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Abstract— This paper presents a distributed particle filter al-
gorithm for localizing multiple mobile robots that are equipped
only with low cost/low power sensors. This method is applicable
to multi-micro robot systems, where size limitations restrict
sensor selection (e.g. small infrared range finders).

Localization of three robots in a known environment is
conducted by combining measurements from a small number
of simple range sensors with inter-robot distances obtained
through an acoustic range finder system. The localization
problem is formulated as estimating the global position and
orientation of a single triangle, where corners of the triangle
represent the positions of robots. The robot positions relative to
the centroid of the triangle are then determined by trilateration
using the inter-robot distance measurements. Each robot uses an
identical particle filter algorithm to estimate the global position
of the triangle. The best estimates determined by each particle
filter are distributed among the robots for use in the following
iteration. Simulations demonstrate the ability to perform global
localization of three robots, each using a compass and two range
finders. The results illustrate that this method can globally
localize the robot team in a simulated indoor environment. The
results are compared to simulations where robots have access
to only their own sensor data, which are unable to successfully
localize under equivalent conditions.

Index Terms— localization, multi-robot, triangulation, parti-
cle filter

I. I NTRODUCTION

Cooperating teams of robots can add greater simultaneous
presence, force multiplication, and robustness to a robotic
mission. In particular, micro robot teams are valuable in a
large variety of applications like space exploration, where
weight must be minimized to reduce transportation costs.

Micro robots are typically limited in both computational
resources and sensor capabilities, which limits their level
of autonomy and intelligent behavior. The computational
limitations have been addressed by at least two different
approaches. One is to use behavior-based control strategies
[1], which often have lower computational requirements.
However, such strategies navigate without a world model,
making them less useful for mapping applications. An alter-
native approach, performing planning based control using a
world model, may be accomplished using micro robot teams
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within a hierarchy of robots. In such a system, larger robots
integrate sensor information from smaller robots and assist
with the higher level computations required for localization
and path planning [2]. By centralizing some functions of the
team control, however, some of the benefits of redundancy
inherent in a multi-robot system are lost.

In this paper we address the second limitation of micro
robots, that of limited sensor capabilities, which significantly
impacts their suitability for exploration applications. For
such applications, a planning based control architecture is
applicable, where the robots maintain a model of their envi-
ronment, either given from prior knowledge of the working
area, or learned during exploration. Before using this model
to navigate within the environment, the robots must first
localize themselves, that is, estimate their positions within
the environment. This estimation process has been the subject
of a great deal of recent research [3]. Localization has
two different sub-problems: position tracking from a known
starting location, and (the more challenging) global position
estimation where no estimate of the initial location is given.

This paper focusses on the problem of performing global
localization of multiple robots, given that their sensors are
limited in size, power, and number. Presented is a method
of distributing the problem of global localization across a
team of robots, where three robots are selected to work
cooperatively. This method extends traditional particle filter
algorithms in two ways. First, we propose an alternative state
representation for a team of three robots, effectively reducing
the number of variables to estimate. Secondly, the particle
filter calculations are distributed across the team, and the
best position estimates are shared at each iteration of the
algorithm. By sharing their limited sensory data and com-
putational resources, the team is capable of achieving global
localization that cannot be accomplished by an individual
robot.

II. BACKGROUND

A number of researchers have investigated methods of
localizing robots relative to one another within a group.
Kato [4] presents a method of identifying other robots and
determining their relative positions using omnidirectional



vision sensors. Grabowski [5] presents a method using om-
nidirectional sonar sensors to estimate the distance between
each robot pair, and uses trilateration from three stationary
robots to determine the relative positions of others. These
relative localization methods determine the position of an
individual robot relative to the others in the group, but depend
on the knowledge of initial positions to estimate their absolute
positions in the environment.

Global localization requires the additional ability to the
estimate the robots absolute position in a known map with
no prior knowledge of the robot position. Fox [6] describes a
Monte Carlo based method for cooperative global localization
that synchronizes the beliefs of robots when they detect and
recognize one another. The merging of beliefs provides a
dramatic improvement in performance over individual lo-
calization, assuming that the robots have sensors capable
of accurately locating and identifying other robots in the
group. The work in [7] also gives a method for improving the
performance of localization and exploration by two robots in
a polygonal environment, where one robot remains stationary
and the other uses it as a reference during movement.
Presented in [8] is a distributed Extended Kalman Filter-
based algorithm, as applied to the localization of a team
of heterogeneous robots operating in outdoor terrain. The
algorithm is demonstrated using a variety of sensors including
GPS, scanning lasers and cameras, which are beyond the
capabilities of the small robots considered here.

The problem of global localization of multiple robots using
low cost sensors is addressed in [9]. In that solution, a CMOS
camera is used to estimate the distance between robots, and
geometric features (straight walls and corners) are identified
using IR sensors on a rotating base. The method depends
on the ability to identify particular features, such as corners,
to generate a set of possible positions of each robot in the
environment. The relative distances between robots could
then be used to identify a unique solution. In contrast, the
method presented in this paper does not rely on the extraction
of features from measurements, or in the identification and
explicit measurement of the other robots’ positions.

In this paper, robots are only equipped with relatively
simple sensors, including two fixed range sensors, a compass,
odometry, and a measure of the distances between pairs of
robots. Despite this limited combination of sensors, a group
of three robots is capable of performing global localization
using variations on a particle filter algorithm.

III. PROBLEM DEFINITION

The method presented addresses the problem of global
localization of a group of three robots within a known map
of their environment. It is assumed that the robots each have
2 fixed-position range sensors (IR for example), a compass
to sense orientation, and a measure of odometry. In addition,
each robot has a mechanism to measure the distance (but

not direction) to the other robots, such as an omnidirectional
acoustic range sensor (such as that described by Navarro [10]
for example). Limitations on computational power and sensor
range are not considered in the current simulation, but will
be investigated in future work. The task is to estimate the
global position of all three robots in the given map.

IV. L OCALIZATION ALGORITHM

A. Overview

Particle filter localization uses a large number of particles
– i.e., state estimates – to approximate the probability distri-
bution of the robot being at any location in the environment
[3]. A weight is associated with each particle, representing
the confidence in that particle’s estimate. To initialize the
filter, m particles are selected from the configuration space
with a uniform distribution, and the weights are set to1/m.
At each iteration of the algorithm, the set of particles are
updated with the following processes:

• Sampling:
Particles are drawn from the previous set with probabil-
ity proportional to their weights.

• State Update:
The state of each particle is updated to account for the
robot motion (estimated from odometry) for the current
time step.

• Weighting:
Weights are computed for each particle, as a function of
the difference between the robot sensor measurements
z and the predicted measurementsẑ based on the
estimated position and map data.

The algorithm presented in this paper uses the particle
filter approach described above, but rather than estimate
the position of a single robot, it estimates the pose of a
triangle with the 3 robots at the corners. That is, each particle
represents an estimate of the triangle’s pose, defined by
the variables{xc, yc, θc} giving the global position of the
centroid and the orientation of the triangle. From the estimate
of the position and orientation of the centroid of the triangle,
and the measured distances between each pair of robots, the
estimated position of each robot can then be computed. The
weight of each particle in the particle filter represents the
belief in a particular configuration of all three robots.

B. State Representation

The full configuration space for the three robots is defined
by the 9-dimensional space of{x1, y1, θ1, x2, y2, θ2, x3, y3,
θ3}. If the headings{θ1, θ2, θ3} are determined solely by a
compass on each robot, the remaining variables to estimate
are the global position variables{x1, y1, x2, y2, x3, y3}.

If the distances between the robots are known, the state
can be more compactly represented in three variables,{xc,
yc, θc}, where the subscriptc identifies a reference frame
C, the centroid of a triangle with the robots at the corners.



Fig. 1. Graphical estimation of robot positions given the centroid reference
frame at(xc, yc) and the measured distances between robotsdi,j . See text
for details.

θc defines the orientation of the reference frame, where the
x-axis is aligned with one (arbitrarily selected) median of the
triangle. In reducing the dimension of the state space from
six to three variables, the computational complexity of the
state estimation problem is significantly reduced.

As derived in [11] for a general triangle, the distances
between each robot pairdi,j can be used to calculate the
distanceri from the centroidC to robot i:

ri =
1
3

√
2d2

i,j + 2d2
i,k − d2

j,k. (1)

The x-axis of the centroid frame is aligned with the vector
to the first robot. The angles of the vectors to the robots are
given by
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Note that two symmetrical solutions are possible from the
geometry. The selected solution is determined by a random
binary variable that is set at initialization of the particle.

The goal of the particle filter algorithm is now to estimate
the values of the reduced set of state variablesxc, yc, θc,
from which the estimated absolute position of roboti can be
computed:

xi = xc + ri cos (θc + φi) , (5)

yi = yc + ri sin (θc + φi) . (6)

C. Distributed Algorithm Processes

The randomized nature of the particle filter algorithm
makes it suitable for a distributed, parallel implementation
on multiple robots. Each robot can apply the algorithm to
an independent set of particles. However, to make effective

Fig. 2. The sequence of particle filter processes is executed on each robot,
and synchronized by the exchange of the best state estimates after each
iteration. See text for details of each process.

use of the best estimates found by each robot, the particles
with highest weights must be shared amongst the team. At
each iteration then, every robot begins with a set of particles
including those with the highest weights selected from all
three robots.

The sequence of processing and communication involved
in the algorithm are shown in Fig. 2. The following sections
describe the variations to the three steps in the particle filter
algorithm required to integrate the sensor readings from all
three robots into a cooperative position estimate of all robot
positions.

1) Sampling: At each iteration of the algorithm, a sam-
pling process is required to select a set of particles to
propagate forward from the previous iteration. Particles may
be selected with probability proportional to their weights.
However, a variety of alternative methods can be used to im-
prove the particle selection. As suggested in [3], this method
uses a mixture of particles, with a fraction sampled with
probability equal to the weights, and a fraction sampled from
the best estimates from the most recent sensor measurements.
This leads to a denser representation of the belief state in the
region of the highest likelihood. As well, as suggested in
[12], a small number of particles are added from a uniform
distribution of the state space to aid in global localization if
the robots become lost after acquiring a confident estimate.

2) State Update:At each iteration of the particle filter
algorithm, the state of each particle is updated to reflect the
motion of the robots since the last iteration of the algorithm.
In a single robot application, the position would typically be



Fig. 3. The state update process computes the new position of the centroid
by first transforming the estimate to the robot coordinates, estimating the
robot motion, and transforming back to the centroid coordinates.

updated based on the measured odometry and kinematics of
the robot. In this method however, the update must reflect
the motion of the centroid reference frameC.

As shown in Fig. 3, the motion ofC can be computed
by first estimating the previous position of the robots,
(xi, yi, θi)t−1, given the previous estimate of the centroid
(xc, yc, θc)t−1 and (5, 6). The updated robot positions,
(xi, yi, θi)t, are estimated by propagating the previous posi-
tion through the kinematic equations of motion for the robot
with the measured odometryoit :

{xi, yi, θi}t = h
({xi, yi, θi}t−1 , oit

)
. (7)

Robot orientations are estimated from compass readings.
The updated estimate ofC is then computed as the average
of the robot coordinates:

xc =
1
3

3∑
1

xi (8)

yc =
1
3

3∑
1

yi. (9)

The state update also requires an update of the orientation
of the frameC, which is computed as the angle of the vector
from C to the robot at (x1, y1):

θc = arctan
(

y1 − yc

x1 − xc

)
(10)

3) Weighting: For each particle, a weighting is applied
representing the degree of belief in the the position estimate
of the particle.

Using the known map of the environment, the expected
sensor readings from each robot are predicted, and these
are compared to the actual sensor readings. This comparison
is used to assign weights to each particle, (i.e. inversely
proportional to the difference between actual and expected
sensor readings). The particles defining the best estimates
(those with the highest weights) are then shared between
all the robots. Each robot selects a new set of particles
using probabilities proportional to the weights, with a fraction
selected around the best estimates, and a fraction randomly
selected throughout the configuration space.

Fig. 4. The simulated robot configuration: The robot is driven with
differential steering, and has a compass and two IR sensors oriented at90◦
to sense the environment.

This weighting Wp is determined as a function of the
error between the predicted IR sensor readings that would be
measured from the estimated robot positions and the actual
measurements from all three robots:

Wp =
1√∑3

r=1

∑2
s=1 (zr,s − ẑr,s)

2
(11)

where zr,s and ẑr,s are the measured and predicted values
of sensors on robot r respectively. The weights are then
normalized such that

∑
Wp = 1.

V. RESULTS

The algorithm was implemented and tested in a simulation
of a group of 3 robots, each with two fixed-direction range
sensors and a compass, operating in a confined area including
obstacles and walls. Each robot begins in a random location
in the map. They then create a randomized trajectory by
driving forward until they reach an obstacle, after which they
turn through a randomly selected rotation. The models of the
range sensors, compass, and odometry measurements include
injection of Gaussian noise.

During the simulation, each robot performed two local-
ization algorithms. The first was an implementation of the
particle filter running in isolation on each robot, using only
data from its own sensors. This was used as a baseline for
comparison of results. The second algorithm was the distrib-
uted method described in this paper, using the combining the
sensor readings from all robots and sharing the best estimates.

A. Simulation Environment

The simulation environment is shown in Fig. 5. The small
dots indicate the position of particles maintained in the
particle filters. The lines radiating from the central cluster
represent vectors from the best estimates of the centroid
position to the estimated positions of the three robots. The



Fig. 5. The simulation environment, a cluttered6m × 4m area, showing
the system state after successful localization.

three circles near the end of the lines indicate the actual
positions of the robots. Note that a higher density of particles
is maintained around the estimated centroid after completing
the localization.

B. Position Estimation Performance

In Fig. 6, the average position estimation error is plotted
over time for a set of 10 simulations using 800 particles
for each robot. On average, after the first 3 seconds of the
simulation the distributed localization has converged to the
correct estimation of the centroid and robot positions (as
shown for example in Fig. 5). This is in contrast to the
performance of the individual particle filters operating in
isolation, which on average do not converge to the correct
solutions for all three robots within the 20 second simulation
time.

As shown in Fig. 7, the error between the predicted
and actual sensor readings are consistently smaller using
the individual particle filters. Operating in isolation, the
individual position estimates can lead to many solutions
that give sensor readings similar to those from the actual
robot position. In contrast, in the distributed method the
larger discrepancies between predicted and actual sensor
readings reflect the increased constraints on the possible
position estimates, imposed by the trilateration calculations.
Only those estimates that satisfy the inter-robot distance
measurements are considered, leading to less freedom to
minimize the sensor prediction error, but a better overall
estimate of position.

Fig. 8 shows the performance of the algorithm over a
range of sizes for the particle filter, simulating 50 iterations

Fig. 6. Comparison of position error over time for the individual particle
filters (dotted line) and the cooperative distributed particle filters (solid line).
The results are averaged over 10 consecutive simulations of 20 seconds each.

Fig. 7. Comparison of sensor errors over time for the individual particle
filters (dotted line) and the cooperative distributed particle filters (solid line).

per second on each robot. The vertical scale indicates sim-
ulation time, corresponding to the number of iterations of
the algorithm with a fixed time step. While the number of
iterations required to successfully localize the team decreases
as the number of particles increases, the computational cost
of each iteration of the algorithm is proportional to the
number of particles. This is particularly significant for an
algorithm intended for small robots with limited processing
capabilities, as the frequency of the algorithm execution will
be constrained by the number of particles used. The ideal
size of the particle filter for a particular application will be
determined based on the computational resources available,
the size of the environment, and the required performance of
the localization system.



Fig. 8. Comparison of the rates of convergence for varying number of
particles.

VI. D ISCUSSION

This work presents the initial development of a cooperative
method of global localization. A number of features make the
method well suited to a distributed implementation:
• Because of the randomized nature of the particle filter

approach (in contrast to a Kalman filter based method),
each robot can independently generate new estimates,
the best of which are then shared throughout the group.

• Little bandwidth is required. Due to the nature of the
sensors involved, the raw sensor data can be shared
between robots, and the extraction of abstract features
is not required.

A number of extensions to the method are apparent for fu-
ture investigation. The first is a generalization of the method
to larger groups of robots, including constraints (such as
a line-of-sight requirement) for inter-robot communications.
One approach to this generalization is, for each robot, to
select a pair of cooperating robots within the communication
range of the first. Each robot can then generate an estimate
of the positions of itself and two neighbors, using the particle
filter method described above. In this case, each particle
filter estimates the position of the centroid of a triangle of
robots, but the particular three robots (and the estimate of
their centroid) may be different for each particle filter. In
the sharing best estimateprocess, therefore, the position of
the centroid cannot be shared, as it is only relevant to one
robot. Instead, the estimated absolute positions of individual
robots must be computed and shared. The absolute positions
can then be transformed back to the centroid representation
required for each local particle filter.

A generalization of the method that does not rely on a
compass to estimate orientation would also be beneficial,
particular for indoor applications where compass sensors are

often subject to interference from structures and electrical
equipment. The three robot orientations can be included in
the state vector to be estimated, but this increases the config-
uration space to six dimensions, significantly increasing the
computational complexity.

Future work will investigate the implementation of this
method on physical robots to validate the simulation results.
This will involve an investigation of the required processing
power as a function of the number of particles, to determine
the optimal parameters for a physical system that is con-
strained in both sensors and computational resources.

VII. C ONCLUSIONS

A cooperative, distributed method of global localization for
three robots with simple sensors has been presented. Simu-
lation results demonstrate the performance of the algorithm
while the number of particles used is varied over a range
of relatively small values. Using measures of the distances
between pairs of robots, three robots are able to localize
themselves in an environment where isolated particle filters
on each robot failed to converge.
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