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ABSTRACT 
This paper presents the design of a distributed sensing 

system that uses an Extended Kalman Filter (EKF) to fuse 
measurements, so that automotive vehicle states can be 
estimated for use by a Semi-active Suspension control system. 
To improve ride comfort and handling quality, relative 
displacements and velocities of suspension systems are 
estimated. To control the stability of vehicles, roll, yaw, and 
pitch must also be determined. The designed (EKF) uses easily 
accessible measurements such as accelerations and body’s 
angular velocities. These measurements are provided by 8 
accelerometers and an Inertial Measurement Unit (IMU). The 
accelerometers are strategically mounted on the two ends of 
each individual shock absorber (damper).  The IMU was 
mounted near the vehicle’s center of gravity. Computer 
simulations and experiments were conducted for full vehicle 
state estimation of a 1993 Toyota Tercel equipped with the 
above mentioned sensor suite. Results show that except relative 
displacements, all states of the automobile’s semi-active 
suspension systems can be estimated using this set of sensors. 
The designed EKF works well despite not knowing accurate 
information about road inputs, external disturbances and car 
characteristics such as moments of inertia, mass, and equivalent 
spring and damping coefficients. Both simulation results and 
experimental results show the effectiveness of the designed 
EKF in estimating the required states. 

 

INTRODUCTION 
During last two decades, active suspension systems and 

semi-active dampers have been developed to improve 
performance parameters corresponding to terrain vehicles.  
Various types of controllers including linear/non-linear optimal 
and robust strategies have been proposed by researchers [1]. 
While active and semi-active damper technologies offer new 
opportunities to improve ride comfort, road handling and 
vehicle stability, the primary challenge of providing required 
control system feedbacks remains. Many proposed control laws 
have assumed that all the system states including suspension 
systems deflection and its rate, velocity of wheel hubs and tire 
deflections are completely and accurately measurable, which is 
not always the case [1- 5].  

Velocity cannot be measured directly because velocity 
sensors must have a stationary reference space which is not 
applicable in automotive applications. Common techniques 
integrate accelerometer signals attached to the ends of each 
shock to achieve velocity information. Performance of low-cost 
automotive grade accelerometers is limited by high level noise 
(typically 50-1000 Hzg /µ ) and drift due to biases and 
gravitational effects. Passing the integrated signal through a 
high-pass filter is not always adequate for obtaining accurate 
velocity data.  

To make the various control methodologies realizable, a 
filter and/or observer is required to produce accurate state 
estimates. In [6] a modified Luenberger observer was presented 
to estimate semi-active suspension system states for a quarter 
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car model. In [7] and [8], an LQG/LQR method has been 
implemented to simultaneously observe and control states of an 
active suspension system in a half-car model. Despite the 
proven efficiency of the designed estimators in simulations, 
they use an incomplete vehicle model within the observers 
which can not capture full motion dynamics of a real vehicle 
[9].  In [10] and [11], a linear state observer has been utilized to 
implement the state feedback control law and a ∞HH /2  
performance based command, respectively, for active control of 
full car model (seven degree of freedom) suspension systems. 
The designed unbiased observer has been proven to be 
asymptotically stable, but it is not guaranteed to minimize 
estimation error covariance matrix. In [12], four quarter car 
model based Kalman Filters (KF) have been implemented to 
estimate active suspension system parameters of a military 
vehicle. The designed KF’s are working based on preview 
information of the road. This information was provided by an 
optical preview sensor mounted in front of the vehicle. Sensor 
measurements are converted to road height by trigonometric 
equations. These preliminary computations need high 
processing power and time. Also, delays in providing road 
information may cause instability in integrated 
controller/observer system.  

This paper proposes an appropriate sensory configuration 
to sense vehicle dynamics. The sensor set has been distributed 
strategically throughout the vehicle in order to capture 
sufficient information of the vehicle’s behavior. An EKF has 
been developed to fuse sensors measurements to estimate the 
vehicle states required by Ride Handling and/or Stability 
Controllers (RHSC). Unlike previous research, the designed 
EKF benefits from states predicted by a full car (7DOF) 
kinematics /dynamics model of the vehicle. Also, the particular 
sensor configuration eliminates the need to evaluate road 
inputs. The content of the paper will be organized as follows. 
The next section considers the full car model. It describes the 
required modes of vehicle motion along with the particular 
state vector which has been defined for this application. Then, 
the sensor collection is introduced followed by simulation and 
experiment results of the designed EKF.  

 

7 DOF VEHICLE DYNAMIC MODEL  
The vertical dynamics of a vehicle include the four wheel 

bounce motions and the car body heave, roll, and pitch 
motions. This typical seven degree of freedom characterization 
is used for active and semi-active suspension systems design. 
Vertical and angular motion of the vehicle’s body can be 
described by the following differential equations: 

)()(

)()()(

)()()(

44

332

211

zabzczabzk

zabzczabzkzabzc

zabzkzabzczabzkzm

CGRRCGsR

CGRFCGsFCGLR

CGsRCGLFCGsFCG

&&&&

&&&&&&&&

&&&&&&

−+−−−+−−

−−−−−−−−−++−

−++−−−+−−−+−=

θφθφ

θφθφθφ

θφθφθφ      

(1) 

 

)()(

)()()(

)()()(

44

332

211

zabzbczabzbk

zabzbczabzbkzabzbc

zabzbkzabzbczabzbkI

CGRRCGsR

CGRFCGsFCGLR

CGsRCGLFCGsFxx

&&&&

&&&&&&&&

&&&&&&

−+−+−+−+

−−−+−−−+−++−

−++−−−+−−−+−=

θϕθϕ

θϕθϕθϕ

θϕθϕθϕϕ  

(2) 

)()(

)()()(

)()()(

44

332

211

zabzaczabzak

zabzaczabzakzabzac

zabzakzabzaczabzakI

CGRRCGsR

CGRFCGsFCGLR

CGsRCGLFCGsFyy

&&&&

&&&&&&&&

&&&&&&

−+−−−+−−

−−−+−−−+−++−

−++−−−++−−+=

θϕθϕ

θϕθϕθϕ

θϕθϕθϕθ

   (3) 
where CGZ  is the heave displacement of the center of gravity 
of the body, ϕ  is the car body’s bank angle, and θ  is the pitch 
deflection. The vertical displacement of the Left-Front (LF), 
Left Rear (LR), Right Front (RF) and Right Rear (RR) wheels 
hubs are Z1, Z2, Z3, and Z4 respectively. 

 
 

Figure 1 Seven degrees of freedom vehicle model   
Differential equations govern vertical movement of the wheels 
are as follows 

)()()( 11111 rwFCGLFCGsFwF zzkzabzczabzkzm −−−−++−−+= &&&&&& θϕθϕ   (4) 
)()()( 22222 rwRCGLRCGsRwR zzkzabzczabzkzm −−−+++−++= &&&&&& θϕθϕ  (5) 

)()()( 33333 rwFCGRFCGsFwF zzkzabzczabzkzm −−−−−+−−−= &&&&&& θϕθϕ   
(6) 

)()()( 44444 rwRCGRRCGsRwR zzkzabzczabzkzm −−−+−+−+−= &&&&&& θϕθϕ    (7) 
 States of the vehicle have been defined based on the 

particular application. Ride and Handling controllers usually 
need suspension and tire deflections from equilibrium as well 
as relative velocity of the suspension system and absolute 
velocity of unsprung masses. Also, angular velocity of the body 
and longitudinal/lateral accelerations of vehicle’s center of 
mass should be provided for stability control systems. All of the 
required states except those corresponding to stability control 
are difficult to measure. Hence, they are selected as system 
states to be estimated by the EKF. The following state vector is 
introduced  

             Txxx ],...,[ 161=                                   (8) 
where 1x  to 8x  are relative displacement and velocity of each 
vehicle shock 

)( 11 zabzx CG −−+= θϕ  
)( 12 zabzx CG &&&& −−+= θϕ  
)( 23 zabzx CG −++= θϕ  
)( 24 zabzx CG &&&& −++= θϕ  
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)( 35 zabzx CG −−+= θϕ  
)( 36 zabzx CG &&&& −++= θϕ  
)( 47 zabzx CG −+−= θϕ  

                           )( 48 zabzx CG &&&& −+−= θϕ                         (9) 
and 9x to 16x are deflections and absolute velocities of each 
wheel 

)( 119 rzzx −=  
110 zx &=  

)( 2211 rzzx −=  
212 zx &=  

)( 3313 rzzx −=  
314 zx &=  

)( 4415 rzzx −=  
                                        416 zx &=                                      (10)        
    In equation (10), the road profile at each wheel is 
represented by riz ’s with 3,2,1=i and 4 . Having obtained the 
above sets of states, vehicle dynamics can be expressed in the 
following state space form: 

wLuBxAx ++=&                              (11) 
where u is the input vector  

T
rrrr zzzzu ],,,[ 4321 &&&&=                        (12) 

and w denotes external disturbance exerted to the system. It is 
assumed to be white noise with its power demonstrating the 
level of confidence respect to the given model.  

SENSORS/KINEMATIC MODEL INTEGRATION USING 
EKF 

Sensors configuration 
The sensor configuration should be capable of providing 

enough information about each wheel’s motion as well as the 
car body’s dynamic behavior. Since relative velocity 
suspension systems and absolute velocity of each hub are 
importance for RSC’s, two accelerometers are suggested to be 
installed at the ends of each automobile damper, (i.e. eight 
total). In addition, sensors mounted at each wheel hub provide 
the estimator sufficient information about the road 
disturbances.  An IMU mounted close to vehicle’s center of 
mass is also proposed to capture angular motion of the body as 
well as lateral acceleration of the CG for feedback to the 
stability controller. It should be noted that vertical acceleration 
of the CG has been utilized by some researchers as a key 
parameter in optimal ride control systems [7]. 
 
 

 
 

Figure 2 Configuration of sensors and IMU mounted 
on the vehicle  

Figure 2 shows the Toyota Tercel with 8 MechSenseTM 
MD S 202 –U accelerometers mounted on the both ends of the 
shock absorbers (dampers) of each suspension system. A 
MechSense IMU was also installed near the center of gravity. 
Two string potentiometers Model # 0173-0161 were also 
mounted on the left front and rear suspensions. The 
displacement sensors are used only as a research tool to provide 
truth data of the actual displacements. 

 

 
Figure 3 Accelerometer mounted on the bottom of a      
damper to measure the vertical acceleration of the 
wheel hub  

Table 1 provides important specifications of the 
accelerometers and IMU sensors. The complete information 
can be found in corresponding data sheets [13]. Furthermore, 
the outputs of all sensors sampled at a rate of 1000 HZ at 12 bit 
resolution are sent through an RS232 level serial interface to an 
onboard computer. Figures 3 shows an accelerometer mounted 
to the wheel end of the left front suspension system of the 
Tercel.  
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Gyroscopes 
Scale Factor Error 
Noise Density 
Linear Acceleration Effect 

        Bandwidth 
 
Accelerometers 

Scale Factor Error 
Noise Density 
Bandwidth 

 
FS%1.0  

0.05 Hzsec/deg/  
0.2 deg/sec/g 
40HZ 
 

FS%3.0  

200-1000 Hzg /µ  
50HZ 

 Table 1 Specification of the individual sensors 
Having considered the aforementioned sensory collection, 

the measurement model of the system can be described as a 
nonlinear combination of the predefined sixteen states as 
follows: 

kk vkkxhz += )],[(                             (13) 
with measurement vector 

T
whwhwhwhDCBACGk aaaaaaaaaz ],,,,,,,,,,[ 4321θϕ &&= (14) 

and elements of the non-linear function h  are as follows 

                                    CGzh &&=)1(  
                      bxxxxh 2/)()2( 141062 −+−=  
                      axxxxh 2/)()3( 121042 +−+−=                 (15) 

Acceleration of each corner of the car body can be related 
to acceleration of the CG applying Coriolis law 
                  B

i
BB

i
BBB

CG
B
i rraa ×+××+= αωω )(            (16) 

Superscript B denotes vectors have been expressed in body 
reference frame of the vehicle centered at CG. B

ir  with 
DandCBAi ,,=  is the coordination vector of each body 

corner in body reference frame (see Figure 1). Also, angular 
acceleration of the vehicle in body frame is 
                                TB ],,[ ψθφω &&&=  

TB ],,[ ψθφα &&&&&&=                                   (17) 
Assuming negligible yaw motion of the vehicle, after some 
mathematical manipulation, acceleration of body ends of each 
damper can be described as 

φθθφ &&&&&&&& bahzh CG +−+−= )()4( 22
 

φθθφ &&&&&&&& bahzh CG +++−= )()5( 22
 

φθθφ &&&&&&&& bahzh CG −−+−= )()6( 22  

                    φθθφ &&&&&&&& bahzh CG −++−= )()7( 22                 (18) 
and signal of the accelerometers attached to each wheel hub are 
given by equation (13)   

1)8( zh &&=  

2)9( zh &&=  

3)10( zh &&=  
                                       4)11( zh &&=                                   (19) 

The measurement noise vk is assumed to be zero-mean 
Gaussian noise with covariance Rk. The power matrix of the 
measurement noise is determined based on the sensor 
characteristics given in table 1.  

Discrete EKF structure 
The EKF works on a prediction-correction basis. First, it 

makes a prediction using previous states and the 7DOF car 
model. Then, the predicted states of the vehicle are updated 
incorporating 8 accelerometer and IMU signals.  Available 
information weighted by their confidence level are 
incorporated together to get the most reliable and accurate 
vehicle states. The measurement update is generally given by 
[14] 

)))(ˆ(()(ˆ)(ˆ −−+−=+ kkkkk xhzKxx                   (20) 

kK  is the Kalman gain and  described by  

     1])([)( −+−−= k
T
kkk

T
kkk RHPHHPK                  (21) 

In the above equation, matrix kH  is a Jacobian resulting from 
the Taylor series expansion evaluated at the prior estimate of 
the system state at kt =  , 

)(][][
)],[(

−=∂
∂

=
kxkx

k kx
kkxh

H                          (22) 

The estimation error covariance matrix is corrected by 
modified formula which reduces the probability that the error 
covariance matrix becomes negative definite 

T
kkk

T
kkkkkk KRKHKIPHKIP +−−−=+ ))(()()(       (23) 

Between measurements a discrete model of the sampled data 
system can be used to propagate the estimated states. The 
above mentioned model digitized by a zero-order hold can be 
written as 

kkdkk wuBxkkx ++++Φ=−+ )(ˆ),1()(ˆ 1                  (24) 
where state transition matrix is the following exponential series 

)exp(),1( TAkk ∆=+Φ                             (25) 
and input matrix becomes [15] 

∑∫
⋅

+∆

Ι+
∆

==
)1(

1

0 k
TABdeB

kkT A
d ξξ                 (26) 

The error covariance matrix is propagated between 
measurements applying the following equality 

k
T

kk QkkPkkP ++Φ++Φ=−+ ),1()(),1()(1       (27) 

kQ is the power of the discrete process noise and is related to 
the continuous process white noise covariance matrix by the 
equation (28)  

                    ∫
+

ΦΦ=
1 ),()(),(k

k

t

t
T

k dktQkQ τττ  

k
T
kk QwwE =                                       (28) 
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The EKF structure described by equations (20) to (28) is then 
applied to state estimation of the aforementioned 7DOF full car 
system.  

State estimation of the 7DOF car model 

Simulation Results 
Computer simulation of the designed EKF was performed 

for two different situations. The first EKF deals with a non-
linear time varying dynamic system which receives damping 
coefficient feedback from a semi-active suspension controller. 
The controller adjusts the damping values in order to improve 
ride and handling performance of the Tercel. In the second 
situation, damping coefficients of the semi-active suspension 
systems remain constant. Simulations of the first situation 
demonstrate the EKF’s ability to handle uncertain time varying 
dynamics. Simulations of the second situation illustrates that 
even in a time invariant system, relative displacement states are 
not observable. Both simulation situations utilize equation (11) 
as process dynamics and (13) as the measurement system 
model.  For both cases, the road input to the 7DOF car model is 
a sinusoidal signal with frequency of 5 sec/rad and amplitude 
of 0.15 m . 

   
Figure 4 Estimated [Blue] and actual states [Red] of 
the LF suspension system (controlled semi-active 
suspension system)  

All parameters in 7DOF car model have been set based on 
Toyota Tercel Specifications (see the appendix). Figure 4 
compares the designed EKF estimation results and actual states 
of vehicle LF suspension system. These states are relative 
displacement and velocity of the shock, absolute velocity of 
wheel hub and tire deflection. It is evident that the EKF can 
effectively estimate the aforementioned states.    
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Figure 5 Actual relative displacement and velocity 
[red] of the LF suspension system with their 
estimations [blue] (uncontrolled semi-active system) 
 

Simulation results of the second situation are given in 
Figure 5 and 6. The simulation time has been extended to 60 
seconds in order to illustrate quick degradation in relative 
displacement and tire deflection estimations. This happens for 
all four suspension systems. It should be noted that suspension 
system relative velocity and absolute velocity of the wheel hub 
remain accurate. It suggests that the proposed sensor 
configuration would be suited for control applications which 
rely on relative deflection information of vehicle suspension 
systems.    
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Figure 6 Actual Tire Deflection and Wheel hub 
Velocity [red] of the LF suspension system with their 
estimations [blue]  

Figure 7 illustrates estimation errors and their 
corresponded variances reported by EKF. It demonstrates that 
with time increasing, the EKF confidence to the estimated 
relative displacement state is decreased. It is obvious that the 
variance related to relative velocity estimation error remains 
constant. Figure 7 also zoomed on the first 20 seconds to imply 
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how much fast only with 2 or 3 iterations the EKF estimated 
states converge to the actual vehicle states. 
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Figure 7 The graph illustrates relative displacement 
and velocity estimation error variances +/-σ  for the 
LF suspension system. 

 

Experimental Results 
In order to validate the EKF, the Tercel was driven with a 

speed 30 hkm /  over a road with a hole, bump, and also 
smooth sections as shown in figure 8. Sensor data including 
eight accelerometers, an IMU were stored at sampling rate of 2 
ms.     

 

 
Figure 8 Bump (Road Ring, University of Waterloo) 

As shown in the Figure 9 to 12, EKF can effectively 
estimate all of the states of the LF suspension system. The 
figures have been zoomed on the time segment for which the 
car passes over the hole and bump to clarify the effectiveness 
of estimation process. However, it has been demonstrated that 
estimation error corresponded to relative displacement would 
gradually grow (see Figure 5 and 7). It also should be 
mentioned that when the suspension system is compressed, the 
string potentiometer can not capture the relative displacement. 
Therefore, truth data in negative displacement regions of 
Figures 9 is unreliable.    
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Figure 9 The graph compares the LF suspension 
system true relative displacement [red] with their 
estimations [blue]   

 
Road input is provided by appropriately filtering a white 

noise. The following first order shape filter with appropriate 
bandwidth has been used to provide u in equation (12) 

SF

SF
SF s

F
β

α
+

=                                       (29) 

The bandwidth and DC value of the shape filter were selected 
to be able to mimic the road profiles of 4-12cm height and with 
vehicle velocities within 25-45 hkm / .  Road input 
uncertainties were partially compensated in the process noise 
power. 

22 24 26 28 30 32 34 36 38 40
-15

-10

-5

0

5
x 10-3

 z
w

 (m
) 

22 24 26 28 30 32 34 36 38 40
-0.6

-0.4

-0.2

0

0.2

0.4

 v
w

 (m
/s

) 

Time (sec)  
Figure 10 The graphs estimate the tire deflection and 
velocity of the wheel hub for LF wheel  

 
Measurement residuals (or innovation) obtained by 

comparing the filter outputs to the measurements at each time 
step are given in figures 11 and 12. Consistency between the 
residuals and their expected covariance bands is interpreted as 
the best reliability indicator of EKF’s.  Assuming Ergotic 
properties for the innovation and that the process and 
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measurement noises are uncorrelated, the measurement residual 
covariance and average can be expressed as 

k
T
kkk

T RHPHzzzzE +−=−− )()ˆ)(ˆ(               (30) 

0)ˆ( =− zzE                                (31) 
where z is the actual measurement vector captured from the 
aforementioned eleven sensors and ẑ  is the estimated 
measurement vector by the EKF. 
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Figure 11 The graph illustrates innovation signal 
corresponded to accelerations of four corner of the 
car body [red]. Blue curves are expected variance +/-
σ of each residual. 

Figure 11 compares EKF residuals corresponding to each 
accelerometer signal attached to Tercel body corners 
(points DandCBA ,, , see figure 1) and the expected variances 
from equation (30). The same scenario has been depicted in 
figure 12 for signals of the accelerometers mounted on each 
wheel hub. It can be seen that the variances of measurement 
residuals are similar to the EKF predictions. It is also obvious 
that measurement residuals have expected values of zero to 
satisfy equation (31). Finally, it demonstrates that the 
measurement model and the covariance matrix of the 
measurement vector have been selected properly.     

0 10 20 30 40
-100

-50

0

50

100

a W
hL

F (m
/s

2 )

0 10 20 30 40
-100

-50

0

50

100

a W
hL

R  (
m

/s
2 )

0 10 20 30 40
-100

-50

0

50

100

a W
hR

F (m
/s

2 )

Time(sec)
0 10 20 30 40

-100

-50

0

50

100

a W
hR

R (m
/s

2 )

Time(sec)  
Figure 12 The graph illustrates innovation signal 
corresponded to each accelerometer attached to 
each wheel [red]. Blue curves are expected variance 
+/-σ of the residuals. 

CONCLUSION 
The paper proposed a distributed sensors system in order 

to capture vehicle dynamic behavior. Eight accelerometers 
were proposed to be installed, with two at each end of a 
suspension system. The accelerometers can provide rich 
information of vehicle suspension systems as well as road 
profiles. An IMU close to vehicle CG is also suggested to 
measure angular motion of the car and provide lateral 
acceleration to be used by stability controllers.  

An EKF was designed to incorporate all sensors signals 
and a full car kinematics model to estimate the states required 
by the RHSC’s. Both simulation and experimental results 
demonstrate that the proposed sensors configuration with a 
7DOF car model can provide enough information to estimate 
relative velocity and absolute velocity states with sufficient 
accuracy.  Also, based on the results relative displacement 
states are not observable using the aforementioned sensors set. 
Fortunately, all of the practical Ride and handling controllers 
rely on relative and absolute velocity states and acceleration of 
ends of suspension systems. Future work will minimize the 
number of sensors with maintaining the EKF estimation 
quality. Also, studies into incorporating vehicle dynamic lateral 
modes into the EKF will be carried out to estimate tire friction 
forces as well as tire sideslip angle which are feedbacks of the 
ABS and traction control systems.  
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NOMENCLATURE 

 
2423 kgmI xx =  Car body moment of inertia around its 

longitudinal axis 
21537 kgmI yy =  Car body moment of inertia around its lateral 

axis 
ma 25.1=  Half of the distance within two suspension system 

along x axis  
mb 6.0=  Half of the distance within two suspension system 

along y axis 
mh 25.0= Height of each corner of the car body above the CG 

along z direction 
kgm 7.1361= Mass of the car body 

kgmwF 50= Mass of front wheels 
kgmwR 50= Mass of Rear wheels 

mNCLF sec/10162=  Nominal Damping coefficient of Left 
Front suspension system 

mNCLR sec/10162=  Nominal Damping coefficient of Left 
Rear suspension system 

mNCRF sec/10162=  Nominal Damping coefficient of Right 
Front suspension system 

mNCRR sec/10162=  Nominal Damping coefficient of Right 
Rear suspension system 

mNksF /27000=  Spring coefficient of front suspension 
systems 

mNksR /27000=  Spring coefficient of rear suspension 
systems 

mNkwF /150420=  Front tires spring coefficient 
mNkwR /150420=  Rear tire spring coefficient 

)(ˆ +kx  Updated estimate of the system state at 
thk  step 

)(ˆ −kx  Predicted estimate of the system state at 
thk  step 

)(−kP  Updated estimation error covariance matrix at 
thk  step 

)(+kP  Predicted estimation error covariance matrix at 
thk  step 

SFβ  Bandwidth of the shape filter  

SF

SF

β
α

 DC value of the shape filter 
 
 

 


