
Proceedings of
ASME 2006 International Student Conference

May 26-28, 2006, Istanbul, Turkey

SOFTWARE AND CONTROL ARCHITECTURE DEVELOPMENT OF AN
AUTONOMOUS VEHICLE

Keith Yu Kit Leung, MASc Candidate
Lab for Autonomous and Intelligent Robotics

Department of Mechanical Engineering
University of Waterloo

Waterloo, Ontario, N2L 3G1
Canada

Email: kykleung@lair.uwaterloo.ca

Christopher M. Clark, Assistant Professor
Jan P. Huissoon, Professor

Lab for Autonomous and Intelligent Robotics
Department of Mechanical Engineering

University of Waterloo
Waterloo, Ontario, N2L 3G1

Canada
Email: cclark@mecheng1.uwaterloo.ca, jph@uwaterloo.ca

ABSTRACT
This paper presents the design and development of the

software and control architecture of the Centaur, an au-
tonomous amphibious and all-terrain utility vehicle project.
The adaptation of a hybrid between planning and behaviour
based control architectures for the vehicle is explained us-
ing decomposition methods. This paper will show how sub-
systems relate and operate with each other to accomplish the
four essential tasks of perception, localization, cognition, and
motion control. Implementation of the control architecture into
a multithreaded and modular based software structure will
be described. The discussion on software development will
also include interfacing with hardware components on the au-
tonomous vehicle and the design of a user interface.

INTRODUCTION
The Centaur, shown in figure 1, is an amphibious all- ter-

rain utility vehicle suitable for many outdoor applications. In
January 2006, a project was started at the University of Wa-
terloo to convert a Centaur, donated by its manufacturer On-
tario Drive and Gear, into an autonomous vehicle. The first
step in the project was to define the desired level of autonomy,
and a goal was set to develop the vehicle to be capable of au-
tonomously traveling to pre-specified waypoints. When this is
accomplished, the level of autonomy will be increased with the
addition of a motion planner that can generate a waypoint list
from some given start and goal positions. The objective of this
paper is to provide documentation of the software and control
architecture developed and used for the vehicle. The software
developed serves as an architecture for linking specific sys-
tem components for the autonomous vehicle, to be developed
by other designers. Furthermore, this paper shows the poten-

tial of using a general purpose computer together with various
sensors and actuators to create an autonomous vehicle.

Figure 1. The Centaur

Control and processing of information for the vehicle is
performed on a laptop running the autonomous vehicle sys-
tem software. In many autonomous vehicle projects, multiple
high performance computers are used. Examples of this can be
found on vehicles competing in the DARPA Grand Challenge
autonomous vehicle competition such as the entry presented
in [1], which required the use of six Pentium-4 based computer
systems. At the current stage of development of the Centaur,
it is desireable to minimize the number of computers that will
be required to control the vehicle autonomously. Being able
to achieve this objective with a typical laptop computer elimi-
nates the cost penalty of expensive high performance comput-
ers, and presents the potential of manufacturing cost effective
autonomous vehicles in the future. The concept of using a lap-

1 Copyright c© 2006 by ASME



top, as opposed to a complex fixed vehicle computer system,
presents several additional benefits. These include allowing
multiple designers to develop software modules for the vehi-
cle offline and connect to the vehicle for testing, and the fact
that a laptop is physically smaller, making it more convenient
to install on the vehicle.

The autonomous vehicle system software is programmed
in C++ and runs under the Windows XP operating system.
While different operating systems such as Linux have their
advantages and disadvantages compared with Windows, the
choice of the specific operating system is mainly attributed to
accessibility. Windows XP is a popular operating system and
this allows any user who has obtained the vehicle control soft-
ware to connect and operate the vehicle. Microsoft Foundation
Class (MFC) libraries are used to simplify programming for
the Windows environment.

In terms of hardware, it is necessary for the computer run-
ning the software to be equipped with at least one universal se-
rial bus (USB) port to use all available modes of the program.
The Centaur is equipped with a USB hub through which all
the sensors and actuators on the vehicle are connected. A lap-
top with an Intel or compatible processor is also required, as
the hardware counter on the CPU will be used by the vehicle
control software.

The underlying architecture of the autonomous vehicle
system software was designed with modularity as an impor-
tant consideration. Modularity allows different functions to be
localized, which will make debugging easier, and allows for
the study of the effects when a specific module of the vehicle
is tuned [2] .

A multi-threaded program structure is also required for the
autonomous vehicle application since the software is required
to simultaneously read from various sensors operating at dif-
ferent frequencies, while performing the required computation
for vehicle motion control [3]. At the moment, the software
is capable of communicating with a global positioning system
(GPS) receiver, an inertial measurement unit (IMU), a laser
range finder, and stepper motors linked to the vehicle’s throttle
body and steering system.

The vehicle control software provides two running modes:
simulation and real time vehicle control. Most system modules
operate identically in both modes, with the exception of hard-
ware communication threads which are disabled and replaced
by a simulator module that generates artificial sensor readings.

Interaction with users occur during program startup con-
figuration through dialog windows. Settings for the serial ports
can be configured through these dialog windows. The file log-
ging option can also be activated at start up. Additionally,
vehicle waypoints are manually entered using the waypoint
manager before the software takes control of the vehicle. A
graphical user interface (GUI) is available during run-time to
display vehicle information in both simulation and real-time
autonomous operation mode.

CONTROL ARCHITECTURE
The autonomous vehicle system employs a hybrid of plan-

ning and behaviour based control architectures. Using an

episodic planning system, the cognition routine of creating
or modifying the waypoint list is performed during program
startup and when the vehicle is blocked by an obstacle.

The point tracker module acts as a behaviour, mapping
estimated position to desired forward and angular (yaw rate)
velocities. These desired velocities are passed to the low level
control to determine the appropriate throttle and steering in-
puts. Figure 2 summarizes the control architecture.

Figure 2. HYBRID CONTROL ARCHITECTURE

A temporal decomposition of the control architecture is
shown in figure 3, showing the bandwidth of various compo-
nents and functions of the vehicle control software. Due to
the bandwidth of different components of the system, a mul-
tithreaded program structure is required. The reported band-
width of the motion control loop of 20000 Hz is an estimation
obtained in simulation mode using the precision timer of a Dell
Inspiron 6000 laptop with a 1.5 GHz Intel processor. This is
expected to decrease in real-time vehicle control mode as addi-
tional threads will be running to communicate with hardware
components. Nevertheless, the decrease in bandwidth is not
expected to adversely affect system performance in terms of
vehicle responsiveness.

SOFTWARE STRUCTURE AND SYSTEM MODULES
System modules for the autonomous vehicle can be clas-

sified into five groups: Perception, localization, cognition, mo-
tion control, and overhead components. To elaborate on these
groups and explain these in the context of autonomous vehi-
cles, perception involves taking sensor readings, which gen-
erally involves information from which position, velocity and
acceleration can be derived. Determination of these states is
known as the localization process. The vehicle control soft-
ware currently contains two localization methods: Kalman fil-
ter localization, and particle filter localization. A description
of how these filters work is beyond the scope of this paper, but
there are many references available on these topics in literature
such as [4] and [5].

Once the state of a vehicle is known, the cognition pro-
cess addresses how and where it should move to reach its goal.

2 Copyright c© 2006 by ASME



Figure 3. TEMPORAL DECOMPOSITION

Finally, the motion control component addresses what a vehi-
cle needs to do to move according to the cognition process.
Figure 4 summarizes this grouping and figure 5 shows the in-
teraction between modules through a control decomposition.

Figure 4. MODULE CLASSIFICATION

Multithreading
As explained previously, since sensors run at different fre-

quencies, perception modules require individually dedicated
program threads. Only a single localization routine is used
for state estimation, and this is selected in the program startup
configuration. The selected localization routine also requires a
dedicated thread, as processing time may affect the bandwidth
of the entire system if it runs in series with motion control
modules. Motion control components run in the main pro-
gram thread with the exception of the module that handles
communication with the stepper motors for controlling throt-

Figure 5. CONTROL DECOMPOSITION

tle and steering. Figure 6 summarizes the usage and purpose
of threads in the program.

Figure 6. THREAD USAGE SUMMARY

With a multi-threaded program structure, it is important to
ensure that one thread does not write to memory while another
thread is also writing or reading to the same memory block.
The outcome of such event is often unpredictable [6]. This
concern is solved by using critical sections, a type of object
available through the MFC library that handles multithread ac-
cess control. Multiple threads also imply conflicting competi-
tion for processing time. MFC event objects are used to pause
threads that are waiting to act on the arrival of future data. This
is a much more efficient method of handling waiting routines
compared to polling. Polling is a technique used to continually
check on the status of something in a loop until the desired
status has been reached. The problem with this technique is
the inefficient use of computation cycles. While this method
may be justified for use if the CPU has no better actions to
perform [3], this is not the case with the autonomous vehicle

3 Copyright c© 2006 by ASME



system. The event trigger method uses the built in message
system of the Windows operating system, and can be viewed
as a software version of hardware interrupt routines.

HARDWARE INTERFACING
The autonomous vehicle system software will be receiv-

ing data from a GPS receiver, an IMU, a laser rangefinder,
and stepper motors as shown in figure 7. With serial com-
munication, the same argument for multithreading can be ap-
plied in terms of reading data in the receive buffer. Instead
of constantly polling newly received characters in the serial
port buffer, a communication routine should pause until a new
incoming character is detected in the respective input buffer.
When a piece of data has been successfully and completely re-
ceived, a trigger should then set off for any threads waiting to
process the new data.

Figure 7. HARDWARE COMPONENTS USED ON THE CENTAUR

Serial transmission of commands is only performed to the
stepper motors. Since the motors are mechanical systems with
relatively low bandwidth compared to the processing speed of
all other program routines, commands are only sent out at a
frequency of 10 Hz, even though they are calculated at a much
higher rate in the motion control program loop. The output
frequency was selected by testing various other frequencies on
the actual vehicle.

THE SIMULATOR
When the autonomous vehicle system is in simulator

mode, desired throttle and steering commands are not trans-
mitted to the stepper motor hardware, but become inputs to the
simulator module instead, as shown in figure 5.

Within the simulator module, the vehicle model is used to
determine the accelerations and angular velocities of the vehi-
cle based on the throttle and steering inputs. The details of the
vehicle model will not be discussed in this paper, but acceler-
ations and angular velocities are integrated over the period of
a simulation time step using a set of differential equations to
generate a real vehicle state in the virtual world.

Acceleration and angular velocities calculated by the ve-
hicle model are also used to generate IMU readings by adding
noise based on a Gaussian distributed model. This model is
based on real IMU data gathered on the Centaur, and the gen-
erated IMU data is used by the chosen localization routine to
come up with new state estimates.

Along with IMU readings, GPS data is also generated by
the simulator by adding bias and noise to the real vehicle po-
sition. Again, the noise added is based on the characteristic of
the GPS receiver observed in field tests. While the noise is nor-
mally distributed, the bias is programmed to slowly drift over
time and jump occasionally to simulate GPS satellites entering
and exiting the field of view of the receiver. The likelihood of
a jump increases with time elapsed since the last jump.

To keep track of simulation time steps, and for generating
IMU and GPS readings at the correct frequency, the precision
timer of the CPU is used. The timer actually operates as a 64-
bit counter which is reset when the computer starts up. The
counter is incremented every CPU cycle and by knowing the
CPU frequency, time intervals can be calculated.

GRAPHICAL USER INTERFACE

The autonomous vehicle system software uses dialog
boxes at startup, as shown in figure 8, and a graphical window
during other times to interact with users. A command prompt
style window is also available for displaying data which is
useful for debugging. The graphical window is programmed
using the OpenGL application programming interface. This
graphical window is capable of showing the real and estimated
vehicle states with 3D vehicle models in simulation mode.
The current waypoint is also displayed. In real-time operat-
ing mode, only the estimated state and the waypoints will be
shown. Camera views can be cycled through at any time with
a single keystroke to give various top down views and vehicle
chase views. Detailed figures such as exact vehicle coordi-
nates, IMU and GPS outputs can also be toggled on and off.
Other functions that can be triggered through the GUI include
program exit and simulation reset. Figure 9 is a screenshot of
the GUI window.

Figure 8. CONFIGURATION DIALOG BOXES AT PROGRAM
STARTUP

4 Copyright c© 2006 by ASME



Figure 9. GRAPHICAL USER INTERFACE

PROGRAM MANAGER AND VEHICLE INFORMATION
STORAGE

Several overhead modules are required for the operation
of the software. The program manager takes care of storing
configuration settings, and ensures that the proper threads are
initiated in different program modes. It also ensures that all
threads exit properly and all communication ports are closed
when the program exits or resets. Furthermore, the precision
timer resides within the program manager to provide accessi-
bility to all program modules.

To exchange information between different program mod-
ules, a vehicle information storage class was created. This
class is responsible for storing the latest vehicle state estimate
and sensor readings. Member functions of this class used for
updating and reading data are enhanced with critical section
objects for safe multithreading access as explained previously.
All modules within the program have access to this class.

A file logging option can be activated during program
startup. This data logger will record vehicle states at a fre-
quency of 10 Hz. To prevent the file writing process from im-
peding other more important routines essential to vehicle op-
eration, memory is allocated on the heap for storing the logged
data. As data entries increase, reallocation of memory can oc-
cur when the previously allocated block of memory is unable
to hold more data. The newly allocated block will be twice the
size of the previous. If reallocation is unsuccessful because
there is a lack of free memory, the logged data will be written
to file immediately. The logged data is also written to file just
before the program exits.

CURRENT PROGRESS
All individual components of the vehicle control software

have been tested in simulation. Simulation results show that
the vehicle is able to follow any set of waypoints with all the
modules of the vehicle control software working collectively.
Low level control of the vehicle has been tested in field tests
and shown to work successfully with desired velocity inputs

from the point tracker system. The next step of the project is
to have all components tested individually in real life and have
all components work together to navigate the vehicle through
a simple set of waypoints.

FUTURE WORK
Continual development of individual modules of the ve-

hicle control system will be carried out to improve the per-
formance of the vehicle. Particular areas of potential improve-
ments include the vehicle model, the low level control routines,
as well as localization methods. Field tests will allow the ve-
hicle model to become more accurate and allow fine tuning of
the low level control routines. Testing will also allow param-
eters of localization methods to be tuned to perform better in
the real world.

From simulation runs, it was estimated that the motion
control loop is capable of running at 20000 Hz. Since this
bandwidth is more than adequate for responsive vehicle perfor-
mance, and since communication with the the stepper motors
only occurs at 10 Hz, computation time could be allocated to
other routines such as localization. Currently, the Kalman lo-
calization routine is sometimes unable to keep up with incom-
ing data from the IMU and will occasionally miss a reading.
By increasing the priority of the localization routine, the situ-
ation should improve, although experimentation is required to
observe how this change will affect the rest of the system.

Through the development of the software, limitations im-
posed by the Windows operating system were observed. For
instance, moving a window while the program is running will
actually pause the program and affect timing and calculations.
Also, the autonomous vehicle system is not guaranteed to be
allocated full CPU usage as Windows manages the available
resources to all other running programs. An investigation into
other operating systems will be performed.

The Centaur has a sister amphibious vehicle named the
Argo. For future research involving autonomous control of
multiple vehicles, a radio transceiver should be added to the
arsenal of hardware onboard the Centaur. The development of
sophisticated motion planning module is also a part of future
plans to make the vehicle more autonomous and eliminate the
need for users to specify waypoints between the start and goal
positions.

CONCLUSION
The development of the autonomous vehicle system soft-

ware for the Centaur has been generally successful. The soft-
ware architecture provides the link between different modules
and it allowed individual systems to demonstrate their perfor-
mance through simulation. The software was also useful in the
development of components that interact with hardware com-
ponents. It is important to realize that the equipment required
to create an autonomous vehicle such as the Centaur does not
necessarily require a large monetary resource for backing the
project. The work that has been done so far will serve as the
foundation of future research and development of vehicle au-
tonomy.

5 Copyright c© 2006 by ASME



ACKNOWLEDGMENT
The Centaur along with its sister vehicle Argo were do-

nated to the University of Waterloo by Ontario Drive and Gear.

REFERENCES
[1] U. Ozguner, K.A. Redmill, A. B., 2004. “Team terramax

and the darpa grand challenge: A general overview”. In
IEEE Intelligent Vehicles Symposium, pp. 232–237.

[2] Siegwart, R., and Nourbakhsh, I., 2004. Introduction to
Autonomous Mobile Robots. Massachusetts Institute of
Technology.

[3] Valvano, J., 2000. Embedded Microcomputer Systems:
Real Time Interfacing, 2nd Edition. Thomson-Engineering
Pulishers.

[4] Gelb, A., ed., 1999. Applied Optimal Estimation. Mas-
sachusetts Institute of Technology.

[5] Doucet, A., Freitas, N., and Gordon, N., eds., 2001. Se-
quential Monte Carlo Methods in Practice. Springer.

[6] Plauger, P., 2002. Thread safety in the standard c++ li-
brary. MSDN Library.

6 Copyright c© 2006 by ASME


