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Abstract— Accurate modeling and simulation of underwater
vehicles is essential for autonomous control. In this paper, we
present a dynamic model of the VideoRay Pro III microROV,
in which the hydrodynamic derivatives are determined both
theoretically and experimentally, based on the assumption that
the motions in different directions are decoupled. The experi-
ments show that this assumption is reasonable within operating
conditions of the VideoRay Pro III. A computer simulation with
3D graphics is also developed to help user to visualize the vehicle’s
motion.

I. INTRODUCTION

Remotely operated vehicles (ROVs) and autonomous un-
derwater vehicles (AUVs) have been applied in the offshore
oil industry, salvage, minehunting, fishery study and other
applications where their endurance, economy and safety can
replace divers. More recently, there has been a trend to use
smaller autonomous vehicles, both tethered and untethered, in
lakes and rivers.

Required for autonomous control of such underwater vehi-
cles is a dynamic model. Accurate dynamic models are crucial
to the realization of ROV simulators, precision autopilots and
for prediction of performance [8] [9].

However, the modeling and control of underwater vehicles
is difficult. The governing dynamics of underwater vehicles
are fairly well understood, but they are difficult to handle for
practical design and control purposes [6] [2]. The problem
includes many nonlinearities and modeling uncertainties.

Many hydrodynamic and inertial nonlinearities are present
due to coupling between degrees of freedom [3]. For example,
currents usually exist in the underwater environment which
become coupled with the direction of motion. The presence
of these non-linear dynamics requires the use of a numerical
technique to determine the vehicle response to thrusters inputs
and external disturbances over the wide range of operating
conditions.

In general, modeling techniques tend to fall into one of two
categories [4]: 1) predictive methods based on either Compu-
tational Fluid Dynamics or strip theory, and 2) experimental
techniques.

In this paper, a dynamic model of the VideoRay Pro III mi-
cro ROV is presented, using both strip theory and experimental
techniques. In determining the model parameters, a series of
experiments were performed in the Experimental Fluids Lab at
the University of Waterloo. These experiments provided data
for system identification.

(a) VideoRay Pro III (b) 3D Model

Fig. 1. VideoRay Pro III

The VideoRay Pro III is a small inspection-class personal
ROV, with hundreds of units in operation around the world.
It is designed for underwater exploration at maximum depth
of 500 feet (152 meters) deep. The basic system includes a
submersible, an integrated control box, a tether deployment
system, and a tool kit. The vehicle has three control thrusters,
two of which for horizontal movements, one for vertical
movements. It is positive buoyant and hydrostatically stable
in the water due to its weight distribution. The vehicle is
equipped with a system of sensors including front facing and
rear facing cameras, depth gauge and heading meter. Two
horizontal thrusters and one vertical thruster are used to control
the movement of the VideoRay, (see Fig. 1).

II. VEHICLE DYNAMICS

A. 6-DOF Reference Frames

Underwater vehicle models are conventionally represented
by a six degree of freedom, nonlinear set of first order
differential equations of motion, which may be integrated
numerically to yield vehicle linear and angular velocities,
given suitable initial conditions.

The vehicle is considered as a 6 DOF free body in space
with mass and inertia, being acted on by numerous forces.
Two reference frames are used to describe the vehicles states,
one being inertial frame (or earth-fixed frame), one being local
body-fixed frame with its origin coincident with the vehicle’s
center of gravity, and the 3 principle axes in the vehicle’s
surge, sway and heave directions. (see Fig. 2)

For marine vehicles, the 6 degree of freedom are conven-
tionally defined as surge, sway, heave, roll, pitch and yaw,



which are defined by the following vectors [3]:
• η = [x y z φ θ ψ]T : position and orientation (Euler

angles) in inertia frame;
• ν = [u v w p q r]T : linear and angular velocities in

body-fixed frame;
• τ = [X Y Z K M N ]T : forces and moments acting on

the vehicle in body-fixed frame.
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Fig. 2. Body-fixed and inertial reference frames

B. Equations of Motion

The mathematical model of an underwater vehicle can be
expressed, with respect to a local body-fixed reference frame,
by a nonlinear equations of motion in matrix form [3]:

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ (1)

η̇ = J(η)ν (2)

where:
M = MRB + MA is the inertia matrix for rigid body and

added mass, respectively;
C(ν) = CRB(ν) + CA(ν) is the coriolis and centripetal

matrix for rigid body and added mass, respectively;
D(ν) = Dquad.(ν) + Dlin.(ν) is the quadratic and linear

drag matrix, respectively;
g(η) is the hydrostatic restoring force matrix;
τ is the thruster input vector;
J(η): is the coordinate transform matrix which brings the

inertial frame into alignment with the body-fixed frame:

J(η) =
[
J1(η) 0

0 J2(η)

]

J1(η) =


cψcθ −cψ + cψsθsφ sψsφ+ cψsθcφ

sψcθ cψcφ+ sψsθsφ −cψsφ+ sψsθcφ
−sθ cθsφ cθcφ




J2(η) =


1 sφtθ cφtθ

0 cφ −sφ
0 sφ/cθ cφ/cθ




Note that J2 above is singular for θ = ±90◦. VideoRay
Pro III is unlikely to ever pitch anywhere near ±90◦ while
underway, and for this reason we choose to define the trans-
formation matrices J1 and J2 in terms of the familiar and
widely used Euler angles.

C. Hydrodynamic Derivatives

In the vehicle equations of motion (1) and (2), external
forces and moments, such as hydrodynamic drag force, actua-
tor thrust, hydrodynamic added mass forces, etc. are described
in terms of vehicle’s corresponding hydrodynamic coefficients.
These coefficients are expressed in the form of hydrodynamic
derivative which are in accordance with the SNAME (1950)
notation. For example, axial quadratic drag force can be
modeled as:

X = −(
1
2
ρCdAf )u|u| = Xu|u|u|u|,

which implies that the drag force derivative in surge direction
with respect to u|u| is:

Xu|u| =
∂X

∂(u|u|) = −1
2
ρCdAf .

Note that the VideoRay Pro III underwater vehicle is
symmetric about the x − z plane, close to symmetric about
y − z plane. Therefore, we assume that the motions in surge,
sway, pitch and yaw are decoupled [3]. Although it is not
symmetric about the x−y plane, the surge and heave motions
are considered to be decoupled because the vehicle is basically
operated at relative low speed in which the coupling effects
can be negligible. For example, with this assumption, the linear
drag matrix in Equation (1) is in the form of:

Dlin.(ν) =




Xu 0 0 0 0 0
0 Yv 0 0 0 0
0 0 Zw 0 0 0
0 0 0 Kp 0 0
0 0 0 0 Kq 0
0 0 0 0 0 Nr




(3)

A series of experimental tests were performed to verify this
assumption and the results indicate that the coupling effects
are relatively small and can be neglected. With this assumption
and the symmetry property, the resulting added mass matrix
and drag matrices will also be diagonal matrices.

D. Theoretical Parameter Estimation

Theoretically, the hydrodynamic derivatives can be deter-
mined using an approach called strip theory [7]. Fossen [3]
provided some two-dimensional added mass coefficients. If the
vehicle is divided into a number of strips, the added mass for
each 2D strip can be computed and summed over the length
of the body to get the 3D hydrodynamic derivative. Besides
the added mass, the drag coefficients can also be determined
with the application of strip theory. In this way, the hydrody-
namic derivatives can be completely determined according to
vehicle’s geometric properties, even before the vehicle is built.
However, the derivatives produced using this approach usually



can be inaccurate and sometimes unsatisfactory. A validation
of these derivatives is always desired.

This approach has been implemented to model the Video-
Ray’s added mass and damping derivatives through the strip
theory (see Table I). More importantly, the coefficients in
translational directions estimated using strip theory are in good
agreement with those later obtained by experiment.

III. EXPERIMENTAL PARAMETER IDENTIFICATION

The problem of modeling the VideoRay Pro III is now
a matter of estimating and identifying the vehicle’s mass,
moments of inertia, hydrodynamic derivatives and thruster
coefficients in Equation (1). In assuming the motions are
decoupled for the VideoRay Pro III, the parameters of interest
are the translational drag derivatives in surge, heave, sway
directions, and rotational drag derivatives in the yaw direction.
These parameters will be determined by experiment.

The inertia matrix in Equation (1) consists of vehicle’s mass
and the moments of inertia about its three principle axes. In
order to estimate the moments of inertia, an oscillation exper-
iment with a small swing angle about vehicle’s principle axis
was performed. By measuring vehicle’s oscillating frequency,
the moments of inertia Ixx, Iyy and Izz can be determined.
(see Table I for the results).

Typically, determination of the hydrodynamic derivatives of
a vehicle is performed experimentally in towing tank tests
or in flumes with controlled flowing water. A series of tests
were performed using a flume at the Experimental Fluids Lab
in the University of Waterloo. The vehicle is mounted on a
horizontal-bending mechanism and submerged in the water.
The water flow rate is controlled manually by adjusting the
valve positions. The hydrodynamic forces acting on the vehicle
is transferred to the horizontal-bending mechanism so that the
horizontal force and the bending force can be measured by two
load cells respectively. Data is sampled by a data acquisition
system and logged by a personal computer. The test setup is
depicted in Fig. 3.
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Fig. 3. horizontal-bending mechanism in the flume test

A. Thruster Parameters

In Equation (1), the thruster input vector τ consists of the
thruster forces and moments acting on the vehicle. This is a
function of the thrusters’ forces and their current configuration.

An underwater vehicle’s thrusters, both for propulsion and
directional control, are highly nonlinear actuators. For a fixed
pitch propeller, the force (thrust) T depends on the forward
speed u of the vehicle, the advance speed ua (ambient water
speed), and the propeller rate n, (see Fig. 4) as follows [1]:

T = ρD4(α1 + α2
ua

nD
)n|n|, (4)

where ρ is the water density, D is the diameter of propeller,
α1 and α2 are constants given by the propeller’s property.

a

u

Q

T

u

Fig. 4. Schematic drawing of a propeller

A comprehensive study on thrusters and their influence on
underwater vehicle maneuverability has been produced [10].
By considering the energy balance of a control volume about
a thruster, simplified nonlinear equations for thrust T can be
derived as:

ṅ = βτmotor − αn|n|, (5)

T = Ctn|n| (6)

where τmotor is the input torque supplied by the thruster’s
motor, β, α and Ct are thruster constants.
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Fig. 5. Output thrust vs. input signal for port/starboard thrusters

The VideoRay Pro III has 3 thrusters: port, starboard and
vertical thruster. Each one has its own driver which controls
the rotational speed. Since the propeller diameter and mass
and their driving motors are small, the dynamics of the
thruster control system in Equation (5) is much faster than
the dynamics of the vehicle. For this reason, these dynamics
are neglected.



The CT parameter from Equation (6) needs to be identified
experimentally. The vehicle was mounted on the horizontal-
bending mechanism where the thrust of the horizontal thrusters
and vertical thruster were measured and recorded at various
thruster control signals. Least squares method was applied to
compute the coefficients for the port/starboard thrusters and
the vertical thruster.

A Mapping of the output thrust versus the thruster input for
the two horizontal thrusters is shown in Fig 5. Table I shows
the test results.

B. Experimental Set-up for Derivatives in Translational Mo-
tions

Translational hydrodynamic forces in x, y and z directions
are modeled as the sum of linear and quadratic terms [3]. For
example, the hydrodynamic drag in x direction due to surge
motion is expressed as:

Drag Force = Xuu+Xu|u|u|u| (7)

where u is the surge velocity, Xu is the surge drag force
derivative with respect to u, Xu|u| is the surge drag force
derivative with respect to u|u|. When the vehicle moves in low
speed, the linear drag term is dominant, while the quadratic
drag term is dominant when the vehicle is moving in higher
speed. These coefficients account for some entries in the drag
matrix D in Equation (1).

In determining the drag coefficients, many flume experi-
ments were performed using the horizontal-bending mecha-
nism to test the drag force under various water flow speeds
up to 0.55 m/s. Fig. 6, 7 and 8 show the experiment data
and resulting fit curves for the drag forces in surge, sway and
heave directions.
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Fig. 6. Drag force in surge direction: experiment data and fit curve

The hydrodynamic forces in heave and sway directions were
also tested and recorded while the vehicle is moving in surge
direction. Fig. 9 shows the relationship between the change of
hydrodynamic force in heave as a function of the surge speed.
The results demonstrate that change in heave direction drag
force resulting from surge motion are less than one tenth of
the drag force in surge direction. Moreover, heave direction
drag force resulting from surge motion could be a result
of inaccurate positioning of the vehicle during experiments,
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Fig. 7. Drag force in sway direction: experiment data and fit curve
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Fig. 8. Drag force in heave direction: experiment data and fit curve

which causes a slight angle of attack with the water flow.
Because its magnitude is relatively small, it can be neglected

Fig. 10 shows there is no clear relationship between the
sway drag force and the surge speed. This is expected since
the vehicle is symmetrical about the x− z plane.
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Fig. 9. Heave drag force vs. surge speed

C. Experimental Set-up and Identification for the Yaw Move-
ment

Accurate hydrodynamic derivatives for the yaw motion is
essential for modeling the VideoRay Pro III. Because of the
symmetry of x − z and y − z planes, the yaw motion is
decoupled from other motions [3]. In this way, the yaw motion
can be described by the following model:

ṙ = αr + βr|r| + γn+ δ (8)
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Fig. 10. Sway drag force vs. surge speed

where r is the state variable describing the yaw rate, n is the
input variable describing the torque the thrusters exerted on the
vehicle, α and β are the linear and quadratic drag coefficients,
γ is the inverse of the vehicle’s moment of inertia about y-
axis, including the rigid body and added mass, and δ is a bias
term. The derivatives Nr, Nr|r| and Nṙ, which are part of the
entries in the drag matrix in Equation (1), can be derived from
α, β, γ and δ.

The state variable r in Equation (8) is completely con-
trollable by the control variable τ and completely observable
at discrete time instants {tk}k≥0 through the output variable
y(tk), corrupted by the additive zero-mean noise e(tk), the
system dynamics can be expressed as [5]:

ṙ = φ(r(t), n(t))θ (9)

y(tk) = r(tk) + e(tk) (10)

where φ(r(t), n(t)) = [r r|r| n 1] is a row vector of
nonlinear function depending on the state and control input,
θ = [α β γ δ]T is a constant and unknown parameter vector
that characterizes the system dynamics.

The identification problem consists of estimating the un-
known parameter vector θ on the basis of a finite number
of discrete time measurements of input variable {n(tk)}
and output variable {y(tk)}. The parameter vector θ can be
identified by minimizing the following cost function with the
Least Squares method:

J(θ) =
N∑

k=1

ε(tk)2 (11)

The cost function is a sum of squares of prediction errors
ε(tk), which are the difference between the observed output
variable and the one-step-ahead prediction of the output ŷ(tk):

ε(tk) = y(tk) − ŷ(tk) (12)

If the measurement noise e(tk) is zero-mean, then the output
variable is simplified as:

ŷ(tk) = r̂(tk) (13)

where r̂(tk) is the expected state variable at time tk.
The one-step-ahead prediction of the output variable ŷ(tk)

can be obtained by integrating the state space equation in

Equation (10) between two subsequent time instants tk−1 and
tk:

r(tk) − r(tk−1) =

[∫ tk

tk−1

φ(r̂(τ), n(τ))dτ

]
θ (14)

From Equation (13), it is implied that r(tk−1) = ŷ(tk−1).
The following estimate for the state variable r at time tk is
obtained as:

r̂(tk) = ŷ(tk−1) + Φkθ (15)

where

Φk =
∫ tk

tk−1

φ(r̂(τ), n(τ))dτ (16)

Hence, the one-step-ahead prediction error of Equation 12 can
be evaluated as:

ε(tk) = y(tk) − ŷ(tk−1) − Φkθ (17)

Inserting this prediction error into the cost function J(θ)
(Equation 11), we can find out the parameter vector θ that
minimizes the cost function on the basis of N observations
through the Least Squares algorithm:

θ = (Φ(N)T Φ(N))−1Φ(N)TY (N) (18)

where

Φ(N) =




Φ1

Φ2

...
ΦN


 , Y (N) =




y(t1) − ŷ(t0)
y(t2) − ŷ(t1)

...
y(tN ) − ŷ(tN−1)


 (19)

The experimental setup for the yaw motion is depicted in
Fig. 11. The vehicle is mounted on a pivot which allows
the vehicle rotate about its z-axis freely. An overhead video
camera is placed on top of the vehicle to record its angular
movement during the test. The vehicle is driven by the
horizontal thrusters with a series of oscillating input signals,
which have the same oscillating period and various amplitude
from n = 50 to n = 150. The vehicle oscillates about its
z-axis following the input signals. The measured rotational
angles of the vehicle are shown in Fig. 12.

camera

yaw mode

Fig. 11. Experimental set-up for yaw motion

Fig. 13 shows the observed and estimated yaw angle with
the thrusters input of n = 150 and oscillating period t = 1.5
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Fig. 13. Identification result for yaw motion with thruster inputs n = ±150,
period t = 1.5 seconds

seconds. The calculated parameters are: α = 0.6199, β =
1.1219, γ = 26.95 and δ = 0.0316.

From the obtained values of α, β, and γ, the corresponding
hydrodynamic derivatives related to yaw motion Nr, Nr|r| and
Nṙ can be derived (see Table I).

IV. MODEL VERIFICATION

A. Surge Test

To verify the dynamic model of the VideoRay Pro III, a
series of surge tests were performed in a pool. The movements
of the vehicle were recorded with a video camera and the
distance traveled was analyzed and processed with Matlab.
Fig. 14 shows the observed and simulated surge speed with
applied thruster input of n = 60. The predicted surge speed
with the dynamic model is u = 0.51m/s, which is a bit
higher than the actual testing speed of 0.47m/s. This could be
attributed to the effect of the tether on the vehicle, something
not included in our dynamic model.

V. CONCLUSION

A hydrodynamic model of the VideoRay Pro III underwater
vehicle has been developed theoretically and experimentally,
based on the assumption that vehicle motions in different
directions are decoupled from one another. A series of experi-
ment tests were performed to verify this assumption. The test
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Fig. 14. Surge test experiment data and simulation result

data indicate that this assumption is reasonable within typical
operating conditions of the VideoRay Pro III.

In determining the model parameters, several in-flume ex-
periments were performed. For the yaw motion experiment
data, a system identification based method was applied to
determine the vehicle’s hydrodynamic coefficients. Other coef-
ficients were primarily measured, either directly or indirectly
with a series of flume tests. The experiments show that the
model is in good agreement with the actual test data, despite
not including the effect of tether drag. In the future, such
effects will be studied and included in the model.
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TABLE I

PROPERTIES AND COEFFICIENTS FOR VIDEORAY PRO III

Geometry and mass property

Parameter Value Units Description
L 0.36 m vehicle length
W 0.35 m vehicle width
H 0.23 m vehicle height
Ixx 0.02275 kg·m2 moment of inertia
Iyy 0.02391 kg·m2 moment of inertia
Izz 0.02532 kg·m2 moment of inertia

Thruster coefficients

Ct (N)
thruster forward backward

port/starborad 2.5939 × 10−4 1.0086 × 10−4

vertical 1.1901 × 10−4 0.7534 × 10−4

Added mass

Analytical Experimental
Xu̇ 1.9404 NA
Yv̇ 6.0572 NA
Zẇ 3.9482 NA
Kṗ 0.0326 NA
Mq̇ 0.0175 NA
Nṙ 0.0321 0.0118

Linear drag coefficients

Analytical Experimental
Xu 2.3015 0.9460
Yv 8.0149 5.8745
Zw 5.8162 3.7020
Kp 0.0009 NA
Mq 0.0012 NA
Nr 0.0048 0.0230

Quadratic drag coefficients

Analytical Experimental
Xu|u| 8.2845 6.0418
Yv|v| 23.689 30.731
Zw|w| 20.523 26.357
Kp|p| 0.0048 NA
Mq|q| 0.0069 NA
Nr|r| 0.0089 0.4504


