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Abstract - This paper concerns the autonomous
tracking of fish using a Remotely Operated Vehicle
(ROV) equipped with a single camera. An efficient
image processing algorithm is presented that enables
pose estimation of a particular species of fish - a
Large Mouth Bass. The algorithm uses a series of
filters including the Gabor filter for texture, projec-
tion segmentation, and geometrical shape feature ex-
traction to find the fishes distinctive dark lines that
mark the body and tail. Feature based scaling then
produces the position and orientation of the fish rel-
ative to the ROV. By implementing this algorithm
on each frame of a series of video frames, succes-
sive relative state estimates can be obtained which
are fused across time via a Kalman Filter. Video
taken from a VideoRay MicroROV operating within
Paradise Lake, Ontario, Canada was used to demon-
strate off-line fish state estimation. In the future,
this approach will be integrated within a closed-loop
controller that allows the robot to autonomously fol-
low the fish and monitor its behavior.

Keywords: tracking, monocular vision, underwa-
ter, image processing, feature extraction, ROV.

1 Introduction

As the largest unexplored area on earth, the under-
water world has unlimited attraction to marine sci-
entists. Due to the complexity of the underwater en-
vironment and the limitations of human divers, un-
derwater exploration has been facilitated by the use
of submarines, Remotely Operated Vehicles (ROVs)
and Autonomous Underwater Vehicles (AUVs) [1]
[3]. In many applications, target tracking is of par-
ticular interest, especially for enabling short-range
applications such as fish tracking, cable following,
and docking [8].

Figure 1: The VideoRay Pro III MicroROV

In this research, target tracking of fish via au-
tonomous robots is studied with the purpose of as-
sisting marine biologists in gathering detailed infor-
mation about the behaviors, habits, mobility, and lo-
cal and global distributions of particular fish species.
To realize this goal, a VideoRay ProIII MicroROV
(Fig. 1) is being equipped with a vision servo con-
trol system to enable fully autonomous real-time fish
tracking.

This paper describes a technique to extract
the relative position of the fish using a monoc-
ular camera system. Through video image pro-
cessing, fish features are obtained. Within
the image processing, a new technique called
ProjectionCurveSegmentation has been developed
that extracts particular features of the fish. These
features are used to calculate the relative position of
the fish through feature based scaling and perspec-
tive geometric projection methods. In the future, the
relative range and bearing obtained with these meth-
ods will be used to control the vehicle such that the
target will be centered in the image, and automated
real-time tracking can be realized.

The paper is organized as follow: Section 2 pro-
vides an overview of related research. Section 3 in-
troduces the structure of the proposed tracking sys-



tem. Section 4 presents image processing methods
to identify the target fish and extract its features.
Section 5 provides calculations to obtain the range
and bearing of the target fish. In Section 6, quanti-
tative results and the qualitative analysis are given.
Finally, the conclusions and ideas for future work are
presented in Section 7 and section 8.

2 Background

Autonomous target tracking is commonly achieved
(or partly achieved) by holding some station close
to the object over time. This requires knowledge of
the relative position of the object with respect to
the position of an ROV. Current methods to track-
ing with ROVs include using optical [9] , acoustic
[6] , and laser sensors [1]. Laser techniques unfor-
tunately require high power and large space. In the
case of acoustic methods, it is difficult to avoid prob-
lems due to multiple path effect and acoustic shad-
ing especially in target tracking. Optical methods
consume low power and consist of rich environmen-
tal information such as color, texture, shape, dy-
namic properties and geometric properties etc. De-
spite these advantages, they still have several issues
to be addressed. Light attenuates exponentially with
distance in water, which makes the quality of under-
water images very poor. Feature extraction is com-
plicated and can limit the possibilities for real-time
implementation. Also, the vast array of unknown
objects in the environment can be misinterpreted for
the interested object.

In tracking fish specifically, several additional
problems arise. The fish do not appear as exclu-
sive bright against dark backgrounds. Illumination
backscatters to the camera, producing a relatively
bright and non-uniform background image. Sus-
pended organic particles, known as marine snow,
introduce continual small fluctuations to this back-
ground image.

Finding gradients is also difficult with fish. Due
to the difference of the light reflection ratio of fish
scales, the intensity is uneven and the gradient distri-
butions are scattered on the entire body, with some
areas of strong intensity and others of weak intensity.
Moreover, hotspots on the camera enclosure produce
a strong gradient response. Lighting geometries that
can result from these bright reflections are difficult
to predict in advance.

Color segmentation has success in extracting the
fish from the water background, but encounters dif-
ficulty in separating the fish from seaweed and the
floor.

Background Subtraction methods [9] based on

a largely stable background image differences cause
moving objects to stand out saliently in sequential
images. In this case, this approach works poorly be-
cause the background typically changes over time
when the ROV is moving, when the fish remains
moderately still with respect to the ROV, or in the
presence of currents.

The active contour method, such as snake method
[11] fails in the various seaweeds and the very un-
even intensity on the fish body. Intensity thresh-
old routines, even adaptive ones, proved unreliable.
Gradients in the background image create overlap
between target and background intensity values. In
these cases, no unique threshold level exists.

Region-merging methods also encounter difficul-
ties that result from the similar seaweed and fish
body. Expansive regions belonging to the back-
ground were often misclassified as target regions, and
vice versa.

Nor did watershed methods give reliable results.
When applied to the gradient image using bright in-
tensity patches to form initial markers [4], different
intensity gradients on the surface of fish body created
multiple watersheds for the same target. Attempts
to merge these watersheds encountered difficulties
similar to those observed for other region-merging
methods.

Several papers have touched on the topic of au-
tomated animal tracking in natural underwater en-
vironments. Jason Rife et al. tackled a robotic
tracking of Gelatinous animals in the deep ocean
[7]. Other workers have automated visual extrac-
tion of marine animals from a video sequence, with-
out closing servo loops. Kocak et al. discuss vision
techniques for off-line analysis of bioluminescent zoo-
plankton data [2]. Fan and Balasuriya tested a 20
Hz fish tracking technique off-line, using video col-
lected in the open ocean [5][7]. Other investigators
have focused on pattern recognition methods useful
for detecting underwater targets [10] [12].

In this paper, an image processing algorithm is
presented that uses a Gabor filter followed by a new
technique called ProjectionCurveSegmentation to
obtain the target fish’s obvious features, i.e. the tail
and body features. These features are extracted to
estimate the relative position of the fish.

3 Control System Architecture

3.1 System structure

This paper presents an image processing based al-
gorithm for estimating the relative position of a fish
using monocular vision. The goal is to implement
this algorithm into a fish tracking system controlled



Figure 2: The visual serving control system

using Visual Servoing - the use of visual imagery to
control the pose of a robot relative to a target.

To carry out this tracking, a VideoRay Pro III
microROV is proposed. The control box used for
tele-operation is replaced by a standard PC that in-
terfaces with the ROV sensors and actuators to allow
autonomous control. The ROV has three thrusters
to actuate the vehicle, two thrusters for differential
drive propulsion, and another thruster for depth con-
trol. A passive buoyancy moment stabilizes the vehi-
cle around the pitch and roll axes. Also mounted on
the ROV are a WDCC-6300 CCD color video cam-
era, depth gauge, compass and two forward looking
halogen lights. It is depth rated to 500ft and has 76
m (250 ft) of tether to provide power and control.

In the proposed method, intensity images f(x,y)
are processed to extract the target’s relative range
ρ, bearing ψ, and height z in polar coordinates. The
visual servo controller then computes control inputs
ur, ul, uz for the right, left and top ROV thrusters
respectively, (Fig. 2). In general, this will drive the
ROV to hold the target in the center of camera image
and at some desired distance.

4 Image Processing Algorithm

This section describes the vision processing algo-
rithm used to track a Large Mouth Bass in natural
environments. The algorithm combines a series of
existing filters commonly found in the vision litera-
ture, with a new segmentation filter called Projection
Curve Segmentation, (see Fig. 3).

4.1 Image Scaling

To reduce computation, the input original color im-
ages are converted to greyscale and the pixel values
are limited in the interval [0,1].

Due to underwater light limitations, images are
underexposed and blurry. The poor contrast forces
grey values to concentrate into a small range. To
remedy this, intensities are adjusted linearly to max-
imize the range, and histogram equalization method

Figure 3: Image Processing Overview

is used to stretch contrast so that all grey-levels have
similar likelihoods [], (see Fig. 4).

4.2 Texture segmentation by Gabor
filter

Texture segmentation is the problem of breaking an
image into components within which the texture is
constant. In this case, the target fish’s tail and body
consist of obvious and regular orientation stripes. To
extract these features, a single oriented Gabor filter
of spatial-frequency is proposed. The method is not
only effective in extracting the patterns, but is effi-
cient since only a single texture extraction filter is
required.

The Gabor filter is orientation selective. Its ker-
nels are Fourier basis elements that are multiplied by
Gaussians, meaning they respond strongly at image
points where there are components that locally have
a particular spatial frequency and orientation.

If s(x, y) is a complex sinusoidal known as the car-
rier, and wr(x, y) is a 2-D Gaussian-shaped function
known as the envelope, the Gabor filter is a complex
function g(x, y):

g(x, y) = s(x, y)× ωr(x, y) (1)

The sinusoidal is defined in terms of the spatial
frequencies (u0, v0) and the carrier phase P as fol-
lows:

s(x, y) = exp(j2π(u0x + u0y) + P ) (2)

The Gaussian envelope is defined in Eq. 3, where
K scales the envelope magnitude, (a, b) scale the en-
velope axis, θ defines the envelope rotation angle,
and (x0, y0) defines the peak location of the enve-
lope.

ωr(x, y) = Kexp(pi(a2(x− x0)2r + b2(y − y0)2r)) (3)

Note that the subscript r represents a rotation
operation such that:

(x− x0) = +(x− x0) cos θ + (y − y0) sin θ

(y − y0) = −(x− x0) sin θ + (y − y0) cos θ
(4)



Figure 4: Images and related histograms (a) orig-
inal image, (b) intensity scaled image, and (c) the
contrast scaled image.

Each complex Gabor consists of two functions
in quadrature (out of phase by 90 degrees), conve-
niently located in the real and imaginary parts of a
complex function.

Now we have the complex Gabor function in
space domain.

g(x, y) =Kexp(−π(a2(x− x0)2r + b2(y − y0)2r))
exp((2π(u0x + v0y) + P )).

(5)

The 2-D Fourier transform of this Gabor is as
follows

ĝ(u, v) =
k

ab
exp((−2π(x0(u− u0) + y(v − v0) + p))

exp(−π(
(u− u0)2r

a2
+

(v − v0)2r
b2

))

(6)

The Gabor filter is used as a kernel to convolve
with the input image I(x, y), input image to produce:

imagabout(x, y) = I(x, y)
⊗

imag(g(x, y))

regabout(x, y) = I(x, y)
⊗

real(g(x, y))
(7)

By applying the Gabor filter, the majority of the
fish and its local background are removed except for
the tail and body features. This establishes a good
basis for the following feature projection segmenta-
tion.

4.2.1 Projection Curve Segmentation

In this step of the vision processing, the body and
tail features are extracted from the remaining back-
ground.

After the image is processed by the Gabor Filter,
a threshold is applied to force pixels to take on val-
ues of 0 or 1. In observing the resulting image (see
the Fig. 5 a), only the fish tail pattern, body center
pattern, and some background patterns (i.e. under-
water grass) remain. The fish patterns have limited
overlap with the background.

Projecting the threshold image into a vertical his-
togram Hv(y), i.e. summing the number of black
pixels in each row of the image, results in two sepa-
rate shapes. The first is the background curve with
no defining shape. The second is a sharp and narrow
spike protruding from a smooth and low curve. This
second shape is a projection of the tail and body
features, (Fig. 5 b).

With this histogram, a search for the tail and
body patterns is conducted to produce an inter-
val of rows in which the fish is located. If A is a
predetermined threshold that characterizes the tail
width, the tail interval is defined as rows belonging
to [ytailstart, ytailstop] such that a scan from the top
of the image produces:

ytailstart = max(y|Hv(y) > A)
ytailstop = max(y|Hv(y) < A, y < ytailstart)

(8)

The peak within this interval is determined by:

ymax = max(y|y ∈ [ytailstart, ytailstop]) (9)

If the slope of the histogram within intervals
[ymax − δ, ymax] and [ymax, ymax + δ] have magni-
tudes less than mmin, it is determined that the fish
tail feature is found.

If the slope conditions are satisfied, rows outside
the interval [ytailstart, ytailstop] are subtracted from
the image, effectively eliminating background in the
top and bottom portions of the image, (see Fig. 5
c).

In a similar fashion, the image is projected into a
horizontal histogram Hh(x), i.e. summing the num-
ber of black pixels in each column of the image. The
tail pattern dominates the histogram with an obvious
spike. The body pattern is also evident as a region
of constant amplitude adjacent to the tail spike. In
this case, a search for these two features is conducted
to define an interval of columns in which the fish re-
sides. Columns outside this interval are subtracted
to remove background on the two sides of the fish,
(see Fig. 5d). What remains is an image with only
the tail and body features.



Figure 5: Curve Segmentation: (a) Image after Ga-
bor filter and threshold, (b) the vertical projection
curve, (c) the image after subtracting top and bot-
tom background, and (d) the horizontal projection
curve.

4.3 Feature Extraction

In this stage of the image processing, the remaining
black pixels of the image are modelled with two lines,
one representing the tail feature and one representing
the body feature. These two lines are later used to
describe the position and orientation of the fish.

The leftmost and the right-most pixels
(U1(i), V1(i)), (U2(i), V2(i)) are determined for
each row in the tail interval. The central points
(U0(i), V0(i)) of the tail are defined as follows:

U0(i) = (U1(i) + U2(i))/2
V0(i) = (V1(i) + V2(i))/2

(10)

A least squares linear regression is then used to
fit a straight line to the tail. A similar process is used
to find the body’s central line. These two lines are
used to extract the position of the fish as discussed
in the next section.

5 Position Estimation From
Monocular Camera

Given the position of the fish features within a video
image, the position of the fish relative to the ROV
can be obtained. With the relative coordinate sys-
tem shown in Fig. 6, it is assumed that the three
axis of the camera coordinate frame coincide with
the ROV body-fixed frame. After transforming this
to polar coordinates, feature based scaling is used
to produce a relative range measurement based on
some predetermined length scale. Specifically, sta-
tistical data of the target fish size is used to relate

Figure 6: ROV body and camera coordinate frames.

a relative length l of the fish tail (or body) line in
pixels, to predetermined length L in meters.

If the camera has been calibrated, then the depth
D of a line (e.g. the fish tail) relative to the camera
is calculated with:

D =
kf

l
× L (11)

In Eq. 11, the real focus is f (mm), k is the scal-
ing factor that transforms f into the image plane,
and D is the distance from the fish plane to the cam-
era.

The accuracy of both the tail length and body fea-
tures will suffer from varying light intensity, the tail
swaying, and the body deforming. To help remedy
such disturbances, the depth estimation information
provided by the two features are combined by a sim-
ple Kalman filter that weights the fusion based on
variance. If Dt is the depth calculated by the length
of tail with variance σ2

t , and Db is the depth calcu-
lated by the width of body line of fish with variance
σ2

b , then Dk is the optimal depth calculated by the
Kalman filter equations.

Dk = Dt + K(Db −Dt) (12)

K =
σ2

t

σ2
t + σ2

b

; (13)

The position estimation is calculated by perspec-
tive geometry projection relation. In Fig. 7, a point
on the target is described by coordinate (Px, Py, Pz).
The position of this point’s light ray on the camera’s
image is defined in camera coordinates as (pu, pv).
The range to camera is ρ, the yaw bearing is ψ, and
the relative depth to camera Z can then be calcu-
lated with:



Figure 7: Camera geometry projection

Px = Dk

Py =
pv

kf
×Dk

ρ =
√

P 2
x + P 2

y

ψ = arctan(
pu

kf
)

Z = Pz =
pu

kf
×Dk

(14)

Errors in the feature-based range estimate re-
sult from difficulties in precisely determining target
lengths within images, and from the uncertain size
of the target. Assuming the covariances of the image
plane measurements are σ2

u, σ2
v , σ2

l , σ2
s respectively,

and the covariance of the size of fish is σ2
L, then we

can compute their relative variance Σψ, ΣD, ΣZ,
and Σρ according to the error propagation law:

Σf = ∇fCf∇fT (15)

6 Results And Analysis

Video data images of a Large Mouth Bass were ac-
quired using the WDCC-6300 CCD camera installed
on human driven VideoRay ROV. Images were of di-
mensions 480x640, and were grabbed at a frame rate
20Hz.

6.1 Image Processing

The image processing algorithm was applied to each
frame of each sequence. The series of filters including
texture, projection curve segmentation, geometrical
shape feature extraction proved simple, efficient and
effective if several conditions were met. These con-
ditions included that the body side face toward the

camera, the tail is clearly visible, and the fish swims
some minimal distance above the underwater grass.

An example of a typical image being processed is
shown in Fig. 8. In Fig. 9, the fish motion repre-
sented by the geometrical feature in the 9 sequential
images taken from the ROV. The results indicate
that the image segmentation and feature extraction
method provide sufficient relative pose estimates for
fish tracking.

6.2 Position estimation Results and
Analysis

The relative position between the target fish and the
ROV is calculated for ten successive images taken
across a time span of 2 seconds. Results are dis-
played in Fig. 10. At present, there is no truth data
for comparison. Error results are based on the theo-
retical calculations of propagation error. Seen from
Fig. 10 (c1), the trend of yaw in the ten images
match that of the fish shown in Fig. 9. Because the
distance of camera lens to image plan can be gained
from camera system calibration, its error in the sys-
tem can be eliminated. Hence the accuracy in yaw is
only affected by the error in measuring the distance
between the target point to the origin in the image
coordinates. Since the propagation error is small. it
is expected that the yaw will have higher accuracy.

Fig. 10 (b1) shows the calculated depth or rela-
tive position of fish along the Zb axis. Compared
with Fig. 9, the trends coincide. However, be-
cause the size of this species of adult fish is unde-
termined and can only be obtained from statistical
data, higher error in the depth estimation occurs.
This will affect the accuracy in estimating relative
vertical and range positions.

For example, assume that the length of the fish’s
tail is 9cm with σ2=0.5cm2 , and the width of fish
body central pattern is 0.7cm with σ2=0.05cm2.
When the range position calculated from the im-
age has maximal value 0.95m, the propagation er-
ror is 0.2m. When the relative depth calculated has
maximal value 0.1m, the propagation error is 0.02m.
When implementing this within the proposed fish
tracking system, these errors should be acceptable.

Fig. 11 shows the relative depth estimation re-
sults and the corresponding propagation errors from
using 1) feature scaling the fish tail, 2) feature scal-
ing of the body line, and 3) fusion of the two previous
results via the Kalman filter. While the monocular
vision system presented does have inherent difficul-
ties in predicting depth, the fusion of depth measure-
ments obtained from both features aids in decreasing
errors.



Figure 8: Example results of the image processing
algorithm

Figure 9: The feature extracted shows the motion of
the fish in ten successive images of the fish taken by
ROV in the lake in Waterloo.

Figure 10: Relative position of fish across ten succes-
sive frames. (a1) Range position(ρ) , (b1) Vertical
position (Zb), (c1) Yaw position (ψ). The right dia-
grams (a2) (b2) (c2) depict the propagation error of
three axes respectively.



Figure 11: Results of depth estimation using the
length and width scaling method, and fused with a
Kalman filter;

7 Conclusions
This paper describes a system for automated fish
tracking by an ROV using visual servoing control.
The core of the paper focuses on an efficient image
processing algorithm used to extract the relative po-
sition of a fish, i.e. a Large Mouth Bass. The algo-
rithm uses a Gabor filter to extract texture, a new
filter called projection curve segmentation to remove
background, and a linear regression based feature ex-
traction method.

To validate the algorithm, offline image process-
ing was conducted on video footage obtained by
piloting the ROV around Paradise Lake, Ontario,
Canada. While the uncertainty in fish size and fea-
ture lengths decreased the accuracy of relative range
estimation, it is expected that the errors will be small
enough to allow fish tracking via visual servoing con-
trol.

Despite the success in tracking fish over several
images, the algorithm has several limitations. First,
it is assumed that only one fish be present in each
frame. Second, it is assumed that the fish swim per-
pendicular to the camera lens. Lastly, the fish cannot
be occluded (e.g. by seaweed).

8 Future Work
As for future work, fusing the relative fish position
obtained from monocular vision with high-resolution
imaging sonar data is already under investigation.
Further improvements are also necessary for image
processing, including more robust algorithm to per-
mit better recognition and false positive detection,
increasing the accuracy of the feature to improve the
precise of range, and ensuring fast processing - a re-
quirement for real-time processing in natural under-
water environment.
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