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Abstract

This paper presents initial steps towards developing
autonomous navigation capabilities for cooperating
underwater robots. Specifically, Simultaneous Local-
ization and Mapping, or SLAM , capabilities are in-
vestigated for a group of micro vehicles each equipped
with a single downward facing camera and an Inertial
Measurement Unit (IMU). To verify the approach,
simulations of the multi-robot SLAM running in a 3D
environment were conducted, where vehicles in close
proximity of one another exchange maps to improve
localization.

1 Introduction

This research is motivated by applications involving
the use of cooperating underwater robots for bio-
logical sampling in near-shore water environments.
Lakes and oceans provide us with some of our most
valuable resources. To manage and conserve these re-
sources requires understanding them, which can only
be accomplished through directed sampling stud-
ies. In particular, near-shore water environments are
complex systems - both in their diversity and dy-
namics - that require spatial and temporal surveys
over large areas. Multi-robot systems offer several
potential advantages, including the ability to simul-
taneously sample such larger areas.

Enabling autonomous navigation in multi-robot
systems is key to making them practical. Simulta-
neous Localization and Mapping (SLAM), provides
a means for autonomous vehicles to navigate in pre-
viously unknown environments. SLAM constructs a
map of the environment, while at the same time pro-
viding a position estimate of the robot within the
map.

To enable autonomous navigation, the SLAM al-
gorithm must be scalable and real-time capable.
Constant-time implementation is critical, so that an
arbitrary number of robots and landmarks can be
added to the map without the implementation grow-
ing to be intractable. Furthermore, the SLAM algo-
rithm cannot be run on a single centralized server or
robot. Underwater communication is unreliable and
limited in range, forcing decentralized control and
SLAM, with only periodic exchanges of map infor-
mation.

In this paper, the proposed approach is to merge
world models from multiple vehicles using a method
similar to fusing multiple measurements with the
Kalman filter. This approach was originally demon-
strated with data from land vehicles [1] [2], which
extended the Sparse Extended Information Filter
(SEIF) [3] from single robot implementation to mul-
tiple robots. The approach was shown to be scalable,
be real-time capable, and function well when decen-
tralized within ad hoc communication networks.



To validate this approach, simulations were con-
ducted in which multiple underwater vehicles success-
fully carried out 3D SLAM and map merging. The
simulation included a full modelling of the vehicle
dynamics, but assumed landmarks were easily iden-
tified. In order to implement this functionality on a
robot, a vision system is required to select landmarks,
identify previously observed landmarks and compute
their position relative to the craft.

What follows is a brief review of related litera-
ture, an explanation of the SLAM implementation,
a description of how landmarks are identified for the
SLAM algorithm, results including simulations, con-
clusions and future work.

2 Background

SLAM - Simultaneous Localization and Mapping -
addresses the problem of using a robot to map an
environment, while at the same time localizing the
robot within that map. For the most part, SLAM has
been addressed for single ground-based robot systems
and is traditionally implemented using a Kalman Fil-
ter approach [4].

2.1 Underwater SLAM

Unlike ground-based mobile robots, SLAM for under-
water vehicles has only recently been investigated.
The first instance of running SLAM on underwa-
ter robots appears in [5], where point features, or
landmarks in from the natural environment, were ex-
tracted through sonar. Sonar is also used in [6] to
verify a constant time SLAM algorithm. The SLAM
implementation in [7], uses a sensor fusion (sonar and
vision) before feature extraction to make the algo-
rithm more robust.

Another approach is to drop transponders at un-
known locations, and use these transponders as land-
marks in the SLAM algorithm. In [8], ranges to
transponders were used to estimate the vehicle and
transponder locations.

2.2 Multi-robot SLAM

This research concerns SLAM for multi-robot sys-
tems, where robots can cooperatively map the en-
vironment and localize themselves.

For ground-based rovers, several approaches have
been taken to this problem. Some approaches as-
sume known starting positions [9]. This assumption
was not required for the approach taken in [1], which
was also shown to be scalable, be real-time capable.
In related work [10], the issue of low-bandwidth com-
munication is taken into consideration by only ex-
changing those landmarks that result in the highest
information gain.

Other approaches include [11], where the Set
Membership SLAM, or SM SLAM, is extended to
multi robot case. In this case, measurement noise
and motion error are not assumed to be Gaussian
distributions, but are instead viewed as unknown but
bounded errors. An example of performing multi-
robot SLAM using vision is found in [12].

3 SLAM

The technique presented in [1] enables the merging of
multiple world maps that consist of landmark state
estimates and associate covariance. The technique is
an extension of the Sparse Extended Information Fil-
ter (SEIF) work presented in [2], which was designed
for a single robot implementation and then extended
to multiple robots in cite [1]. In both [1] and [2], the
SLAM algorithms were implemented for a 2D envi-
ronment, (i.e. using a truck in a city park). Here the
system has been extended to 3D, an obvious require-
ment for operating in the underwater environment.

Much like the typical Kalman Filter, this approach
uses a Motion Update to predict the new location
of the vehicle and a Measurement update to correct
this predicted estimate at every time step. Unlike the
Kalman Filter approach, a Sparsifiction step is used
to reduce the algorithm run time. Also, additional
map merging step is taken if vehicles have the ability
to communicate. In summary, each individual vehicle
iterates on Algorithm 1 shown below.



Algorithm 1 Multi-Robot SLAM Algorithm for
each individual vehicle.

1. Loop on t
2. Motion Update
3. Measurement Update
4. Sparsification
5. If communication with other vehicle exists
6. Merge Maps with other vehicle
7. end Loop

Within Algorithm 1 landmarks are not described
with position mean µ and variance σ, but with a com-
bination of their inverses. That is, at some time step
t, landmarks are defined by the state information ma-
trix Ht and information vector bt.

Ht = Σ−1
t (1)

bt = µT
t Ht (2)

If m and n are the number of robots and features re-
spectively, each with 6 degrees of freedom, then state
vector b ∈ <6m+6n and corresponding information
matrix Ht ∈ <(6m+6n)x(6m+6n).

3.1 Motion Updates

Robot motion updates the robots current position.
This step differs from standard SLAM, which treats
the environment as static (i.e. only the robots po-
sition changes). Here, links between features are es-
tablished. Re-observation strengthens links between
these features, while noise reduces the strength of the
link between the robots pose and feature positions.

The estimated robot motion ∆̂t is combined with
the previous estimate of the information vector bt−1

to calculate the predicted state vector b̄t. As shown in
Equation 4, the predicted state vector is also a func-
tion of the previous information matrix Ht−1, the
motion error covariance matrix Ut, and the Jacobian
of the pose transition function At. Similarly, the in-
formation matrix H̄t is also updated.

H̄t = f(Ht−1, Ut, At) (3)

b̄t = f(bt−1, ∆̂t,Ht−1, Ut, S, At) (4)

3.2 Measurement Updates

The measurement update uses current measurements
zt with variance Z to correct the predicted state es-
timates as follows:

Ht = H̄t + CtZ
−1CT

t (5)

bt = b̄t + (zt − ẑt + CT
t µt−1)T Z−1CT

t (6)

In equations 5 and 6, ẑt represents the measure-
ment that is expected given the current state esti-
mate. The measurement Jacobian Ct is defined by:

Ct = [
∂h

∂xt
0...0

∂h

∂yt
0...0 ] (7)

In equation 7, h is the measurement function, xt is
the robot pose variable, and yt is the feature position
variable. It is noted that Ct is sparse, which means
that updates are only conducted on the fields which
are affected by the current robot pose and the cur-
rently observed features. This allows for a scalable
algorithm that can be run in real-time.

3.3 Sparsification

As more features are observed, the existing links be-
tween all previously observed features would remain
continuously active. In order to preserve the constant
time nature of this algorithm, sparsity constraints
are made on the information matrix. For this im-
plementation, features are deactivated as they leave
the robots field of view. That is, their links to other
features or robots are removed.

3.4 Merging Maps

In the Kalman filter, the inverses of variances σ are
additive. In this implementation, information matri-
ces are directly additive. In the Kalman filter, means
are additive, but they are weighted by a Kalman gain,
which is essentially the ratio of their variances. In this
case, bt is already scaled by variances, which makes
information vectors directly additive. With Ht and bt

directly additive, maps from multiple robots are eas-
ily merged. As long as feature correspondence can
be achieved, measurements of these feature positions
can be added directly.



3.5 Landmark Extraction

SLAM algorithms require stationary landmarks
within the environment to compute relative position
estimates. Landmark position estimates are obtained
by fusing the relative sensor measurements with in-
ertial sensor measurements and control input infor-
mation. In the system presented, the relative sensor
measurements will be obtained via a vision system.
A downwards facing camera selects interesting fea-
tures as landmarks and outputs their position rela-
tive to the vehicle. Matching of each feature to a
list of previously observed features in the database is
conducted to allow correlated updates.

4 Results

4.1 Simulations

To verify the approach taken in [1] to underwater
multi-robot SLAM, a Matlab Simulation was con-
ducted. This simulation allowed for an environment
containing a variable number of observable marine
features and a variable number of identical robots
to explore this region. Each robot was run indepen-
dently, through a series of waypoints.

4.1.1 Underwater Vehicle

The ANGUS002 Remotely Operated Vehicle (ROV)
was used for this simulation due to the availability
of a Matlab Dynamic Model. The ROV is equipped
with 6 thrusters. The model takes into consideration:

• Vehicle thrusters - including the non-linear forces
generated by propellers when they are driven in
reverse.

• Buoyancy and center of gravity

• Hydrodynamic drag

• Ocean current

4.1.2 Vehicle Controller

Within each simulation, the Autonomous Under-
water Vehicle (AUV) was commanded to navigate

through a series of way-points. A multi-modal con-
troller, that switches between a forward travel mode
and a station-keeping mode, was implemented to
track the way points. It is important to note that
the controller was not operating using the output of
the SLAM system. In order to be fully autonomous,
a robot would be required to generate its trajectory
based on its map. Though the method of operation
here is different, we are only concerned with the er-
rors between the estimated and true trajectories, in
order to evaluate the operation of the selected SLAM
algorithm.

4.1.3 Vision System

To simulate landmark recognition, positions of tar-
gets on the sea floor were provided to the simulator
as a list. As the robot travels through its environ-
ment, a model of a downward facing camera system
was used to detect these targets. The camera model
takes into account:

• range to target
• orientation of the camera
• field of view of the camera

The measurement function h was simply a co-
ordinate transformation which translated the land-
mark positions in the world-frame into positions in
the vehicle frame. When merging models it was as-
sumed that landmarks were easily identified and dis-
tinguished from one another, thus eliminating the
correspondence problem for the sake of simplicity.
The simulation used a noise model with a constant
standard deviation σ2

m = 0.1 for measurement error.

4.1.4 Positioning Sensors

Each vehicle was equipped with a Global Position-
ing System (GPS) unit and an Inertial Measurement
Unit (IMU). Vehicles were able to take a GPS read-
ing prior to submerging, so their initial positions were
available. Though this is not required for this algo-
rithm, it simplified the map merging step.

Once below the surface, the readings of an IMU
were simulated and used as the sole method to esti-
mate vehicle motion. The IMU provided linear ac-



celerations and orientation angles. The orientation
angles are relative to the gravity vector and magnetic
North, so these readings we not subject to drift. The
accelerations, however, were subject to an additive
White Gaussian noise with a standard deviation of
7mg or σ2

a = 4.5806 × 10−5. A depth pressure sen-
sor enables the elimination of drift in the Z-axis, but
both the x- and y-axes of the vehicle are subject to
long term drift.

An algorithm which is functional without a dynam-
ics model can be beneficial in applications where a
model is unavailable. Dynamics models can be diffi-
cult to obtain accurately, and external disturbances
are often unmodeled. For this simulation, the vehi-
cle dynamics were not used for the motion prediction
stage of the SLAM algorithm. In future experiments,
using this prediction with the acceleration measure-
ments will most likely improve performance.

4.1.5 Communication

For the purposes of this simulation, it is assumed
that vehicles are only able to communicate with one
another when in close proximity. When vehicles are
in range of one another, they are able to swap in-
formation regarding the position and description of
landmarks in the environment. The availability of
communication prompts a map merging in the simu-
lation system for all robots in range. The simulations
conducted during this research used a communication
radius of rc = 2m.

4.2 Simulation Results

In order to evaluate the performance of the selected
algorithm, several simulation scenarios were con-
structed. It was desired to look at the performance:

• without SLAM

• with SLAM

– without map merging
– with map merging

∗ at the end of the mission
∗ once, each time within range
∗ frequently, when within range

Figure 1: Simulation: Trajectories of the 4 robots
tracking waypoints

The metric used to evaluate the positioning perfor-
mance under these situations is position error with
respect to time. In the case of the robot position,
the trajectory error is examined, and, for landmark
location, the measured location is compared to the
actual position.

A set of waypoints was created for each of the
robots. The approximate desired trajectories for each
of the 4 robots used for this simulation are shown in
Figure 1. The robots’ trajectories are at different
depths to avoid collision.

4.2.1 Without SLAM

Without a SLAM algorithm running, the vehicles
have only the readings of their IMUs to go on. Due
to the double integration of IMU readings, and the
noise present with the acceleration readings, vehicle
positions can drift quite severely and position errors
only grows with time. Figure 2(a) shows the actual
position as a solid line and the estimated position
as dots for the 4 robots. The error for each of the
position estimates is shown in Figure 2(b).

4.2.2 SLAM Without Merging

Next, several landmarks are placed on the bottom of
the marine environment. Figure 3 depicts the paths
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Figure 2: The robot trajectory and position error
with time for a all robots using only IMU measure-
ments for position determination. The actual trajec-
tory is shown as a solid line in the first plot, with
measurements as ’.’. The second plot shows an error
measurement for each robot with respect to time.

followed by robots and the landmarks below from
a 3D viewpoint. As can be seen in Figure 4, the
positioning performance is greatly increased. Robot
position error does not grow unbounded with time,
and the return to a known location eliminates errors
which have accumulated.

When landmarks are not available, for example
during times of low visibility in a marine environment
or in regions where a descriptive scene is not present,
position uncertainty will grow. Figure 5 shows the
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Figure 3: Simulation: 3D view of 4 robot trajectories
above simulated landmarks (shown as ”o”).

confidence ellipses for robot 1. The uncertainty and
error grow as the robot looses visibility of all land-
marks, and decreases once a known landmark is lo-
cated.

4.2.3 Merging After Completion

Thus far, only the robot position has been examined.
Turning to the environment features, it can be seen
that combining the measurements of multiple robots
is better than each robot on its own. An example
of a set of measurements from 3 robots running in-
dependently is shown in Figure 6. Here, each robot
determines its best guess as to the location of the
landmark. Using the certainty of each robot’s esti-
mate, the measurements are fused at the completion
of the run, reducing the overall error.

In the example shown in Figure 6, the error is re-
duced to approximately 15cm from the actual posi-
tion. Although robot 2 (shown with ’+’) was able
to take many measurements of the position of the
landmark, with no landmarks along the approaching
segment of its path, it had a large uncertainty in its
position estimate. This is taken into consideration
during the merge and this estimate is not weighted
strongly during the final merge.
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(b) Position Error wrt Time

Figure 4: The robot trajectory and position error
with time for all robots using running SLAM, using
IMU readings and the measurements to landmarks in
the environment.

4.2.4 Merging At First Visibility

In this simulation, robots are equipped with an un-
derwater communication system, so they can ex-
change map information while exploring, as well as
at the end of the mission. These exchanges occur
when robots come within a given range of one an-
other. Figure 7 gives an overview of this situation.

Several beneficial characteristics resulting from
communication can be observed. First, consider the
communication between robot 1 and robot 4. It
can be seen that measurements of the landmark at
(5.0, 0.8) are exchanged at t = 113.25s, leading to a
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Figure 5: Simulation: The estimated trajectory of all
4 robots, and the confidences ellipses for robot 1.
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Figure 6: Simulation: The results of combining maps
at the completion of the simulation. The actual fea-
ture location is shown as an ’*’, while measurements
from robot 1 are shown as ’x’, robot 2 as ’+’ and
robot 4 as ’o’. Each robot’s final estimate is shown
as a triangle and their combined estimate as a star.
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Figure 7: The robot trajectory and position error
with time for all robots using running SLAM, with
robots merging each time a robot first comes within
range. ’*’s along the x-axis represent a merge be-
tween 2 robots

correction of robot 1’s position. This does not reduce
the position error to zero, since the estimate of this
landmark location by robot 4 contains some error.

Secondly, a benefit of indirect communication can
be seen. As robot 2 begins to travel, it observes the
location of a landmark at (9.2, 10.25). At t = 18.0s,
it exchanges maps with robot 1. At t = 24s, robot 1
and robot 3 exchange their maps, which now informs
robot 3 of the position of the landmark at (9.2, 10.25).
As this landmark comes into view, robot 3 is able to
correct its position to reflect the observation initially
made by robot 2, even though it has never directly
communicated with robot 2.
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Figure 8: Simulation: The results of merging maps
each time a new robot comes within communication
range. The actual feature location is shown as an ’*’,
while measurements from robot 1 are shown as ’x’,
robot 2 as ’+’ and robot 4 as ’o’. Each robot’s final
estimate is shown as a triangle and their combined
estimate as a star.

Figure 8 shows the result of intermediate map
merging on landmark measurements. The measure-
ments are more clustered now, since the indepen-
dence between robot measurements is reduced as they
exchange data. This means that errors which one
robot accumulates will influence the others. At the
same time, this exchange of data will help to reduce
drift in the robots’ position estimates.

4.2.5 Merging Several Times While Visible

A simulation was conducted to determine the effect
of continuously merging data with all other robots in
range. A delay of 7.5 seconds was used to simulate
data transfer time. The results are shown in Figure 9.

Examining the landmark at (4.8, 5.3), it can be
seen in Figure 10, as was discussed in Section 4.2.4,
that the communication of the robot tends to clus-
ter measurements, eliminating the independence that
was seen in Figure 6. The increased vehicle position
accuracy, however, will lead to more accurate land-
mark estimates.
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Figure 9: The robot trajectory and position error
for all robots running SLAM, with robots merging
several times with all robots in range. ’*’s along the
x-axis represent a merge between 2 robots

4.2.6 Summary

In order to compare the results from each of the above
algorithm modifications, Table 1 has been prepared.
This table shows a drastic reduction in error when
SLAM is used. Merging map data produces a fur-
ther improvement. Continuous merging yields and
improvement in 2 robots, and reduction in 2 others.
Further study should be conducted to determine the
optimal merging rate.
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Figure 10: Simulation: The results of merging maps
several times with all available robot within commu-
nication range. The actual feature location is shown
as an ’*’, while measurements from robot 1 are shown
as ’x’, robot 2 as ’+’ and robot 4 as ’o’. Each robot’s
final estimate is shown as a triangle and their com-
bined estimate as a star. The final estimate is difficult
to see, but is located at (4.93, 5.37).

Table 1: RMS errors in robot position for each map-
ping algorithm

RMS Error [m]

Algorithm Robot 1 Robot 2 Robot 3 Robot 4

IMU-only 2.3507 2.6830 1.6003 2.5230
SLAM 0.5832 0.6950 0.4644 0.3299
w/ 1 merge 0.3772 0.2208 0.2461 0.2282
w/ > 1 merge 0.2995 0.4036 0.1784 0.3654



5 Conclusions

The proposed SLAM technique is ideally suited for
multiple underwater vehicles. The technique requires
infrequent data exchange between robots and does
not require a central processor or map server, mak-
ing it ideal for underwater applications, where com-
munication is both limited in range and unreliable.
Although, it does benefit from more frequent data
exchange. The algorithm is constant-time, allowing
for real-time implementations on ROVs or AUVs.

Furthermore, although untested by this experi-
ment, the ability of this algorithm to fuse maps by
correlating features without requiring knowledge of
the vehicles starting locations allows arbitrary mo-
tion to be conducted, without absolute position mea-
surements. The ease with which maps are fused, re-
quiring only a simple coordinate transformation and
matrix addition, significantly reduces computational
complexity.

6 Future Work

Currently, the algorithm is being implemented on a
VideoRay Micro ROV, (see Figure 11) for real world
testing. The vehicle has a color camera that can tilt
from horizontal to vertical (downward facing). Ori-
enting the camera in a downward facing configuration
provides a means to obtain landmarks on the lake
bottom. SIFT features [13] are being investigated as
a means to extract landmarks from the vision sys-
tem. The ROV has been equipped with an O-Navi
Falcon-MX IMU to provide inertial measurements.
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