
based on how quickly the road map expands over C. The faster the expansion,
the faster a path to any goal in C can be found. Figure 1 plots the different
expansions, or amount of C covered by the roadmap, as a function of time.
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Illustrated in Figures 6 (a) and (b) are the average configuration space cover-
ages from expanding a roadmap using each of the above mentioned sampling
techniques. Aside from the unweighted case, each technique demonstrates an
initial region of fast expansion, followed by a region of slower expansion. How-
ever, the ratio of these two regions differs greatly between sampling tech-
niques. The multi-grid approach tapers off quickly to a very slow expansion.
The random cell technique (from RRT) provides a good rate of coverage, es-
pecially when considering the composite of three planners running in parallel.
The hyper-grid techniques, (including the dynamically allocated hyper-grid),
demonstrated superior performance. It was not until a majority of the configu-
ration space was covered before their rate of expansion decreased significantly.

A second metric for comparing these sampling techniques is the uniformity
of the expansion. To measure uniformity, the variance of occupancy cubes -
the square of the average difference between the occupancy of the cubes and
the average occupancy, was used. In Figure 6 (c), the variance of occupancy
cube milestone density is plotted as a function of time. It is clear that the
unweighted approach leads to a very non-uniform milestone expansion. The
variance increases with time indicating that some occupancy cubes are occu-
pied by many more milestones than others. Other techniques demonstrated
a slightly increasing variance, indicating a more uniform milestone expansion
(i.e. most areas of the configuration space have generally the same density of
milestones).

4.2 Milestone Generation

In [16], a two-step sampling diffusion technique was introduced where new
milestones are generated in vicinities of the roadmap that have a low density
of milestones. Discussed in the previous section was the first step: the random
selection of a milestone m from the roadmap. This section presents a new
method of accomplishing the second step: the generation of new milestone in
the neighborhood of m. This method, called serial expansion, increases the
likelihood of successfully generating milestones by decreasing the number of
required collision-checks.

Within the PROPAGATE function of Algorithm 1, several candidate paths
from m are generated by integrating Equation 1 with randomly selected values
for u. The function iterates until u induces a collision-free path, whereby it
returns a milestone mnew defined by the path endpoint. It is important to note
that the order in which the different control inputs of u are randomly selected
can affect the number of collision-checks necessary to successfully generate a
new milestone.
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Previous research has used a parallel approach to milestone generation in that
all control inputs are selected simultaneously, followed by collision checking
[20]. If the trajectories connecting states in the existing milestone to states
in the newly generated milestone are collision-free, then the new milestone is
added to the roadmap.

In this research, a serial approach is introduced. For each robot, the control
inputs are randomly selected and collision-checking is carried out between it
and all previously expanded robots. For example, consider generating a new
milestone by expanding a milestone defined by m(t, xA, xB, xC) for robots
A, B and C. First, the amount of time ∆t between milestones is randomly
selected. Second, a new state x′A is generated by applying random inputs
to state xA. Then x′B is generated and a check is made to ensure that the
trajectory from xB to x′B is collision-free with the trajectory from xA to x′A.
Random inputs are continually used to obtain a new x′B until collision-free
trajectories are obtained. Finally a new state x′C is generated and a check is
made to ensure that the trajectory between xC and x′C is collision-free with
the trajectories from xA to x′A and from xB to x′B. Again, candidate states
for x′C are randomly generated until collision-free trajectories are obtained.
What results is a collision-free milestone defined by m′(t′, x′A, x′B, x′C), where
t′ = t + ∆t.

A problem with the serial approach is that more search freedom is given to
robots whose motion is expanded first. To deal with this problem, two mea-
sures are taken. First, the order of robots is randomly selected at each mile-
stone expansion. Second, there is a timeout check. This is used to ensure that
the algorithm does not get stuck in a particularly difficult expansion. For ex-
ample, the first robot state expanded could result in a trajectory for which all
other robot state expansions will lead to collision.

The purpose of using serial expansions over parallel expansions is that in-
formation from previous failed state expansions is used for future expansion
attempts. That is, as each individual robot state is expanded, the previous
successful robot state expansions are reused. In contrast, parallel expansion
throws out this information at every expansion attempt. Equations that pre-
dict the performance of each expansion type can be found in [12].

To compare the two methods of expansion, 50 simulations were run in which
a roadmap was expanded continuously for 0.5 seconds. At each milestone
expansion, both the parallel and serial methods were implemented. Data was
recorded for each simulation, including the number of collision checks during
each expansion. With this information, the average number of collision checks
necessary for a successful expansion were predicted (see [12] for prediction
calculations) and compared with the recorded number for each expansion.
Results are plotted in Figure 7.
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Fig. 7. Parallel Vs. Serial Expansion.

As the number of robots increases, the number of collision-checks required with
parallel expansion grows more quickly than with serial expansion. Note that
there is a direct correlation between the number of collision checks necessary
for an expansion and the time taken to complete an expansion. Thus, on
average, serial expansions take less time than parallel expansions.

4.3 Defining the Endgame Region

For single-query PRM planning using a single directional search, a tree of
milestones is grown until it connects with the goal state. How the tree connects
to the goal state is determined by how one defines the endgame region E:
a region of the free space in which configurations have a simple connection
with the goal configuration. This region is not calculated explicitly. Instead,
admissibility tests are conducted to determine if a configuration belongs to E.

The method in which an endgame region is defined for a specific planning
problem can significantly alter the success of the planner. A key to successful
planning is to enlarge the endgame region as much as possible [20]. This in-
creases the possibility that a roadmap will intersect with the endgame region
and provide a feasible solution, i.e. the larger the endgame region, the higher
the probability a milestone in the roadmap will belong to the endgame region
and hence the higher the probability of finding a solution. A second desired
characteristic of the endgame region is that the admissibility test be easily
calculated. This test will occur for every new milestone added to the roadmap
and will greatly affect the speed of the planner.

Previous approaches to defining the endgame region fail to meet the above
mentioned requirements when applied to multi-robot planning problems. In
[5], the endgame region is defined to be a ball of small radius centered at the
goal. This works well for configuration spaces of low dimensionality. However,
as the dimensionality increases, the likelihood of sampling a milestone within
the ball of fixed radius decreases rapidly.
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(a) (b) (c)

Fig. 8. Velocity Tuning: In (a), three examples of paths that can not use velocity
tuning to become collision-free are provided. In (b), a sample pair of trajectories
are provided for which variables are defined in (c) for Leadability.

For some robots, it is possible to analytically compute one or several canonical
control functions that exactly connect two given points while obeying the
kinodynamic constraints (e.g. [33]). If such control functions are available,
one can test if a milestone belongs to E by checking if the canonical control
function generates a collision-free trajectory connecting m to the goal state. A
similar example method is found in [20], where cubic splines take the place of
the control function. The cubic splines were generated based on k randomly
selected end-times. If any of the k splines were collision-free and satisfied all
kinodynamic constraints, the milestone was said to belong to the endgame
region.

This section presents a new endgame region for multiple mobile robot planning
that exploits some geometric properties of a multi-rover system. In doing so, it
provides a region that is not only larger than that described in [10], but easily
calculated. The endgame region presented is based on the concept of velocity-
tuning - prescribing a time parameterization to path to produce collision-free
trajectories [21]. This is accomplished by discretizing the path into trajectory
points defined by both space and time.

The new endgame region presented here aims to include those milestones from
which the simple paths that connect them to goal states can be velocity-tuned
to produce a collision-free trajectory set. Specifically, to check if a candidate
milestone m belongs to the endgame region, a test is done to see if the simple
paths connecting robot states in m to their respective goal states can be
velocity-tuned. It is essential that this test rule out non-admissible cases (see
Figure 9 (a)), but still be fast so as not to slow down the roadmap expansion.

The test is based on the property of Leadability, defined below, that indicates
when paths can be velocity-tuned. Simply stated, robot paths are Leadable if
one robot can take the lead and pass through the intersection(s) of the paths
before the other robot. Provided below are two easy-to-calculate conditions
that sufficiently (not necessarily) demonstrate Leadability for wheeled mobile
robots. These conditions are used to develop the endgame region test.
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Given that xi is a candidate path for robot i, let Vi be the volume of the
workspace swept by the path xi. The intersection of two paths can be described
by U(Vi, Vj), the union of Vi and Vj. Also let ti,U− and ti,U+ be the times that
robot i respectively enters and leaves U(Vi, Vj).

Definition Consider a pair of paths {xA, xB} for robots A and B. The paths
intersect at U(VA, VB), the union of volumes VA and VB swept out by the
respective robot paths. The path pair {xA, xB} is said to be (A,B)Leadable
if there exists a time parameterization for the paths in which robot A can
pass through U(VA, VB) before robot B enters it, thus forming a collision-free
trajectory set.

Given initial states of the robots are far enough away from U(VA, VB), and
given that enough variability exists in their velocities, then it is fairly easy
to show whether or not a path pair is (A,B)Leadable. The core requirement
is that finite values for times tA,U+ and tB,U− exist such that tB,U− > tA,U+.
That is, the time at which robot B enters U(VA, VB) is after the time at which
robot A leaves U(VA, VB).

Here it is assumed that robots have allowable velocity v ∈ [0, vmax]. Further-
more, it is also assumed that robots have infinite acceleration (e.g. stop on the
spot). Under these assumptions, it is straightforward to show that sufficient
(not necessary) conditions for a path pair {xA, xB} to be (A,B)Leadable are:

(1) Robot A’s path end location xA,end does not intersect VB.
(2) Robot B’s path start location xB,start does not intersect VA.

While this property helps determine whether two paths can be velocity-tuned,
it alone will not provide information on whether a set of R > 2 paths can be
velocity tuned to be collision-free. For this reason, the definition of Leadability
is generalized to any number of robots:

Definition A path set {xA, xB, xC , ...xR} for R robots is said to be (A,B,C, ...R)
Leadable if there exists a time parameterization for the paths in which each
robot g from the list A,B, C, ...R can pass through the path union U(Vg, Vh)
before any subsequent robot h from the list A, B, C, ...R enters the union, thus
forming a collision-free trajectory set.

To check whether a milestone belongs to the new velocity-tuneable endgame
region, a test is made as to whether the simple paths connecting robot states in
the milestone to the goal states make up a path set that is Leadable. While no
formal proof is presented, it should be clear that a Leadable path set requires
each path pair in the set to be Leadable, (e.g. (Q,R)Leadable, (Q,S)Leadable
and (R, S)Leadable imply the path set {Q,R, S} is (Q,R, S)Leadable)

To accomplish the endgame region test on a milestone, several steps are carried
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out on the set of paths that connect the robot states to thier goal states. First,
each path within the set must be tested for collisions with obstacles in the
environment. If a collision exists, the milestone is rejected.

Second, each pair of paths {xi, xj} within the set is checked whether or not
it is (i, j)Leadable or (j, i)Leadable. If it is neither, the milestone is rejected.
Moving obstacles are also considered in this step as robots that can only be
Leadable in one direction (i.e. the obstacle must lead the robots).

Finally, if all the pairs are Leadable in at least one direction, then the test con-
tinues to see if the set is Leadable. For each path pair that is only Leadable in
one direction, a consistency check is made to ensure that no ordering conflicts
would prevent the set from being Leadable (e.g if the only lead conditions are
(Q,R)Leadable, (R, S)Leadable and (S, T )Leadable, then {Q,R, S} is not a
Leadable set). If an ordering conflict exists the milestone is rejected, otherwise
the milestone is determined as belonging to the endgame region.

Given n robots, R = 0.5 ∗ n ∗ (n − 1) leadable pair checks are required. To
check consistency between pairs, let Xunidirectional be the set of all trajectory
pairs that are leadable in only one direction. Clearly the size of Xunidirectional

is limited by R. For every pair in Xunidirectional, a maximum of n checks are
done to see if combining multiple unidirectional constraints will create more,
(e.g. if Q must lead R and R must lead S then Q must lead S). If any such
constraints lead to an inconsistency (e.g. Q must lead R and R must lead Q),
then the consistency check fails. This requires an upper limit of 0.5∗n3 checks
for consistency. In practical implementations, this limit is rarely approached.

The endgame region is summarized below. Note that only once the set is
determined as being Leadable (i.e. a solution to the planning problem is found)
does the planner actually assign a velocity profile to the paths. Once the
solution is found, those robots which lead all other robots are given the fastest
velocity possible. From this assignment, it can be calculated at what time the
lead robots will leave the intersection of other robot trajectories. To prevent
collisions, these times are set as the minimum time that following robots can
enter the intersections, dictating a maximum velocity for the following robot.

Definition Let the Endgame Region be defined as the set of all milestones
such that the arc paths connecting robots to their respective goals form a
Leadable set. The following criteria must be satisfied to determine if a milestone
belongs to the endgame region:

(1) Each arc path connecting a robot to its respective goal is collision-free
with obstacles.

(2) Each pair of arc paths connecting robot states to their respective goals
are Leadable.

(3) The leadability constraints force no ordering conflicts.
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(a) (b)

Fig. 9. Velocity-Tuned Endgame Region: Sample scenarios used to illustrate in-
creased size of the endgame region attained when using velocity-tuning. The sce-
narios are illustrated as top-down views of environments involving 4 robots (white
circles) and 4 obstacles (gray circles). Goal locations are depicted as gold cross-hairs.

4.3.1 Endgame Region Simulation Results

Simulations of two different scenarios were used to evaluate the use of velocity-
tuned endgame regions. Four robots and four obstacles were placed in a
bounded workspace and the planner was run for 0.5 seconds. For each sce-
nario, two sets of simulations were run: one set where a velocity-tuned endgame
region was used and one where no velocity-tuning was used in the endgame re-
gion definition. During these simulations, the number of expanded milestones
that belong to the respective endgame regions was recorded.

To highlight the advantage of the new endgame region, results from two plan-
ning scenarios are compared in which one goal state is more confined than the
other. The two scenarios are depicted in Figure 9, in which the environment
in (a) has been created by randomly selecting robots, obstacles and goal lo-
cations. In (b), a more constrained goal state was created. In 0.5 seconds of
roadmap expansion, the average planner for case (a) produced 111 milestones
belonging to the non-velocity-tuned endgame region, and 144 milestones be-
longing to the velocity-tuned endgame region. In this case the increase in size
of the velocity-tuned endgame region was largely offset by the increase in time
taken to check for admissibility.

However, in case (b), the average planner produced 1.5 milestones belonging
to the non-velocity-tuned endgame region, and 33 milestones belonging to the
velocity-tuned endgame region. In many simulations, the planner never found
a solution when no velocity-tuning was used. This illustrates a clear advantage
of using a velocity-tuned endgame region when tight-coordination is required
to attain the goal state.
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Table 1
Simulation data for rover and free-floating robot test scenarios..

Simulation Rovers Free-Floaters

Average Number of Robots per plan 2.12 1.84

Average Planning Time (ms) 17.3 67.0

Average Number of plans per robot simulation 5.07 4.77

Average number of networks formed per simulation 49.4 12.2

5 Robot Planning Results

Simulations were run to characterize the performance of the planner for a
multi-robot system with up to 12 robots. To accomplish this, a particular test
scenario was chosen that highlights the characteristics of the coordination
platform and motion planner.

In this scenario, 12 rovers of diameter 5cm are operating in a 2m x 3m flat
workspace amidst 6 stationary and 6 moving circular obstacles of diameter
7cm. To add complexity to the scenario, 4 of the moving obstacles were di-
rected towards a network of 2 robots with little room to maneuver. Also, 2
networks of 2 robots were placed between a row of 3 obstacles and a workspace
boundary. The scenario was run 25 times with different initial random seeds.
The planner demonstrated fast planning times (an average of 17.3 ms), while
planning for up to 5 robots in a network. This speed enables the on-the-fly
planning that is required for operation in dynamic, unknown environments.

Throughout the simulations that lasted several minutes, robots formed on av-
erage 49 different networks. This illustrates the ability for centralized planning
despite the continuous merging and breaking of networks.

To illustrate the applicability of the planner to a 3D environment, simulations
with up to 8 free-floating space robots and 8 obstacles were carried out. A test
scenario was used in which robots must cross paths several times. The test
scenario was simulated 25 times to produce the results in Table 1. From these
results it is clear that the planner was capable of planning on the fly with
average planning times of 67 ms. An average of 12.2 networks were formed
throughout each simulation.

Relative to the rover simulations, the planner was slower despite planning for
fewer robots. This is attributed to the requirement for a different endgame
region definition. A bang-off-bang control sequence was used to connect mile-
stones to the goal. This produced efficient trajectories, but the overhead in
calculating them was substantial. In the future, it is recommended that robots
use a spline function to connect candidate milestones to the goal state [15].
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Fig. 10. Robot motion planning simulation

In Figure 10, a visualization of robots navigating in a walled-in, multi-level
environment is provided. Within these scenarios, robot coordination within
networks is not only triggered through event detection, but by a single robot
that requests new coordination plans with a set frequency. Not only does this
demonstrate the platform’s ability to coordinate robot actions at a frequent
rate, but that re-planning can be used to attain better trajectories (according
to some pre-determined cost-function). The example involves 4 rovers. The
goal locations for the rovers are located in the middle of the environment’s
central platform. As shown in Figure 10, initial robot trajectories lead robots
over drop-offs in unexplored regions of the environment. However, as the rovers
traverse these areas, they learn more about the environment. With new infor-
mation, robots construct new plans that allow for safe movement. This process
continues until robots eventually reach their goals.

In attempt to optimize trajectories, one robot within each network (e.g. that
with the lowest priority number), calls for a new plan every 2.0 seconds re-
gardless of whether there is new information. Robots compare the newly con-
structed plan with the currently implemented plan. They implement the better
of these plans, where the better plan is determined by some predetermined
cost function. This assumes the previous constructed plan is still feasible. If
not, then no comparison is carried out and the new plan is implemented.

25



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 11. Dynamic Robot Network Experiment

5.1 Rover Experiments

To exemplify the system’s ability to function on real hardware, an experiment
is documented below involving five rovers and four obstacles. The experiment
is depicted in Figure 11, where a series of screen-shots of the GUI are on the
left with the corresponding hardware photos on the right. Four of the robots
are lined up on the left rail of the test-platform and their goals are located in
a line on the right side. The top two of these four robots are close enough to
form a local communication network. The goal locations for these two robots
are located on the other side of the platform, but swapped such that the lines
connecting these two robots to their goal locations will intersect. Likewise,
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Fig. 12. Exponential Decay of Planner Failure

the bottom two of these four robots are also close enough to form their own
network and have a similar ”swapped” goal configuration. The fifth robot,
located in the upper right, has a goal location in the upper left. Initially, there
are three static obstacles in a line down the middle of the test-platform, and
another obstacle located in the bottom right that moves across the table.

This experiment not only illustrates that the planner can function on real
robots, but it highlights the planner’s ability to handle:

(1) On-the-Fly Centralized Motion Coordination - Planning times
were all less than 50 ms which enabled robots to plan new trajectories as
they moved. One example of this occurred between Figures 11a and 11b,
when the top two robots on the left had to replan to avoid the middle
stationary obstacle that was initially out of sensing range.

(2) Avoidance of Moving and previously unknown Obstacles - The
two bottom robots planned together within their network to avoid an
obstacle heading directly for them, (see bottom of Figure 11d).
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5.2 Probabilistic Completeness

Given certain assumptions, Hsu’s algorithm is proven to probabilistically com-
plete [16]. That is, it has an exponentially fast convergence for general motion
planning problems, including multi-robot planning problems. The analysis is
based on two simplifying assumptions: that the configuration space is ex-
pansive, and that the coverage converges to a uniform distribution over the
configuration space. These assumptions are difficult to verify. Hence simula-
tions were conducted to demonstrate the exponential convergence rate of the
coupled planner presented in this paper.

Simulations were run for 6 different scenarios of varying complexity, involving
up to 5 robots and 10 obstacles within in a 2D workspace (only 4 sets of
results are provided here, see [12] for additional results). For each simulation,
the planner was allowed to expand until a certain number of milestones, say
x milestones, were added to the roadmap. The value of x was varied for each
scenario, with 100 searches run for each value of x.

A summary of the simulation results are plotted in Figure 12 as the ratio
of failure for increasing values of x. As expected for probabilistic complete
planners, there is an exponential decay in the failure rate.

6 Conclusions

This paper presents a new approach to multi-robot motion planning based on
implementing Probabilistic Road Map (PRM) planning techniques within the
Dynamic Robot Network (DRN) coordination platform. Results indicate the
DRN platform functions well even when frequent network merges or breaks
occur. Robot coordination was carried out successfully under such conditions,
allowing robots to achieve their goal states.

Also presented were new strategies for increasing the speed of a PRM motion
planner when used to plan trajectories for multiple mobile robots. First a
method of sampling PRM milestones for expansion was identified for multi-
robot motion planning. The hyper-grid method was extended to provide fast
coverage of the configuration space.

Second, the serial expansion method of milestone generation was introduced.
As predicted, this method proved to require fewer collision-checks than the
traditional parallel expansion method. This resulted in faster road map ex-
pansions.
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Finally, a new endgame region was defined based on the concept of velocity-
tuning. This definition demonstrated improved likelihood of finding solutions
when goal configurations are highly constrained.

With the help of these new sampling strategies, the PRM motion planner was
implemented within the Dynamic Robot Network coordination platform. Suc-
cessful on-line trajectory planning was demonstrated with average planning
times on the order of 20 ms. This enabled on-the-fly planning for avoidance
of moving obstacles and allowed multiple robots to navigate in environments
that are both unknown and dynamic.
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