
Cooperative Navigation
for Teams of Mobile Robots

by

Mike Peasgood

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Mechanical Engineering

Waterloo, Ontario, Canada, 2007

c©Mike Peasgood, 2007

I hereby declare that I am the sole author of this thesis. This is a true

copy of the thesis, including any required final revisions, as accepted by my

examiners.

I understand that my thesis may be made electronically available to the

public.

Mike Peasgood

ii

Abstract

Teams of mobile robots have numerous applications, such as space explo-

ration, underground mining, warehousing, and building security. Multi-robot

teams can provide a number of practical benefits in such applications, in-

cluding simultaneous presence in multiple locations, improved system per-

formance, and greater robustness and redundancy compared to individual

robots. This thesis addresses three aspects of coordination and navigation

for teams of mobile robots: localization, the estimation of the position of each

robot in the environment; motion planning, the process of finding collision-

free trajectories through the environment; and task allocation, the selection

of appropriate goals to be assigned to each robot. Each of these topics are

investigated in the context of many robots working in a common environ-

ment.

A particle-filter based system for cooperative global localization is pre-

sented. The system combines the sensor data from three robots, including

measurements of the distances between robots, to cooperatively estimate the

global position of each robot in the environment. The method is developed

for a single triad of robots, then extended to larger groups of robots. The

algorithm is demonstrated in a simulation of robots equipped with only sim-

ple range sensors, and is shown to successfully achieve global localization of

robots that are unable to localize using only their own local sensor data.

Motion planning is investigated for large teams of robots operating in

tunnel and corridor environments, where coordinated planning is often re-

quired to avoid collision or deadlock conditions. A complete and scalable

motion planning algorithm is presented and evaluated in simulation with up

to 150 robots. In contrast to popular decoupled approaches to motion plan-

ning (which cannot guarantee a solution), this algorithm uses a multi-phase

approach to create and maintain obstacle-free paths through a graph rep-

resentation of the environment. The resulting plan is a set of collision-free

trajectories, guaranteeing that every robot will reach its goal.

The problem of task allocation is considered in the same type of tunnel

iii

and corridor environments, where tasks are defined as locations in the en-

vironment that must be visited by one of the robots in the team. To find

efficient solutions to the task allocation problem, an optimization approach

is used to generate potential task assignments, and select the best solution.

The multi-phase motion planner is applied within this system as an efficient

method of evaluating potential task assignments for many robots in a large

environment. The algorithm is evaluated in simulations with up to 20 robots

in a map of large underground mine.

A real-world implementation of 3 physical robots was used to demonstrate

the implementation of the multi-phase motion planning and task allocation

systems. A centralized motion planning and task allocation system was de-

veloped, incorporating localization and time-dependent trajectory tracking

on the robot processors, enabling cooperative navigation in a shared hallway

environment.

iv

Acknowledgements

The developments in this thesis build on foundations of mobile robotics re-

search that have been established over the past several decades. The individ-

uals whose names fill the bibliography of this work have created a fascinating

field of research, entertainment, and great practical value, to which I make

a small contribution. I am grateful for their insights passed through the

literature, and for their contributions to this research through reviews of

presentations and papers.

I thank my supervisors, Chris Clark and John McPhee, for their guid-

ance, wisdom, and patience, as they advised and supported my research. I

appreciate Chris’ hours of brainstorming, reviewing, and revising, as well

as feedback from the rest of our team in the LAIR lab. John has been a

tremendous role model and advisor. He has led me into rewarding gradu-

ate research (more than once) and his guidance and assistance through the

academic system have been invaluable.

Tim Barfoot was an excellent supervisor during my research at MDA

Space Missions, and I appreciate his support and encouragement. I would

also like to thank Frontline Robotics for the contribution of three robots and

technical support to the project. This work was supported in part by the

National Sciences and Engineering Research Council of Canada (NSERC)

and Ontario Centres of Excellence (OCE).

I thank my parents for instilling in me the value of education and the

principle that anything worth doing is worth doing right.

Finally, I am most grateful for the continual love and support of my wife

Kelly, whose endless patience and kindness have carried me through the good

times and the rough times of this project, and all my endeavors. Thank you.

v

Contents

1 Introduction 1

1.1 Mobile Robot Control Architectures 3

1.2 Map Representations . 5

1.3 Localization . 7

1.3.1 Position Tracking versus Global Localization 7

1.3.2 Absolute versus Relative Localization 8

1.3.3 Localization Methods 8

1.4 Motion Planning . 9

1.5 Task Allocation . 10

1.6 Multi-robot Systems . 11

1.6.1 Reactive versus Planning-Based Systems 12

1.6.2 Centralized versus Distributed Systems 13

1.6.3 Homogeneous versus Heterogeneous Systems 14

1.6.4 Loosely versus Tightly Coupled Teams 15

1.7 Thesis Outline . 16

2 Cooperative Localization for Teams of Robots with Simple

Sensors 18

2.1 Introduction . 18

2.2 Literature Review . 19

2.2.1 Localization Methods 20

2.2.2 Multi-Robot Relative Localization 22

2.2.3 Multi-Robot Global Localization 24

vi

2.3 Cooperative Localization of Three Robots 25

2.3.1 Overview . 26

2.3.2 State Representation 26

2.3.3 Distributed Algorithm Processes 28

2.3.4 Results . 31

2.4 Cooperative Localization of Many Robots 36

2.4.1 Localization Process for Many Robots 38

2.4.2 Simulation Results . 42

2.5 Summary . 49

3 Multi-Robot Motion Planning 52

3.1 Introduction . 52

3.2 Literature Review . 53

3.2.1 Map Representations 54

3.2.2 Multi-Robot Planning 55

3.3 Multi-Phase Planning Algorithm 57

3.3.1 Graph Generation and Tree Selection 58

3.3.2 Algorithm Overview 59

3.3.3 Phase 1: Reaching Leaf Nodes 61

3.3.4 Phase 2: Sorting Robots by Depth of Goals 64

3.3.5 Phase 3: Filling Remaining Goals 65

3.3.6 Phase 4: Building a concurrent plan 67

3.3.7 Complexity Analysis 70

3.3.8 Hybrid Planning . 70

3.4 Simulation Results . 71

3.4.1 Planning Success Rate 73

3.4.2 Average Robot Path Length 73

3.4.3 Average Total Execution Time 74

3.4.4 Search Cost . 75

3.4.5 Hybrid Planner . 76

3.5 Discussion and Summary . 77

vii

4 Multi-Robot Task Allocation in Corridor Environments 79

4.1 Literature Review . 80

4.1.1 Traveling Salesman Analogies 81

4.1.2 Market-Based Methods 82

4.1.3 Task Allocation Solutions 84

4.1.4 Inter-Robot Coordination 84

4.2 Single-Class Task Allocation 86

4.2.1 Bid Generation . 87

4.2.2 Completeness, Optimality and Scalability 89

4.2.3 Algorithm Behaviour 90

4.2.4 Simulation Performance Results 94

4.2.5 Computational Complexity 96

4.2.6 Observations . 97

4.3 Multi-Class Task Allocation 98

4.3.1 Coordinated Task Allocation and Path Planning 100

4.3.2 Optimization Performance 106

4.4 Summary . 110

5 Multi-Robot System Implementation 112

5.1 Introduction . 112

5.2 Robot Platform . 113

5.3 Control Architecture . 114

5.3.1 Player Client and Server 114

5.3.2 Control Application . 116

5.3.3 Trajectory Tracker . 117

5.4 Multi-Phase Plan Execution 118

5.5 Task Allocation Implementation 120

5.6 Results and Discussion . 124

5.7 Summary . 125

6 Conclusions 126

6.1 Localization . 126

viii

6.2 Motion Planning . 127

6.3 Task Allocation . 128

6.4 Real-World Implementation 129

6.5 Future Directions . 129

6.6 Summary . 130

A Planner Animation 131

B Planner Video 132

C Task Allocation Video 133

ix

List of Figures

1.1 A three layer hierarchical control architecture 4

1.2 A floor-plan map of a simple building structure 6

1.3 Two representations of the example building floor-plan 6

2.1 Triad pose representation . 27

2.2 Triad localization process flow 29

2.3 Triad localization update step 31

2.4 Localization simulation robot configuration 32

2.5 Localization simulation environment 33

2.6 Triad localization positions error vs time 34

2.7 Triad localization sensor error vs time 36

2.8 Localization convergence rate vs number of particles 37

2.9 Performance vs number of particles 38

2.10 The multi-robot team localization simulation environment. . . 43

2.11 Baseline convergence rates for static triad assignment. 44

2.12 Convergence rates for best-estimate dynamic triad selection. . 46

2.13 Convergence rates for biggest-triangle dynamic triad selection. 48

2.14 Convergence over time for static vs biggest-area triad selection. 50

3.1 A multi-robot planning problem 53

3.2 Spanning tree selection . 59

3.3 Multi-phase plan segmented time-line 60

3.4 Multi-phase planner solution 62

3.5 Pseudo-code for Phase 1 . 63

x

3.6 Pseudo-code for Phase 2 . 66

3.7 Pseudo-code for Phase 3 . 67

3.8 Overlapping of multi-phase plan segments 68

3.9 Tunnel simulation environment 72

3.10 Average robot path length generated by each planner 74

3.11 Average execution time for paths generated by each planner . 75

3.12 Average CPU time used by each planner 76

3.13 Hybrid Planner Selection . 77

4.1 Pseudo-code for single-class task allocation 88

4.2 Illustrative graph for single-class task allocation. 89

4.3 Initial task allocation sequence for 3 robots and 8 tasks 92

4.4 Task allocation sequence for 3 robots and 8 tasks 93

4.5 The tunnel simulation environment, with 50 tasks assigned to

three robots. Three different classes of tasks are indicated by

the red, green, and blue circles. 95

4.6 Simulation performance results in the tunnel environment . . . 96

4.7 Real-time CPU usage (ms) per simulation time step. 97

4.8 Number of auctions per time step 98

4.9 Number of bids per auction 99

4.10 A simple multi-class task allocation example. 100

4.11 Pseudo-code for multi-class task allocation 102

4.12 Multi-class task allocation simulation sequence 105

4.13 Performance results in a small environment 107

4.14 Algorithm performance comparison with 3 robots 109

4.15 Algorithm performance comparison with 20 robots 110

4.16 Task assignment evaluation rate comparison with 20 robots . . 111

5.1 The PC-Bots in the test environment 113

5.2 The multi-robot communication architecture 115

5.3 Graph representation of hallway environment 119

5.4 Multi-robot planner user interface 120

xi

5.5 Multi-robot planner implementation 121

5.6 Multi-robot task allocation interface 122

B.1 Motion planner video screen captures 132

C.1 Task allocation video screen captures 133

xii

Chapter 1

Introduction

The number of applications for mobile robots has grown significantly in re-

cent years, and continues to increase. The recent Mars exploration missions

of Spirit and Opportunity have demonstrated the practicality and value of au-

tonomous mobility in space, allowing access to research areas inaccessible to

humans. Closer to home, robots can be found delivering mail in office build-

ings, assisting the elderly and disabled in hospitals and retirement homes,

guiding tours in museums, cleaning floors in residential homes, and assisting

in military operations. According to the UNECE 2004 World Robotics Sur-

vey, “At the end of 2003, about 610,000 autonomous vacuum cleaners and

lawn-mowing robots were in operation. In 2004-2007, more than 4 million

new units are forecasted to be added.” [83].

In many consumer, industrial, and research applications, teams of multi-

ple robots can provide a number of practical benefits:

Distributed Presence: Multiple robots can make simultaneous measure-

ments from multiple locations. This is a significant feature for some

research tasks, such as environment monitoring of a large area.

Force Multiplication: In applications requiring the movement of heavy

items, cooperative teams of multiple robots can move objects too heavy

for a single robot.

1

2

Improved Performance: Multiple robots have the potential to achieve a

set of tasks more quickly than an individual by dividing the task into

smaller subtasks, each assigned to one member of the team. In addi-

tion, by coordinating their tasks, a cooperative team may be able to

accomplish a set of tasks more efficiently than a set of robots operating

independently.

Robustness and Redundancy: Well-structured teams of multiple robots

can increase overall system reliability by allowing a mission to continue

despite the failure of one member. This can be particularly valuable

for high-risk tasks such as space exploration.

These potential benefits come with the additional challenges of effectively

managing and controlling teams of multiple mobile robots, each robot of

which typically has some degree of autonomy in controlling its own motion,

perception, and communication. A significant research effort has recently

developed to address the challenges in the field of multi-robot control and

navigation; this thesis is a contribution to that effort.

The research presented in this thesis investigates three aspects of naviga-

tion for a team of mobile robots:

1. Localization: Where are each of the robots in the environment?

2. Task Allocation: Where should each of the robots go?

3. Motion planning: What is the best path for each robot to follow to

reach its goal?

The developments in this thesis build on a wealth of prior research in

the areas of mobile robot control systems, multi-robot system architecture,

localization algorithms, motion planning algorithms, and task allocation sys-

tems. This introductory chapter reviews these topics, and gives an overview

of recent literature in multi-robot systems and architectures. More detailed

reviews of the current research into the problems of localization, motion plan-

ning and task allocation are presented in the respective chapters that follow.

3

1.1 Mobile Robot Control Architectures

Two different strategies have been commonly used to control mobile robots:

a behaviour-based approach, based on the emergence of complex behaviours

from a set of simple rules; and a planning-based approach, based on a model

of the robot and its environment.

Behaviour-based robot control, also referred to as “reactive control”, uses

a set of rules to determine what action a robot will take under certain circum-

stances. By assembling a large set of these simple rules, some interesting (and

potentially useful) robot behaviour can be developed, such as a robot vacuum

cleaner moving around a house. Rodney Brooks formalized one behaviour-

based approach in the Subsumption Architecture [5], which has proven to be

a useful method for controlling groups of simple robots to perform various

tasks. By incorporating behaviours that respond to the observation of other

robots, some multi-robot behaviours have been developed, such as playing

tag and searching for explosives [52]. Reactive algorithms are attractive due

to their low computational and communication requirements, and apparent

simplicity. However, developing the behaviour rules to accomplish a partic-

ular task can be challenging and time-consuming.

An alternative is a planning-based approach to robot control, in which

the robot develops and executes a plan to navigate through the environment

and accomplish specified tasks. This approach enables generic navigation

systems to be used for a wide variety of applications. Planning-based control

involves a number of elements:

• A map, or representation of the working environment of the robot.

• A localization system, which enables the robot to estimate its position

within the map.

• A planning system, which can determine a plan, or route from the

current position estimated by the localization system to a goal position

in the map.

4

• A motion execution system to control the robot actuators and follow

the computed plan.

Behaviour-based and planning-based approaches can be used together

to create a hybrid control system. A hybrid controller can take advantage

of the fast response of a reactive system for real-time control requirements

(such as obstacle avoidance), while using the world model of a planning-based

approach for navigation.

A hierarchical architecture is often used to decompose a robot control

system and define interfaces between each of the components. Figure 1.1

shows a typical control hierarchy of a hybrid controller, where the lowest

level of control is a reactive motion controller with obstacle-avoidance, and

the upper levels implement planning-based navigation.

Task Sequencing

Motion Planning

User-specified

Tasks

Path

Following

Execution Layer

Planning Layer

Interface Layer

Obstacle

Avoidance

Sensors

Localization

Actuators

Actuator

Control

Sensor

Interpretation

Velocity

Control

Current

Position

Desired

Path

Sensor

Data

Desired

Velocity

Figure 1.1: A three layer hierarchical control architecture

At the highest level of the architecture, a motion planner finds an obstacle-

free path through the environment from the current position to the goal po-

5

sition (which is specified by an operator or task allocation system). This

path is passed to the execution layer, which determines suitable velocities

that will guide the robot along the specified path. The angular and transla-

tional velocities are updated in real-time, based on the current position and

velocity of the robot as determined by the localization system, and passed

to the interface layer.

At the lowest level is the interface between the robot and its environment,

through sensors and actuators. This may be achieved using a behaviour-

based rule system, defining actuator responses to sensor inputs, to drive in

the desired direction while avoiding obstacles. Alternatively, fast feedback

control loops can be used at this level to tightly control position and velocity

according to the values requested by the execution level, while detecting and

observing dynamic obstacles.

The contributions in this thesis are developed in the context of the planning-

based approach to robot control, and address the upper two layers of the

control hierarchy shown in Figure 1.1.

1.2 Map Representations

A map representation, or model of the environment, is required for planning-

based control and navigation. The map allows a robot to

1. localize itself (determine its position in the environment) by comparing

sensor readings to the data in the map, and

2. plan its route through the environment, by finding obstacle-free paths

between its current position and a goal position.

Different representations have been proposed, and are suitable to different

aspects of the navigation problem. Figure 1.2 shows a map based on the floor-

plan of a simple building with five rooms connected by a hallway; two different

representations are illustrated using this example. The first is the common

representation of an occupancy grid, proposed by Moravec and Elfes [54] [15].

6

10 m

Figure 1.2: A floor-plan map of a simple building structure

In this form, the map consists of a 2 dimensional array of cells corresponding

to a grid overlayed on the environment. Walls and other objects that present

obstacles to the robot are represented as occupied cells; each array element

stores the probability that the corresponding cell is occupied. As shown in

Figure 1.3(a), using a 1m square grid on the example floor-plan, the dark

cells indicate walls and obstacles that should be avoided, and the light cells

indicate open areas for navigation. The grid representation is suitable for

localization using range sensors; route planning can be performed by finding

obstacle-free paths through adjacent vacant cells.

(a) Occupancy grid map

A B

C

D E

F

(b) Topological graph map

Figure 1.3: Two representations of the example building floor-plan

7

A topological map represents the connectivity of regions in the environ-

ment as a graph structure. As shown in Figure 1.3(b), nodes represent open

regions, and edges indicate obstacle-free paths between regions; The direct

representation of connectivity makes the graph structure ideally suited to

path planning.

Since different representations are well suited to different aspects of nav-

igation, multiple maps may be used within one planning-based architecture.

For example, an occupancy grid map may be used for localization, while a

topological representation (a Voronoi map for example [9]) may be derived

from the occupancy grid and used for motion planning.

1.3 Localization

Localization algorithms can generally be classified by two features: position

tracking versus global localization, and absolute versus relative estimation.

The most suitable localization algorithm for a particular system depends on

the requirements of the particular application.

1.3.1 Position Tracking versus Global Localization

Position tracking algorithms estimate motion from a previously estimated

pose (position and orientation), and are suitable for maintaining an accurate

estimate given a good initial estimate. These algorithms may be used when

the robot is always placed in a known starting position, or can be given its

initial coordinates by a human operator.

Global localization, however, makes no assumption of an accurate initial

estimate in order to estimate the pose of the robot in a map. As a result,

a global localization algorithm is typically more capable of recovering from

large localization errors. Unlike position tracking localization, global local-

ization can potentially solve the kidnapped robot problem [80], that is, where

the robot has a confident estimate of its pose, and is then moved to a new

position in the map without any knowledge of the relocation.

8

1.3.2 Absolute versus Relative Localization

Absolute localization methods determine the pose of the robot with respect

to a map with a pre-defined, world-fixed coordinate system. In contrast,

in multi-robot systems relative localization determines the pose with respect

to the other objects or robots in the team, as in the system developed by

Grabowski and Khosla [27]. Relative localization can be useful for coordinat-

ing the motion between robots, such as maintaining formations. However,

while the positions of other robots can be used to reduce the position uncer-

tainty of an individual, when all of the robots in the team eventually move,

the incremental errors result in unbounded uncertainty in the estimated ab-

solute position of the team with respect to the world.

This thesis addresses the problem of global and absolute localization of a

multi-robot team, estimating the position of each robot with respect to pre-

defined real-world coordinates in a known map of the environment. Note,

however, that relative localization can be an important step within the ab-

solute localization process, since the relative positioning of robots within

the team can be used to incorporate sensor readings from other robots and

improve the overall estimate.

1.3.3 Localization Methods

Since localization is fundamentally a state estimation problem, various state

estimator algorithms have been applied to mobile robots. The goal of each of

these methods is to probabilistically estimate the most likely state, or pose,

of the robot, based on its history of motion and sensor inputs.

The Kalman filter method [37] maintains a state estimate using a Gaus-

sian distribution representation. While the Kalman filter gives an optimal

estimate for linear systems with known sensor and process noise, extensions

such as the unscented Kalman Filter (UKF) have been developed to effec-

tively estimate parameters in nonlinear systems [36]. These methods have

been successfully applied to the position tracking localization problem, where

9

the position can be reasonably represented by a single estimate and variance

[58]. In global localization, however, no initial estimate is given, and many

possible estimates may be likely based on the initial sensor inputs. This

limitation motivated the use of more general descriptions of the probability

distribution of the robot pose.

General Bayesian state estimation methods estimate the probability dis-

tribution across the entire state space, and can therefore maintain multi-

ple hypotheses, corresponding to different peaks in the distribution. The

Bayesian estimator is capable of tracking these multiple hypotheses until

further measurements allow convergence to a single estimate. Unfortunately,

it is computationally intensive to maintain a probability distribution across

the entire configuration space of the robot [12].

Particle filter state estimation methods maintain the ability to track mul-

tiple estimates, but reduce the computational load by maintaining only an

approximation of the full probability distribution. The application of particle

filters to mobile robot localization is described in detail by Fox [18], and has

been successfully used by many other researchers.

1.4 Motion Planning

A motion planning system is used to find an obstacle-free path from the

current position (as estimated by the localization system) to a specified goal

position. Motion planning for individual robots has been well studied in

the literature — refer to Latombe [42] for a detailed review. The A* search

algorithm, first presented by Hart [32], has been used extensively in robotics

to find the shortest path for a robot through a graph-based map. The A*

algorithm is complete (guaranteed to find an obstacle-free path between two

nodes if one exists), and optimal (guaranteed to find the shortest obstacle-

free path). It is used as a foundation for motion planning in this thesis.

The complexity of the A* planner increases exponentially with the num-

ber of dimensions used to represent the robot pose. For a single robot operat-

10

ing in a planar map, the pose (or state of the robot) is typically represented

with either two coordinates of position (x and y), or three coordinates by

adding orientation (θ). For motion planning in these two or three dimen-

sions, an A* planner is practical. For a team of multiple robots, a straight-

forward approach is to create a system state that includes the coordinates

of all robots in the team. However, as the number of robots r increases,

the number of coordinates in the system state increases to 3 × r, and the

exponential complexity of the A* algorithm makes it impractical for more

than 3 or 4 robots.

Some popular algorithms for multi-robot planning manage the complexity

of the problem by planning trajectories for robots individually and sequen-

tially [4] [29]; such decoupled methods are not guaranteed to find a solution

if one exists. For example, if two robots are required to swap positions in a

confined environment, the first trajectory planned for one robot may create

an obstacle for the other, and vice versa. Other approaches use a randomized

approach, such as probabilistic roadmaps (PRMs) to find mutually collision-

free trajectories through the environment [40]. These are efficient, but again

are not guaranteed to find a solution. In contrast, Chapter 3 describes the

development of a multi-phase approach to the planning problem that guaran-

tees a solution for a pre-defined number of robots in a common environment.

1.5 Task Allocation

Given a set of tasks to accomplish, and a team of multiple robots available

to perform the tasks, a system is required to assign each task to a particular

robot. The goal of such a system is to allocate the tasks in an optimal

manner, minimizing a cost function such as the total time to complete all of

the tasks, or the total energy expended by all of the robots.

A common mechanism for achieving a suitable allocation of tasks is based

on an economic, or market-based model proposed by Smith [76]. The system

auctions off each task to the individual robots, which supply bids based on

11

their estimated cost (in time, distance, or energy) to accomplish the task.

Refer to [26] for an example implementation of the approach with mobile

robots.

In Chapter 4, the problem of task allocation is investigated in the context

of motion planning in tunnel and corridor environments, such as underground

mines and office buildings. The tasks in this case are defined by locations

in the environment that must be visited by a robot, and the task allocation

problem is to direct each robot to an appropriate sequence of task locations.

This is similar to the well-studied traveling salesman problem [61], applied to

many robots simultaneously. In such problems, coordination between robots

is required for effective task allocation and planning; the cost for one robot

to reach a particular goal may depend significantly on the motion of other

robots occupying nearby tunnels.

1.6 Multi-robot Systems

Systems of multiple autonomous mobile robots can provide significant ben-

efits over individual robots working independently, such as increased redun-

dancy and robustness, simultaneous presence in multiple locations, and the

potential to perform cooperative tasks, such as moving objects too heavy for

a single robot. Numerous approaches have been proposed and demonstrated

to achieve these goals, many of them discussed in a thorough survey by Cao,

Fukunaga and Kahng [6].

Multi-robot system architectures can typically be categorized by the na-

ture of cooperation in the system (reactive or planning-based), the indepen-

dence of decision making by individual robots (centralized or distributed),

and whether the robots in the team are distinguishable from one another

(homogenous or heterogeneous).

12

1.6.1 Reactive versus Planning-Based Systems

In the same way that behaviour-based control systems generate complex be-

haviour in individual robots from a simple set of rules, complex multi-robot

system behaviour can emerge from a set of simple robots. This emergent

behaviour can be compared to the complex group dynamics observed in bio-

logical systems, such as ant colonies and insect swarms [6]. Reactive flocking

algorithms can maintain a formation of many simple robots without explicit

communication and coordination [67]. Group behaviours of ant colonies,

such as clustering, dispersing, and following a leader [53] [25], or guiding the

motion of nanobots in medical applications [45] have also been developed

based on rule-based systems. The ALLIANCE architecture allocates tasks

among behaviour-based heterogenous robots by enabling and inhibiting sets

of behaviours as robots become aware of their teammates [62].

Reactive algorithms are attractive due to their low computational and

communication requirements, and apparent simplicity. However, a significant

challenge in the development of such systems is the design of the underlying

rules that will produce the desired group response. “Decomposing swarm

actions into individual behaviors is a daunting task” [52], limiting reactive

systems to applications where the required group behaviour can be encoded

in stimulus-response rules.

The alternative planning-based approach explicitly coordinates the ac-

tions of many robots to accomplish one or more tasks. The difference between

reactive and planning-based systems may be understood by analogy to two

types of biological group behaviour, eusocial and cooperative, observed by

McFarland [51] [6]. Eusocial behaviour is the group behaviour that emerges

from genetically-driven actions that are necessary for survival of individuals

(typically insects in a colony). This is comparable to the emergent group be-

haviour in a team of reactive robots. In contrast, cooperative group behaviour

is observed in interactions between higher vertebrates, and “is not motivated

by innate behavior, but by an intentional desire to cooperate in order to

maximize individual utility” [6]. A planning-based approach to multi-robot

13

systems is analogous to this “intentional” model of cooperation; an algorith-

mic process is followed to cooperatively and efficiently achieve a well-defined

set of tasks.

With a planning-based approach to control, the introduction of multiple

robots in the same environment creates the possibility of (and possibly re-

quirement for) interactions between individual robots at each layer of the

hierarchical structure shown in Figure 1.1. Considering the problem of po-

tential collisions between independent robots operating in a common envi-

ronment:

• at the lowest level, robots may use simple signaling protocols or reactive

obstacle avoidance to avoid one other;

• at the execution level, trajectories may be adjusted by varying the

velocities of each robot to reduce the likelihood of trajectories crossing;

• at the highest level of planning, tasks may be allocated to robots in

such a way as to direct robots to different regions of the environment,

further reducing the probability of potential interactions or collisions

between robots.

At higher levels of the control structure, higher level planning can more

effectively coordinate the motion of robots. However, coordination at higher

levels often requires more sophisticated logic, to avoid or resolve potential

deadlock conditions, as presented in detail in Chapter 3.

1.6.2 Centralized versus Distributed Systems

Multi-robot control architectures can be described as centralized, where plan-

ning and coordination is performed at a central processor, or distributed,

where each robot navigates independently of the rest of the group. Central-

ized architectures can benefit from having the state and goals of all robots

available at one processor; this allows for more globally optimal planning

and task allocation. Distributed approaches can benefit from less reliance

14

on reliable communication networks, and greater scalability since each robot

performs its own navigation processing [10]. Cao et al. note that “it is not

clear whether the scaling properties of decentralization offset the coordinative

advantage of centralized systems” [6].

Many implementations involve a combination of both architectures, by

using a centralized processor to perform high level planning for largely au-

tonomous individuals, such as [59], or by making certain individuals “leaders”

within a distributed system [79]. Chien et al. give a comparison of three dif-

ferent task allocation systems, with varying degrees of distributed processing,

with simulations of a Mars rover exploration application [8].

1.6.3 Homogeneous versus Heterogeneous Systems

A group of robots can be considered homogenous if all robots are functionally

equivalent, and heterogenous otherwise. Homogeneity is assumed (though

often not explicitly stated) in many multi-robot systems [45] [52] [72] [69].

This assumption often simplifies the problems of task allocation and motion

planning, and is practical in applications involving physically similar robots.

While in practice multiple robots are generally not identical due to variations

in construction and damage to individuals, the “functionally equivalent” def-

inition allows minor variations to be ignored.

Some frameworks such as ALLIANCE [62], MURDOCH [23], and more

recently DEMIR-CF [72] have been developed to explicitly consider hetero-

geneous groups. By allocating tasks to the robots most capable of performing

them, overall efficiency of the system can be improved.

Localization systems can also benefit from heterogeneity, by taking ad-

vantage of the characteristics of different sensors available on different robots.

This has been applied to outdoor autonomous navigation [48], and with teams

of small cooperative robots operating indoors [57] [41]. For example, one

robot in the team may be equipped with an absolute positioning system

(such as GPS). The other robots, using a relative positioning system (such

as vision) can estimate their absolute position based on their pose relative

15

to the first robot.

In this thesis, the localization system developed in Chapter 2 assumes ho-

mogeneous robots, all of which have only simple range-finding sensors. The

system does not depend on any one member of the team with an absolute

positioning system, which would create a single point of failure. Chapter

4 investigates task allocation and cooperative motion planning for both ho-

mogenous and heterogenous teams.

1.6.4 Loosely versus Tightly Coupled Teams

The degree of cooperation and coordination between individual robots in a

team is dependent on the nature of the tasks to be performed. A problem

involving navigation of several robots in a large open area, where the proba-

bility of crossing paths is low, requires a much lower degree of coordination

than the navigation of many robots in a confined tunnel environment (the

subject of Chapters 3 and 4). This difference can be captured by the descrip-

tions loosely coupled, referring to teams where robots coordinate only during

task allocation, and tightly coupled, where coordination is required during

task execution [14].

Dias et al., in a survey of market-based task allocation systems, note

that “Tight coordination is extremely challenging: teams cannot easily take

advantage of the distributed planning and execution that make loose coordi-

nation tractable, and they are rarely fault-tolerant since task success depends

on the simultaneous success of multiple teammates” [14].

The planning and task allocation systems developed in this thesis qualify

as tightly coupled; successful plan execution requires each robot to follow

its trajectory accurately in both space and time. This tight coupling is a

requirement for efficient operation in tunnel environments, where coordinated

planning is a necessity. The challenges of tractability are handled by use of

the centralized and scalable planner developed in Chapter 3, while fault-

tolerance is achieved through obstacle avoidance at the lowest level of the

control hierarchy and rapid replanning at the highest level if individual robot

16

failures occur.

1.7 Thesis Outline

This thesis presents the development and validation of algorithms for cooper-

ative localization, planning, and task allocation by a team of mobile robots,

suitable for applications involving a large number of robots operating in a

shared environment. The contributions of this research are summarized in

an outline of the following chapters:

Chapter 2: A distributed cooperative algorithm for multi-robot localiza-

tion presents a new approach for teams of mobile robots to globally localize

themselves in a known environment. By combining the sensor data from

multiple robots, including measurements of the relative pose between pairs

of robots, conventional particle filter localization algorithms can be improved

to reduce the computational cost (or conversely, improve the accuracy) of ab-

solute pose estimation for each robot. Further, by estimating the position

of multiple robots and distributing the best estimates, members of the team

can work cooperatively to localize one another.

The localization method developed in Chapter 2 is well suited to a dis-

tributed implementation, where each robot can operate fully autonomously of

the rest of the network, but can take advantage of other robots within its lo-

cal area when possible. This leads to a multi-robot system with significantly

better localization performance than individuals operating in isolation, and

is robust to failures of individual robots and the communication network.

In contrast to some existing methods, the algorithm presented uses only

measurements of the distance between pairs of robots; it requires only range

measurements, rather than a system that can estimate the full relative pose

of two robots. Sensor measurements of all robots are shared and combined to

more efficiently localize all robots in the team. Performance is also improved

over existing algorithms by sharing the best pose estimates among the team

members.

17

Chapter 3: A complete and scalable multi-robot motion planning system

addresses the problem of finding collision-free trajectories for many robots

moving towards individual goals in an environment of corridors or tunnels.

Most popular algorithms for multi-robot planning manage the complexity of

the problem by planning trajectories for robots individually; such decoupled

methods are not guaranteed to find a solution if one exists.

In contrast, this chapter describes a multi-phase approach to the planning

problem that uses a graph and spanning tree representation to create and

maintain obstacle-free paths through the environment for each robot to reach

its goal. The resulting algorithm guarantees a solution for a pre-defined

number of robots in a common environment.

Chapter 4: A multi-robot task allocation algorithm investigates the al-

location of a specific type of task, where robots are required to visit certain

locations (tasks) in an environment composed primarily of narrow corridors

or tunnels, such as underground mines. The multi-phase planner developed

in Chapter 3 is applied to this problem, and simulation results demonstrate

the practicality and scalability of the task allocation system.

Chapter 5: A Multi-Robot System Implementation presents a real-world

cooperative multi-robot system, consisting of several mobile robots equipped

with scanning laser range finders for localization, and a wireless communica-

tion network. The system is used to demonstrate a physical instantiation of

the coordinated planning and task allocation algorithms developed in Chap-

ters 3 and 4.

Chapter 6: Conclusions summarizes the developments and contribu-

tions presented in this thesis, and suggests directions for future research.

Chapter 2

Cooperative Localization for

Teams of Robots with Simple

Sensors

2.1 Introduction

Cooperating teams of robots can add simultaneous presence, force multipli-

cation, and greater robustness to a robotic mission. In particular, teams of

small robots are valuable in a variety of applications such as space explo-

ration, where weight must be minimized to reduce transportation costs.

The autonomy and intelligent behaviour of small robots is typically lim-

ited by two factors: computational resources and sensor capabilities. The

computational limitations have been addressed by at least two different ap-

proaches. One is to use behavior-based control strategies [5], which often

have lower computational requirements. However, such strategies navigate

without a world model, making them less practical for applications involv-

ing map-based navigation. An alternative approach is to use small robots

within a hierarchical team. In such a system, larger robots integrate sensor

information from smaller robots and assist with the higher level computa-

tions required for localization and path planning [28]. By centralizing some

18

Cooperative Localization 19

functions of the team control, however, some of the benefits of redundancy

inherent in a multi-robot system are lost.

This chapter addresses the problem of localization of a team of robots

using only simple range-measurement sensors. Localization (estimating the

robot’s position in the environment) is necessary for map-based navigation

and exploration, but is a challenging task using only a few range measurement

sensors. By sharing the limited sensor measurements among the robots in

the team, a cooperative approach can more effectively solve the localization

problem.

Localization has two different sub-problems: position tracking from a

known starting location, and (the more challenging) global position estima-

tion where no estimate of the initial location is given. This focus of this

chapter is the problem of performing global localization of multiple robots,

with sensors that are limited in size, power, and number. This chapter

presents a method of distributing the problem of global localization across a

team of robots, where sets of three robots (referred to as a “triad”) work co-

operatively. This method extends traditional particle filter algorithms in two

ways. First, an alternative state representation for a team of three robots is

proposed, effectively reducing the number of variables to estimate. Secondly,

the particle filter calculations are distributed across the team, and the best

position estimates are shared at each iteration of the algorithm. By sharing

their limited sensory data and computational resources, the team is capable

of achieving global localization that cannot be accomplished by an individual

robot. This development is followed by an investigation of the scalability of

the algorithm, using different methods of selecting triads within a large team

of robots.

2.2 Literature Review

The problem of localization has been addressed for a wide variety of different

problems, such as structured and unstructured environments, varying types

Cooperative Localization 20

of sensors, and varying constraints on computational resources. This has led

to the development of several different methods that can be used, depending

on the application requirements. However, virtually all methods have a com-

monality in their use of a probabilistic approach, which is generally necessary

due to the presence of sensor measurement noise. Refer to Thrun et al. [82]

for an overview of the development of localization as a probabilistic process.

2.2.1 Localization Methods

Gutmann and Fox give an overview and comparison of several methods of

localization [30]. The common goal is to determine the most likely pose of

the robot (st), based on the available sensor data (dt). The data dt includes

both sensor measurements of the environment z, and control inputs u, from

the first measurements to the current time: dt = z0, u0, z1, u1, ...zt, ut. This

can then be formalized as an estimation problem to find the state st that

maximizes the conditional probability p(st|dt).

As derived in [81], Bayes’ rule can be used to compute this posterior

distribution of the robot state by integrating over dst−1, the state space at

the previous time step:

p(st|dt) = ηp(zt|st)

∫
p(st|ut−1, st−1)p(st−1|dt−1)dst−1 (2.1)

where η is a normalizing factor, zt is the sensor measurements at time t, and

ut−1 is the commanded motion of the robot from the previous to current time

step.

This Bayesian estimator gives an update rule to compute the posterior

distribution using only the distribution and the input and sensor measure-

ments from the previous time step; measurements made prior to t − 1 can

be discarded. Unfortunately, the integral term makes calculation of the full

posterior distribution computationally expensive, which has led to the devel-

opment of a variety of methods that approximate the probability distribution

more efficiently.

Cooperative Localization 21

Kalman Filter Methods

One approach is to use a Gaussian approximation, which allows the use of

a Kalman filter [37] to estimate the robot pose and a confidence in the pose

estimate (the covariance matrix). A primary feature of the Kalman filter

is that it generates an optimal state estimate for linear systems where the

sensor and process noise have known Gaussian characteristics. Smith, Self

and Cheeseman first proposed the use of Kalman filter methods to estimate

the relative positions of objects measured with noisy sensors [75].

Since the linear system and Gaussian noise assumptions rarely hold for

real-world localization applications, variations on the method are generally

required. For a nonlinear system model, the extended Kalman filter (EKF)

linearizes the system equations about the current estimate to propagate

the uncertainty estimate between time steps. The unscented Kalman filter

(UKF) more accurately models a nonlinear system by propagating the covari-

ance estimate through a set of sample points (called sigma points) through

the nonlinear system model [36]. These Kalman filter based methods have

been successfully applied to the robot tracking problem, by efficiently fusing

multiple uncertain sensor readings to maintain a single estimate of the robot

pose as a robot moves from a known initial position [31]. However, because

Kalman filter methods maintain only a single hypothesis of the robot po-

sition, they are not well suited to the problem of global localization where

many possible initial positions must be considered.

Particle Filter Methods

In contrast, particle filter methods, such as Monte Carlo Localization (MCL)

proposed by Fox [20], maintain multiple hypotheses of the current robot

state. Particle filters approximate the full Bayesian distribution with a set

of particles, each of which represents one estimate, or guess, of the robot po-

sition. A weight is associated with each particle, representing the confidence

in that particle’s estimate. To initialize the filter, m particles are selected

from the configuration space with a uniform distribution, and the weights

Cooperative Localization 22

are set to 1/m. At each iteration of the algorithm, the set of particles are

updated with the following processes:

• Sampling :

Particles are drawn from the previous set with probability proportional

to their weights.

• State Update:

The state of each particle is updated to account for the robot motion

(estimated from odometry) for the current time step.

• Weighting :

Weights are computed for each particle, as a function of the difference

between the robot sensor measurements z and the predicted measure-

ments ẑ based on the estimated position and map data.

This approach creates a higher density of particles near the best estimates of

the robot position, making effective use of the computational resources. By

maintaining estimates across the entire configuration space, particle filters

can perform global localization and address the kidnapped robot situation,

where a correctly localized robot is picked up and moved to a new position

without any information about the movement [80].

2.2.2 Multi-Robot Relative Localization

The ability of a robot to estimate its position relative to other robots in a

team is a significant aspect of cooperative multi-robot localization — deter-

mining the positions of robots relative to one another is one step of the global

localization process presented in this chapter. Relative localization requires

a mechanism for determining the range and/or bearing to other robots, as

well as an algorithm for combining the measurements into relative position

estimates. The algorithm developed in this thesis determines the relative

position of three robots using only the distances between them. A review of

Cooperative Localization 23

prior research suggests some current methods for estimating relative robot

poses.

Kato presents a method of identifying other robots and determining their

relative positions using omnidirectional vision sensors [39]. By using known

shapes and distinctive colors, the bearing to other robots can be determined

through image processing. Kato uses the bearing information from two robots

to determine the relative location of a third.

Grabowski presents a method using omnidirectional sonar sensors to esti-

mate the distance between each robot pair, and uses trilateration from three

stationary robots to determine the relative positions of others [27]. The

algorithms presented here differ from Grabowski’s, as they allow for inde-

pendent motion of all robots rather than maintaining three as fixed beacons.

The omnidirectional sonar ranging system used by Grabowski, described in

greater detail by Navarro [56], is a relatively straightforward mechanism for

measuring inter-robot distances.

Rekleitis and Dudek also describe a method for improving the perfor-

mance of localization by measuring relative position between robots [66]. In

their system, one robot in the team is used as a tracker that observes the

position of the other. The relative position is determined using a camera

on the tracker, and a distinctive helical pattern on the roaming robot. This

approach solves the problem of accumulated odometry measurement errors

for the roaming robot, since the tracker robot can always provide a relative

position estimate from its stationary position.

Howard presents a particle filter-based method of cooperatively estimat-

ing relative positions of robots in a team [35]. It is assumed that the rela-

tive pose of other robots can be measured using fiducials (easily identified

markers) affixed to each robot, as well as a camera and laser range finder. A

derivation of the posterior updates is given based on inter-robot observations,

taking into account the potential for over-estimated certainty that could re-

sult from the circular dependencies between estimates (that is, if Robot A

estimates its position relative to Robot B, which estimated its position rela-

Cooperative Localization 24

tive to Robot A, etc.).

2.2.3 Multi-Robot Global Localization

Global localization requires the additional ability to estimate the robots ab-

solute position in a known map with no prior knowledge of the robot position.

Roumeliotis presents a Kalman filter-based distributed localization ap-

proach they call collective localization [69]. The filter performs fusion of

sensor data from multiple robots based on the concept of a group organism,

consisting of all of the sensors available to the group, connected by virtual

links between individual robots. The lengths and joint angles of the virtual

links represent the relative robot positions, and allow the use of the standard

Kalman filter equations to optimally fuse measurements to improve the lo-

calization estimate of all robots in the team. When robots are within sight

of each other, their relative pose is measured, and their Kalman filter state

estimates are combined. The method was demonstrated experimentally to

maintain an improved estimate of all robot positions.

Fox [19] describes a Monte Carlo based method for cooperative global

localization that synchronizes the beliefs of robots when they detect and rec-

ognize one another. The merging of beliefs provides a dramatic improvement

in performance over individual localization, assuming that the robots have

sensors capable of accurately locating and identifying other robots in the

group.

Madhavan applies a distributed extended Kalman filter (EKF) based al-

gorithm for localization and mapping using a team of heterogeneous robots

operating in outdoor terrain [48] [49]. The algorithm is demonstrated using

a variety of sensors including GPS, scanning lasers and cameras. The use of

GPS allows absolute localization and the use of a common reference frame for

all robots; however, it also restricts the algorithm to outdoor environments

where GPS signals are available.

Rynn developed a solution to the problem of global localization of mul-

tiple robots using low cost sensors in structured environments [71]. In that

Cooperative Localization 25

solution, a CMOS camera is used to estimate the distance between robots,

and geometric features (such as straight walls and corners) are identified us-

ing infra-red sensors on a rotating base. The method depends on the ability

to identify particular geometric features, such as corners, to generate a set

of possible positions of each robot in the environment. The relative dis-

tances between robots can then be used to determine a unique solution for

the position estimation.

Cooperative localization has been investigated by Roumeliotis, Mourikis

and Hidaka, with an examination of the optimal formations of robots [33]

and optimal use of limited sensors [55] to maximize localization performance

of a multi-robot team. Their analytic and simulation results suggest that

cooperative localization is optimized when robots create formations of small

equilateral triangles.

2.3 Cooperative Localization of Three Robots

The method developed in this chapter first considers the problem of global

localization of a group of three robots (a “triad”) within a known map of

their environment. It is assumed that the robots can sense the environ-

ment (through sonar range sensors for example) as well as their own motion

(though wheel encoders or inertial sensors for example). For the simulations

used in this investigation, each robot is modeled as having two or four fixed-

position range sensors, a compass to sense orientation, and a measure of

odometry using wheel encoders. In addition, each robot has a mechanism to

measure the distance, but not direction, to the other robots (such as an om-

nidirectional acoustic range sensor similar to that described by Navarro [56]

for example). The task is to estimate the global position of all three robots

in the given map. This method is then extended to consider cooperative lo-

calization in a team of many robots by applying the method to dynamically

formed sub-groups of three robots within the team.

Cooperative Localization 26

2.3.1 Overview

Particle filter localization uses a large number of particles – i.e., state esti-

mates – to approximate the probability distribution of the robot being at

any location in the environment as described in Section 2.2.1. The algorithm

presented in this chapter uses a similar particle filter approach, but rather

than estimate the position of a single robot, it estimates the pose of a triangle

with 3 robots at the corners. That is, each particle represents an estimate

of the pose of a triad, defined by the variables {xc, yc, θc} giving the global

position of the centroid and the orientation of the triangle. From the esti-

mate of the position and orientation of the centroid of the triangle, and the

measured distances between each pair of robots, the estimated position of

each robot in the triad can then be computed. The weight of each particle

in the particle filter represents the belief in a particular configuration of all

three robots.

2.3.2 State Representation

The full configuration space for the three robots is defined by the 9-dimensional

space of {x1, y1, θ1, x2, y2, θ2, x3, y3, θ3}. If the headings {θ1, θ2, θ3} are

determined solely by a compass on each robot, the remaining variables to

estimate are the global position variables {x1, y1, x2, y2, x3, y3}.
If the distances between the robots are known, the state can be more

compactly represented in three variables, {xc, yc, θc}, where the subscript

c identifies a reference frame C, the centroid of a triangle with the robots

at the corners. θc defines the orientation of the reference frame, where the

x-axis is aligned with one (arbitrarily selected) median of the triangle. By

reducing the dimension of the state space from six to three variables, the

computational complexity of the state estimation problem is significantly

reduced.

Cooperative Localization 27

d13

d12

d23
(x1 1,y)

(x2 2,y)

(x3 3,y)

r1
r2

r3

Ö3

Ö2

(xc c,y)

x

y

Figure 2.1: Graphical representation of robot positions given the centroid

reference frame at (xc, yc) and the measured distances between robots di,j.

As derived in [7] for a general triangle, the distances between each robot

pair di,j can be used to calculate the distance ri from the centroid C to robot

i:

ri =
1

3

√
2d2

i,j + 2d2
i,k − d2

j,k. (2.2)

The x-axis of the centroid frame is aligned with the vector to the first

robot. The angles of the vectors to the robots are given by

φ1 = 0 (2.3)

φ2 = ± arccos

(
r2
1 + r2

2 − d2
1,2

2r1r2

)
(2.4)

φ3 = ∓ arccos

(
r2
1 + r2

3 − d2
1,3

2r1r3

)
. (2.5)

Note that two symmetrical solutions are possible from the geometry. The

selected solution is determined by a random binary variable that is set at

initialization of the particle.

The goal of the particle filter algorithm is now to estimate the values of

the reduced set of state variables xc, yc, θc, from which the estimated absolute

Cooperative Localization 28

position of robot i can be computed:

xi = xc + ri cos (θc + φi) , (2.6)

yi = yc + ri sin (θc + φi) . (2.7)

2.3.3 Distributed Algorithm Processes

The randomized nature of the particle filter algorithm makes it suitable for a

distributed, parallel implementation on multiple robots. Each robot can ap-

ply the algorithm to an independent set of particles, each of which estimates

the pose of the centroid of a triad. However, to make effective use of the best

estimates found by each robot, the particles with highest weights must be

shared amongst the team. At each iteration then, every robot begins with

a set of particles including those with the highest weights selected from all

three robots.

The sequence of processing and communication involved in the algorithm

is shown in Fig. 2.2. The following sections describe the variations to the

three steps in the particle filter algorithm required to integrate the sensor

readings from all three robots into a cooperative position estimate of all

robot positions.

Sampling

At each iteration of the algorithm, a sampling process is required to select a

set of particles to propagate forward from the previous iteration. Particles

may be selected with probability proportional to their weights. However, a

variety of alternative methods can be used to improve the particle selection.

As suggested in [20], this method uses a mixture of particles, with a fraction

sampled with probability equal to the weights, and a fraction sampled from

the best estimates from the most recent sensor measurements. This leads to a

denser representation of the belief state in the region of the highest likelihood.

Cooperative Localization 29

Figure 2.2: The sequence of particle filter processes is executed on each

robot, and synchronized by the exchange of the best state estimates after

each iteration.

As well, as suggested in [18], a small number of particles are added from a

uniform distribution of the state space to aid in global localization if the

robots become lost after acquiring a confident estimate.

State Update

At each iteration of the particle filter algorithm, the state of each particle

is updated to reflect the motion of the robots since the last iteration of the

algorithm, based on odometry measurements. In a single robot application,

the position would typically be updated based on the measured odometry and

Cooperative Localization 30

kinematics of the robot. In this method however, the update must reflect

the motion of the centroid reference frame C.

As shown in Fig. 2.3, the motion of C can be computed by first estimating

the previous position of the robots, (xi, yi, θi)t−1, given the previous estimate

of the centroid (xc, yc, θc)t−1 and Equations (2.6 - 2.7). The updated robot

positions, (xi, yi, θi)t, are estimated by propagating the previous position

through h, the kinematic equations of motion for the robot with the measured

odometry oit :

{xi, yi, θi}t = h
({xi, yi, θi}t−1 , oit

)
. (2.8)

Robot orientations are estimated from compass readings. The updated

estimate of C is then computed as the average of the robot coordinates:

xc =
1

3

3∑
1

xi (2.9)

yc =
1

3

3∑
1

yi. (2.10)

The state update also requires an update of the orientation of the frame

C, which is computed as the angle of the vector from C to the robot at (x1,

y1):

θc = arctan

(
y1 − yc

x1 − xc

)
. (2.11)

Weighting

For each particle, a weighting is applied representing the degree of belief in

the position estimate of the particle.

Using the known map of the environment, the expected sensor readings

from each robot are predicted, and these are compared to the actual sensor

readings. This comparison is used to assign weights to each particle, inversely

proportional to the difference between actual and expected sensor readings, as

Cooperative Localization 31

Centroid position

{xc, yc, c } t-1è

Robot positions

{xi, yi, i } t-1è

{xc, yc, c } tè {xi, yi, i } tè

Odometry

Figure 2.3: The state update process computes the new position of the cen-

troid by first transforming the estimate to the robot coordinates, estimating

the robot motion, and transforming back to the centroid coordinates. The

upper arrow transformation is defined by Equations (2.6-2.7), and the lower

arrow by Equations (2.10-2.11)

.

defined by Equation (2.12). The particles defining the best estimates (those

with the highest weights) are then shared between all the robots. Each robot

selects a new set of particles using probabilities proportional to the weights,

with a fraction selected around the best estimates, and a fraction randomly

selected throughout the configuration space.

This weighting Wp is determined as a function of the error between the

predicted IR sensor readings that would be measured from the estimated

robot positions and the actual measurements from all three robots:

Wp =
1√∑3

r=1

∑2
s=1 (zr,s − ẑr,s)

2
(2.12)

where zr,s and ẑr,s are the measured and predicted values of sensor s on robot

r respectively. The weights are then normalized such that
∑

Wp = 1.

2.3.4 Results

The algorithm was implemented and evaluated in a simulation of a group of 3

robots, each with two fixed-direction infra-red (IR) range sensors, odometry

Cooperative Localization 32

Figure 2.4: The simulated robot configuration for the single-triad simulations

of Section 2.3.4: The robot is driven with differential steering, and has a

compass and two IR sensors oriented at 90◦ to sense the environment.

sensors, and a compass (as indicated in Figure 2.4), operating in a confined

area including obstacles and walls. Obstacles and walls are detected by the

IR sensors, but are considered transparent for the inter-robot range measure-

ments; this simplification was removed for further simulations described in

Section 2.4. Each robot begins in a random location in the known map. They

then create a randomized trajectory by driving forward until they reach an

obstacle, after which they turn through a randomly selected rotation. The

models of the range sensors, compass, and odometry measurements include

injection of Gaussian noise based on typical sensor performance.

During the simulation, each robot performed two localization algorithms.

The first was an implementation of the particle filter running in isolation on

each robot, using only data from its own sensors. This was used as a baseline

for comparison of results. The second algorithm was the distributed method

described in this thesis, using the combined sensor readings from all robots

and sharing the best estimates.

Cooperative Localization 33

Figure 2.5: The simulation environment, a cluttered 6m× 4m area, showing

the system state after successful localization.

Simulation Environment

The simulation environment is shown in Fig. 2.5. The small dots indicate

the position of particles maintained in the particle filters. The lines radiating

from the central cluster represent vectors from the best estimates of the

centroid position to the estimated positions of the three robots. The three

circles near the end of the lines indicate the actual positions of the robots.

Note that a higher density of particles is maintained around the estimated

centroid after completing the localization.

Cooperative Localization 34

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

180

200

Time (s)

A
ve

ra
ge

 E
rr

or
 (

cm
)

Average Position Estimation Error with 800 particles

Individual
Distributed

Figure 2.6: Comparison of position error over time for the individual particle

filters (dotted line) and the cooperative distributed particle filters (solid line).

The results are averaged over 10 consecutive simulations of 20 seconds each.

Position Estimation Performance

In Fig. 2.6, the average position estimation error is plotted over time for a

set of 10 simulations using 800 particles for each robot. On average, after the

first 3 seconds of the simulation the distributed localization has converged

to the correct estimation of the centroid and robot positions (as shown for

example in Fig. 2.5). This is in contrast to the performance of the individual

particle filters operating in isolation, also with 800 particles in each filter,

which on average do not converge to the correct solutions for all three robots

within the 20 second simulation time.

Cooperative Localization 35

As shown in Fig. 2.7, the error between the predicted and actual sensor

readings are consistently smaller using the individual particle filters. Operat-

ing in isolation, the individual position estimates can lead to many solutions

that give sensor readings similar to those from the actual robot position.

In contrast, in the distributed method the larger discrepancies between pre-

dicted and actual sensor readings reflect the increased constraints on the

possible position estimates, imposed by the trilateration calculations. Only

those estimates that satisfy the inter-robot distance measurements are con-

sidered, leading to less freedom to minimize the sensor prediction error, and

a better overall estimate of position.

Figure 2.8 shows the performance of the algorithm over a range of sizes

for the particle filter, simulating 50 iterations per second on each robot. The

vertical scale indicates simulation time, corresponding to the number of iter-

ations of the algorithm with a fixed time step. While the number of iterations

required to successfully localize the team decreases as the number of parti-

cles increases, the computational cost of each iteration of the algorithm is

proportional to the number of particles. This is particularly significant for an

algorithm intended for small robots with limited processing capabilities, as

the frequency of the algorithm execution will be constrained by the number

of particles used. The ideal size of the particle filter for a particular appli-

cation will be determined based on the computational resources available,

the size of the environment, and the required performance of the localiza-

tion system. The size of the particle filter can be tuned by performing an

evaluation of localization performance in the target environment, as in the

example shown in Figure 2.9, and selecting the minimum number of particles

corresponding to the required convergence rate. For this example, a filter of

200 particles is a suitable choice, averaging approximately 20 time steps and

25000 particle evaluations to converge to a solution. Using less than 100

Cooperative Localization 36

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

Time (s)

A
ve

ra
ge

 E
rr

or
 (

cm
)

Average Sensor Estimation Error with 800 particles

Individual
Distributed

Figure 2.7: Comparison of sensor prediction error over time for the individual

particle filters (dotted line) and the cooperative distributed particle filters

(solid line) for one representative simulation run.

particles greatly increases the time to convergence, while using more than

400 greatly increases the number of particle evaluations required.

2.4 Cooperative Localization of Many Robots

The triad-based localization method presented above can be extended to

improve localization in a large groups of robots, by dynamically selecting sets

Cooperative Localization 37

50 100 200 400 800
0

2

4

6

8

10

12

14

16

Number of Particles

T
im

e
(s

)
Localization convergence time

Figure 2.8: Comparison of the rates of convergence for varying number of

particles.

of three robots to cooperatively localize within the larger group. Each robot

can then generate an estimate of the positions of itself and two neighbors,

using the trilateration method described above.

In this case, each particle filter estimates the position of the centroid of

a triangle of robots, but the particular three robots (and the estimate of

their centroid) may be different for each particle filter. In the sharing best

estimate process, therefore, the position of the centroid cannot be shared,

as it is only relevant to one triad. Instead, the estimated absolute positions

of individual robots must be computed and shared. The absolute positions

can then be transformed back to the centroid representation required for

Cooperative Localization 38

0 100 200 300 400 500 600 700
10

20

30

40

50

60

70

80

90

100

110
Localization performance vs # of particles (6 robots)

of particles

E
va

lu
at

io
ns

 /
tim

e
st

ep
s

Particle evaluations to convergence (x1000)
Time to convergence (time steps)

Figure 2.9: Comparison of the computational cost (measured in the num-

ber of particle evaluations before convergence) and the time to convergence

(measured in the number of time steps) for six robots using a varying number

of particles.

each local particle filter. Simulations are used to demonstrate the process,

and investigate the effect of different approaches to selecting triads of robots

with the team.

2.4.1 Localization Process for Many Robots

Applying the three-robot method to a team of many robots, each robot

executes the following process at each time step:

1. Prediction: The best position estimates from the previous iteration are

Cooperative Localization 39

updated to reflect the estimated motion of the robots using odometry.

2. Range estimation: Distances to other robots are measured from range

sensors.

3. Data exchange: The sensor measurements and best position estimates

are broadcast to all other robots within range.

4. Triad selection: Two other robots within sight are selected for the

cooperative localization process. If two other robots are not within

sight, the robot relies on odometry to update its own position estimate.

5. Particle generation and Weighting: A set of particles is generated based

on the estimated poses received from other robots in the data exchange

step, and the ranges between robots determined in the range estima-

tion step. A weight for each particle is computed by comparing the

sensor measurements of each robot to those predicted by the particle’s

estimated poses.

Prediction

In the prediction step, each particle of the filter is updated based on the

current motion of the robot. The current motor control outputs (or odometry

sensor measurements if available) are applied to a model of the robot motion,

to determine the change in position and orientation since the previous time

step. The pose estimate represented by each particle is then updated based

on the estimated motion. In simulation, the motion is estimated based on

commanded wheel rotations of a differential-drive robot, with Gaussian noise

added to the simulated motion.

Range Estimation

Each robot transmits a beacon, such as a time-synchronized sonar pulse,

and receives the corresponding beacons from other robots in the same area.

Cooperative Localization 40

Based on a time-of-flight calculation, the distance to other robots in the

area can be determined. In a physical implementation, range measurements

may be acquired using an integrated system such as the Cricket location

system developed by Priyantha et al. [65] [64] and available from Crossbow

Technologies. In simulation, the range measurements are generated only if

an unobstructed line-of-sight is available between robots, using the simulated

distance between robots and the addition of Gaussian noise.

Data exchange

Each robot maintains a best estimate of the current position of itself and the

other two robots in the triad, based on the particle with the highest weight

in the previous iteration. These best position estimates, and the confidence

of the estimate (the particle weight) is broadcast to all other robots, and the

current best estimates from all other robots within range are received and

stored. Sensor measurements, range measurements, and planned velocities

are also broadcast to all other robots, for motion prediction in the next

timestep and evaluation of the particle weights. In the simulation, sensor

measurements of the environment include only four range values, representing

readings from four sonar or IR sensors on each robot.

Triad selection

To combine the position estimates and range measurements using the trilat-

eration process discussed above, each robot selects two other robots to use in

the cooperative localization process. The selection criteria can take several

considerations into account:

• Confidence: When selecting a triad, it may be beneficial to select the

two other robots with the greatest confidence in their own estimates,

effectively performing a relative localization to two well-localized bea-

cons. However, this greedy approach may not be optimal for the team;

if three robots are well-localized with a high confidence in their own

Cooperative Localization 41

estimates, it may be more globally beneficial for them to form triads

with other poorly localized robots rather than with each other, in order

to improve the overall estimation of the team.

• Geometry: The impact of measurement errors depends significantly on

the shape of the triangle formed by the triad. The positions and angles

computed in Equations (2.2 - 2.5) are more sensitive to small changes

in the range measurements for an obtuse triangle than an equilateral

triangle. The variance in sensitivity can be seen by considering the

derivative of Equation (2.2), with respect to dj,k, for each vector ri.

Setting all of the derivatives to zero to minimize the variance requires

equating d1,2 = d1,3 = d2,3, corresponding to an equilateral triangle.

Triads may therefore be selected by minimizing the difference in ranges

between robots, forming approximately equilateral triangles when pos-

sible.

• Persistence: Since robots share the estimates of the positions of all

robots in their triad at each iteration, there may be benefit to main-

taining persistent triads. That is, once a triad is selected, change the

selection only if necessary (if any pair of robots in the triad cannot make

inter-robot range measurements for example). Maintaining a persistent

triad allows the particle filter to converge to a solution for a set of three

robots. A continually varying triad selection will require the filter to

converge on a localization solution for a larger number of robots (and

a corresponding larger search space).

The effects of these factors on the performance of the overall team lo-

calization are not obvious, and are investigated in the simulation results

presented in Section 2.4.2.

Particle generation and Weighting

Unlike a conventional particle filter, the set of particles cannot be simply

propagated from the previous iteration. Since the particle represents the

Cooperative Localization 42

centroid of a triangle of three robots, and the particular three robots may

change dynamically between iterations in the triad selection step, a new set

of particles must be generated for the current set of robots in the triad.

To generate a suitable set of particles, an initial set of seeds are generated

using the current position estimates of each of the three robots in the triad.

Each seed particle represents the pose of a triad, and is determined using the

estimated positions of 2 robots, and the range measurements to the third.

The position estimate of the third robot is estimated using the intersection

of two circles, centered at the estimates of the first 2 robots, and with radii

equal to the range measurements from the first 2 robots to the third. Using

this method, given two well-localized robots, at least one seed will correctly

estimate the position of the third robot. Weights are then computed for each

of the seeds, by comparing the measured sensor values from each robot to

those predicted by the particle’s estimated poses.

A complete set of particles is generated using a weighted random sampling

from these seeds, with Gaussian noise added to each estimate. A weight for

each particle is computed by comparing the sensor measurements of each

robot to those predicted by the particle’s estimated poses. The best position

estimates of the three robots in the triad (based on the particle with the

highest weight) are stored for the following iteration.

2.4.2 Simulation Results

To investigate the performance of the trilateration-based localization in a

large team of robots, a simulation was created in an artificial environment,

shown in Figure 2.10. In this environment, the black circles represent ob-

stacles in the map that can be detected by the range sensors; these are also

included in the robot’s map of the environment, and are used for the predic-

tion of range measurements in the localization process. The obstacles also

block inter-robot range measurements, limiting the combinations of robots

that can form cooperative triads. The simulated positions of five robots

are indicated by pie shapes, and the straight lines indicate inter-robot range

Cooperative Localization 43

measurements forming two triads. The localization process is defined to have

converged to a correct solution for a robot when the error between the esti-

mated and simulated position of the robot is less than twice the radius of the

robot. The entire team of robots is considered localized when the process

has converged to a correct solution for all robots in the team simultaneously.

Figure 2.10: The multi-robot team localization simulation environment.

To investigate the performance of the localization system as the total

number of robots increases, simulations were run varying the number of

robots between 3 and 18. The time required for the system to localize to

the actual positions was measured, and averaged over 10 simulations with

random initial positions of all robots. To investigate the effect of different

triad selection criteria, results were generated using different methods. In

Cooperative Localization 44

each case, a triad is only formed between 3 robots that all have an obstacle-

free line-of-sight between each another.

Baseline: Static Triad Selection

As a baseline for comparison, triads are statically defined between sets of 3

robots at initialization of the simulation. The triad selection remains fixed

for the duration of the simulation. This is similar to the simulation in Section

2.3.4, but with multiple independent teams of 3 robots.

2 4 6 8 10 12 14 16 18
10

1

10
2

10
3

10
4

10
5

Convergence time vs number of robots (static triads)

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

Number of robots

Average
Min/Max

Figure 2.11: Baseline convergence rates for static triad assignment.

Cooperative Localization 45

Figure 2.11 shows that the number of iterations required for convergence

increases exponentially with the number of robots in the team, using a static

allocation of triads (note the logarithmic scale on the y-axis). This trend is

due to the decreasing likelihood of all teams simultaneously achieving line-

of-sight for inter-robot range measurements as the number of sub-teams in-

creases. With statically allocated sub-teams, the robots do not dynamically

create triads with other visible team-mates. Instead, when visibility between

the assigned sub-teams is lost, the robots rely on odometry to predict po-

sition, and the individual estimation error grows without bound until the

obstacles are passed and visibility is regained. Complete localization of the

team only occurs when all sub-teams cooperatively localize by achieving vis-

ibility within the pre-assigned triad; this becomes increasingly improbable as

the number of robots increases.

Best-estimate Dynamic Triad Selection

Dynamic selection of triads based on line-of-sight visibility at each time-step

allows a robot to use the trilateration localization when it has visibility of

any other two robots that also have visibility of each other. As discussed in

Section 2.4.1, there are several possible approaches for selecting the two other

robots to form the triad (if more than one potential triad is available). One

possibility is selecting the two visible robots with the highest confidence in

their current estimate. This corresponds to the minimum difference between

predicted and measured range sensor readings in the prior iteration. The

goal of this greedy approach is to take advantage of any correct localization

solutions found by other robots; using the trilateration method, a robot can

determine its absolute position based on its range measures to two other

well-localized robots.

Figure 2.12 shows the convergence time observed when selecting triads

based on the robots with the highest confidence in their estimates, compared

Cooperative Localization 46

2 4 6 8 10 12 14 16 18
10

1

10
2

10
3

10
4

10
5

Convergence time vs number of robots (best estimate)
A

ve
ra

ge
 n

um
be

r
of

 it
er

at
io

ns

Number of robots

Static Triads
Dynamic
Persistent

Figure 2.12: Convergence rates for best-estimate dynamic triad selection.

to the baseline allocation. The solid line connecting squares (Dynamic) is

based on a re-selection of the triad at every iteration using the highest confi-

dence criteria. Between 3 and 6 robots, the performance improves compared

to the static allocation. For more than 6 robots however, like the static triad

allocation performance, the convergence time increases exponentially. This

trend can be attributed to the fact that each robot’s particle filter is now

effectively attempting to estimate the position of N robots, where N is the

average number of visible robots that may be selected into the triad. The

dynamic selection converges only when all robots that may be included in the

triad are actually correctly localized; this requires estimation of 2×N coor-

dinates, instead of the 6 variables involved for a static triad. The increase in

Cooperative Localization 47

the dimensionality of the search space is reflected in the exponential increase

in convergence time.

The dotted line connecting circles (Persistent) is based on a re-selection

of the triad using the same criteria, but only when the current triad fails (vis-

ibility between a pair of robots is lost due to an obstacle). By maintaining

existing triads when possible, the filter can converge to a position estimation

for 3 robots, rather than estimating the position of whatever visible robots

have the highest confidence at each iteration. This corresponds to a sub-

stantial reduction in the convergence time compared to the fully dynamic

best-estimate selection approach.

In summary, the greedy approach of forming triads with well-localized

robots fails, because in the initial state no robots are correctly localized.

Instead of converging more quickly, the random changing of triads makes

the process more difficult; this is overcome to some degree by maintaining

existing triad selections when possible.

Biggest-Area Triad Selection

An alternative approach to selecting triads is based on geometric considera-

tions. As discussed in Section 2.4.1, by selecting robots that form a triangle

that is close to equilateral, rather than obtuse, the impact of measurement er-

rors on position estimation can be minimized. In addition, by forming larger

triangles, the relative significance of errors in range measurements is reduced.

In the simulation, range measurement noise is modeled as a constant Gaus-

sian addition to actual distances, assuming a model based on typical sonar

sensor measurement noise.

Figure 2.13 shows the convergence time when selecting triads based on

the visible robots that will form a triangle with the largest area. The area

can be determined using Heron’s formula in Equation (2.13) for the area of

Cooperative Localization 48

2 4 6 8 10 12 14 16 18
10

1

10
2

10
3

10
4

10
5

Convergence time vs number of robots (biggest area)
A

ve
ra

ge
 n

um
be

r
of

 it
er

at
io

ns

Number of robots

Static Triads
Dynamic
Persistent

Figure 2.13: Convergence rates for biggest-triangle dynamic triad selection.

a triangle based on the range measurements a, b, and c between robots:

A =
√

s(s− a)(s− b)(s− c) (2.13)

where s = 1
2
(a + b + c).

The dashed line connecting squares in Figure 2.13 (the Dyanamic selec-

tion, where new triads are selected at every iteration) shows a significant

improvement over the best-estimate triad selection approaches shown in Fig-

ure 2.12. By dynamically forming triads that minimize the effect of mea-

surement errors in the position calculations, the convergence time decreases

significantly as the number of robots increases from 3 to 12. As the number of

robots increases further, the convergence time begins to increase again; this

is likely due to the high density of robots in the environment. With a large

Cooperative Localization 49

number of robots, it becomes increasingly difficult to form triads covering a

large area, since the robots themselves become line-of-sight obstacles between

other robots. However, even with 18 robots in the small environment, the

average convergence time is approximately the same as for 3 robots, demon-

strating effective scalability using the biggest-area triad selection approach.

The dotted line connecting circles in Figure 2.13 (the Persistent selection,

where new triads are only selected when the current triad is broken) demon-

strates that the benefit of the geometric structure is of greater benefit than

maintaining the current triad selection. In comparison to the best-estimate

approach, the biggest-area selection is inherently less dynamic. The robots

forming the largest triangle are much less likely to change from iteration to

iteration, compared to the robots with the highest confidence in their esti-

mates.

To illustrate the convergence trends over time, Figure 2.14 shows the

convergence over time for one representative simulation using both the static

triad allocation and the biggest-triangle dynamic selection approach. In the

upper plot, the number of robots localized at each iteration rises and falls

many times over a period of over 500 iterations. This is due to the divergence

of individual estimates as robots depend on odometry when they do not

have visibility with their pre-assigned triad. In contrast, using the biggest-

area triangle approach, the number of robots correctly localized increases

relatively steadily over a relatively short time (22 iterations). Once localized,

individuals effectively maintain correct estimates by cooperating with other

robots that are in suitable positions to minimize estimation error.

2.5 Summary

This chapter presented the development of a cooperative method of global

localization for mobile robots. The algorithm for a triad of robots uses trilat-

eration to determine the possible relative positions of three robots, forming a

Cooperative Localization 50

0 100 200 300 400 500 600
0

5

10

15

20

Iterations

N
um

be
r

of
 r

ob
ot

s
lo

ca
liz

ed
Convergence rate: static triads vs biggest area triangle triads

Static triads

0 5 10 15 20 25
0

5

10

15

20

Iterations

N
um

be
r

of
 r

ob
ot

s
lo

ca
liz

ed

Biggest area triads

Figure 2.14: Convergence over time for static vs biggest-area triad selection.

triangle with the relative position of one robot at each corner. A particle fil-

ter is then used to estimate the centroid and orientation of the triangle, using

range sensor measurements of the environment from all robots to evaluate

the particle weights. Simulation results demonstrate the performance of the

algorithm with only simple range sensors on each robot, while the number of

particles used is varied over a range of relatively small values. Three robots

are able to localize themselves in an environment where isolated particle

filters on each robot failed to converge.

Cooperative localization of a team of many robots was investigated by

extending the triad-based algorithm to sub-teams of three robots. The chal-

lenging aspect of this extension is the selection of triads for the sub-teams;

Cooperative Localization 51

the overall performance, measured as the time required to converge to a cor-

rect position estimate for all robots in the team, is highly dependent on the

triad selection criteria used. Statically assigning robots to fixed triads, or

dynamically selecting triads based on confidence estimates leads to an ex-

ponential increase in the convergence time as the size of the team increases.

However, using a geometric selection criteria of maximizing the area enclosed

by the robots in the triad leads to a decrease in the convergence time as the

size of the team increases up to 18 robots in the simulation environment.

By dynamically assigning triads based on the current visibility and network

connectivity between robots, the system is also robust to individual robot or

network failures.

Chapter 3

Multi-Robot Motion Planning

3.1 Introduction

The use of multiple mobile robots in a common environment is valuable for

the automation of many operations, such as underground mining and ware-

house management. In such applications, multiple vehicles are required to

drive autonomously between different locations, preferably taking the short-

est possible route while avoiding collisions with static objects and other vehi-

cles. This requires first the localization of all vehicles, as discussed in Chapter

2, followed by path planning, the selection of a path from the current posi-

tion to the goal location. This chapter presents an algorithm for efficiently

determining collision-free paths for many vehicles in environments composed

of tunnels or corridors, as may be found in these applications. The problem

addressed by this research is demonstrated by the multi-robot planning task

pictured in Figure 3.1(a).

In this scenario, the environment is constructed of corridors or tunnels

that are wide enough for only a single robot to travel, and we assume differ-

ential drive robots that can rotate in place. The objective in this example

is to shift the position of each robot, such that robot R1 moves to the ini-

tial position of R3, R3 to the position of R2, and R2 to the position of R1.

Our goal is to find an algorithm that is scalable to a large number of robots

52

Multi-Robot Motion Planning 53

(a) A planning problem (b) Graph-based map

Figure 3.1: A multi-robot planning problem requiring coordination of 3

robots, and a graph-based representation of the environment.

(> 100) densely situated in a large environment, and can solve problems

that specifically require coordinated planning, such as that shown in Figure

3.1(a).

3.2 Literature Review

Many methods have been proposed for planning the motion of one or more

robots; refer to Latombe [42] and LaValle [43] for detailed reviews. The

methods are differentiated by the map representations they use (and how

they generate their maps), and by the search method used to find a connected

obstacle-free path from the robot to its goal. The methods can be evaluated

in terms of completeness (whether they are guaranteed to find a solution if

one exists), complexity, and optimality.

Multi-Robot Motion Planning 54

3.2.1 Map Representations

As introduced in Section 1.2, map representation is a significant factor in

the efficiency of motion planning algorithms. Occupancy grids are a com-

mon map representation for robot navigation, and are easily derived from

range sensor measurements [15]. Optimal and resolution-complete algorithms

(guaranteed to find a solution subject to the spatial resolution of the occu-

pancy grid) have been presented. This approach creates a graph representa-

tion with a node for every unoccupied cell, and edges between all adjacent

unoccupied cells. The A* search algorithm [32] is then used to find the short-

est path to the node of the goal cell. Improvements have been made on this

common method, such as D*, which efficiency updates paths when the map

changes dynamically [77].

For motion planning problems, graph representations such as topological

graphs (or roadmaps) are often more efficient than high resolution grid maps.

By abstracting the structure of the environment to a set of open spaces

(nodes) connected by corridors or tunnels (edges), a graph representation

reduces the number of possible states of the system, and therefore reduces

the complexity of the search for collision-free paths.

Roadmaps define a set of admissible collision-free paths (graph edges)

connecting points (nodes) within the environment. The selection of these

paths depends on the environment, to ensure that stationary obstacles are

avoided. The roadmap also depends on the kinematics of the robot, since only

admissible paths (that the robots can actually follow) should be included.

Several methods of generating roadmaps have been developed for different

applications. Deterministic roadmaps can be generated using methods such

as Voronoi graphs [9] and visibility graphs. These combinatorial methods re-

quire a polygonal representation of obstacles in the map, but give complete

representations of the connectivity of the environments. This full represen-

tation enables complete and optimal path planning, but can be difficult to

generate and impractical for higher dimensional configuration spaces.

In contrast, probabilistic roadmaps (PRMs) are generated by randomly

Multi-Robot Motion Planning 55

selecting milestones, which are points in the robot configuration space, and

connecting pairs of milestones that have obstacle-free paths between them

[40]. Due to their random nature, PRMs do not include all obstacle-free paths

through the configuration space, so do not result in complete or optimal plan-

ning solutions. However, they are most effective in very large configuration

spaces for which deterministic roadmaps would be impractical.

The planning algorithm presented in this chapter requires such a roadmap,

in the form of a topological map, but is independent of the particular method

used to generate it.

3.2.2 Multi-Robot Planning

Motion planning algorithms for multiple robots are typically based on those

developed for individual robots. For example, the A* algorithm can be ap-

plied directly by creating a configuration space including the coordinates

of several robots, and probabilistic roadmaps can be generated for multiple

robots simultaneously [11]. However, two particular challenges need to be

addressed in motion planning for multiple robots. First, the dimensionality

of the configuration space increases with the number of robots in the system;

for a complete search algorithm, the complexity increases exponentially with

the number of robots. The second consideration is that the robots them-

selves become dynamic obstacles in the environment. This requires a multi-

robot planner to consider the motion of all robots as trajectories (positions

as functions of time), rather than simply time-independent paths that lead

to the goal. The planner must generate mutually collision-free trajectories

that drive all robots through the configuration space-time to their respective

goals.

Most multi-robot planning algorithms that achieve this fall into one of

two categories, coupled or decoupled. Coupled algorithms, such as [78], plan

the trajectories of all robots in the environment concurrently. By combin-

ing the states (poses) of the individual robots together into a system state

representation, a sequence of state transitions can be found that will move

Multi-Robot Motion Planning 56

all robots to their respective goals. Using complete search methods, such as

A* [32], coupled algorithms can achieve completeness and optimality (the

shortest path solution), and can solve the problem shown in Figure 3.1(a).

Coupled algorithms depend on a centralized architecture, where all of the

state information is available to a single processor. Their limitation is in

searching the large configuration space that grows in dimension as each ad-

ditional robot is added to the environment. A direct application of the A*

search would guarantee a resolution-complete solution. However, since the

size of the configuration space (the number of possible states of the system)

grows exponentially with the number of robots (O(kr) for r robots), the

computational complexity of the A* search also increases exponentially and

quickly becomes intractable. Hopcroft et al. have shown the general motion

planning problem for multiple moving objects to be PSPACE-hard [34]. One

approach to reducing the size of the search space is to create probabilistic

roadmaps (PRMs) through the environment; this method was shown in [78]

to be probabilistically complete and demonstrated in simulation for up to 5

robots. Another approach is to decompose a large map into subgraphs, and

plan paths between subgraph segments before coordinating motion within

each subgraph [70].

Decoupled methods plan for the motion of individual robots, rather than

planning the motion of all robots simultaneously. One approach is to decou-

ple path planning from mutual collision avoidance, by first finding obstacle-

free paths, then adjusting velocities of individual robots to avoid collisions

[38] [63] [29]. Alternatively, a coordination-diagram [60] approach can be

used to combine independently generated paths of many robots while avoid-

ing collisions [73].

Decoupled methods may use a decentralized architecture, allowing in-

dependent planning based methods such as maze-searching [47] or poten-

tial fields [3] [21], or they may use a centralized architecture planning for

all robots with a single processor. Centralized decoupled planners typically

determine individual trajectories sequentially and combine the plans of all

Multi-Robot Motion Planning 57

robots to avoid collisions. Plans may be combined by iteratively adding new

plans as obstacles into the configuration space-time [16]; however, this inher-

ently involves assigning priorities to robots to determine the order in which

plans are added, which affects the quality of the resulting plan. This can

be addressed by considering all different combinations of priorities (for up

to 3 robots, demonstrated in [2]), or running an optimization process on the

priority assignment [4]. In a more dynamic paradigm, the plans of individ-

ual robots can be merged into the global coordination plan as new goals are

assigned [1].

By planning the motion of robots sequentially, decoupled methods have

lower complexity and greater scalability than a coupled planner; however, this

comes at the cost of completeness and optimality. The problem in Figure

3.1(a) for example cannot be solved by a sequential planner. By selecting

the optimal plan for any robot independently, an obstacle is created in the

space-time map that cannot be avoided by the other two robots.

This chapter presents an alternative multi-phase planning method that

can solve these coordinated planning problems, and is scalable to a large

number of robots in a large environment. For the tunnel and corridor envi-

ronments considered here the segments are only one lane wide, reducing the

complexity of a suitable topological map generation process compared to the

general case. A multi-phase planning approach then takes advantage of the

properties of the graph and spanning tree to create and maintain obstacle-free

paths while robots move to their respective goals.

3.3 Multi-Phase Planning Algorithm

The multi-phase planning algorithm depends on a topological graph repre-

sentation of the environment, and the selection of a spanning tree for the

graph. These structures must be generated, as described in Section 3.3.1,

only once for a given environment. The planning process, described in Sec-

tions 3.3.2 to 3.3.6 that follow, is executed repeatedly whenever the robot

Multi-Robot Motion Planning 58

goals are changed.

3.3.1 Graph Generation and Tree Selection

For the example of Figure 3.1(a), a topological graph G can be constructed

by hand as shown in Figure 3.1(b), consisting of N = 6 nodes and E = 6

edges. Each node is an obstacle-free region of the workspace, at least as large

as any of the robots. Edges are created between each pair of adjacent nodes

where there exists an obstacle-free path at least as wide as any of the robots.

We assume that the initial and goal positions of all robots lie on the nodes

of the graph; in this representation, the goal positions of robots R1, R2, and

R3 are nodes A, C, and B respectively.

Given the graph representation, we can also select a spanning tree T ∗ in

the graph, that is, a subset of edges connecting all nodes without forming any

loops. A given spanning tree has L leaf nodes (nodes with only one incident

edge), and N − L interior nodes. A suitable spanning tree for the example

is shown in bold in Figure 3.1(b), and redrawn in a tree form in Figure 3.2.

Node C, closest to the geographic center of the map, has been selected as

the root, and node B is the root of a subtree. Selecting all edges except for

E −F into the spanning tree as shown gives L = 4 leaf nodes, A, D, E, and

F , and two interior nodes, B and C.

In general the spanning tree is not unique, and a heuristic approach for

tree selection was used that tends to maximize the number of leafs and mini-

mize the distance between leafs. Finding the tree with the maximum number

of leaves for an undirected graph is an NP-complete problem, but approxi-

mate algorithms have been presented [46]. An simple but effective approach

used here is to iteratively add edges to the tree that lead to the nodes with

the maximum number of incident edges, starting from the root node. Again,

the planning algorithm requires the selection of a spanning tree, but is inde-

pendent of the tree selection method used.

Multi-Robot Motion Planning 59

Figure 3.2: A spanning tree T ∗ for the graph representation of the environ-

ment rooted at node C, and a subtree TB rooted at node B.

3.3.2 Algorithm Overview

The multi-phase algorithm finds a feasible solution to the multi-robot tra-

jectory planning problem by breaking the problem into a sequence of four

sub-problems. Each phase can be solved in time proportional to the num-

ber of robots by taking advantage of the graph and spanning tree structures

developed above.

A plan is first found that moves the robots to the leafs of the spanning

tree (Phase 1 of the algorithm), requiring that the number of robots r is less

than the number of leaves L. We then use the following observations to plan

a sequence of paths to drive each robot to its goal. For a system with r < L

robots:

Lemma 1: When all robots occupy leaf nodes, any robot can move to any

interior node in the graph G.

Lemma 2: When all robots occupy leaf nodes, any two robots can swap

positions.

Lemma 1 is clear since an obstacle-free path can be found between any

two nodes through the spanning tree T ∗, and no robots remain as obstacles

on the interior nodes of the tree. Lemma 2 follows, since with r < L robots,

there is always one unoccupied leaf Ntmp in the spanning tree. Robots Ri

and Rj at nodes Ni and Nj can swap positions by moving Ri to Ntmp, Rj to

Ni, and Ri to Nj.

Multi-Robot Motion Planning 60

Note that these lemmas guarantee that there exists at least one path

through the spanning tree. However, a shorter path may exist using graph

edges that are not in the tree (e.g., moving from E to F in Figure 3.1(b)).

Where an A* search is used in the following steps, the entire graph is

searched, and the shortest paths will be selected.

As described in detail below, a plan is constructed by first building a

sequence of individual paths, or segments, in which one robot moves between

2 nodes (as shown in Figure 3.3). Once all robots have been moved to the

leafs of the tree in Phase 1, the lemmas above guarantee that the robots can

be arranged in the graph such that every robot will have an obstacle-free

path to its goal. This is accomplished in Phase 2 by moving each robot to a

node within a subtree of its goal. In Phase 3, we can then move each robot

in sequence to its goal. Finally, in Phase 4, the time and distance required

to complete the sequence of individual robot movements can be reduced

by removing redundant motions and moving robots concurrently whenever

possible.

P1 P2

P3 P4 P5 P6

P7

Time

Phase 1:

Phase 2:

Phase 3:

T0

Figure 3.3: Each path segment Pi indicates the motion of one robot. In

Phases 1-3, individual collision-free segments are planned and concatenated

in time.

The pseudo-code below assumes the following functions are available:

currentNode(robot) returns the node occupied by robot at the current timestep

of the plan.

freeLeafNode() returns an unoccupied leaf node of the spanning tree.

The freeLeafInSubtree(node) and freeLeafNotInSubtree(node) func-

tions perform the same search, restricted to the subtree of node, or the

subset of the graph not in the subtree of node, respectively.

Multi-Robot Motion Planning 61

astarPath(start, end) returns the shortest connected sequence of nodes be-

tween nodes start and end, assuming no obstacles in the graph.

freeAstarPath(start, end) returns the shortest connected sequence of nodes

between nodes start and end, avoiding any already occupied nodes.

findObstacleRobot(path) searches for an occupied node in the path sequence,

in reverse order from the end to start. A reference to the first robot

found occupying a node (if any) is returned.

addPath(path, robot) adds the sequence of nodes in path as a new sequence

for robot in the plan, and updates the current position of robot to the

last node in path.

planRobotToNode(robot, goal) uses freeAstarPath to find the shortest obstacle-

free path from the robot’s current position to the goal, and adds this

new trajectory segment using addPath.

subTreeContains(root, node) returns true if node is in the subtree of root

within the spanning tree.

getBlockedRobot(node) searches for robots currently within the subtree of

node, whose goal is outside of the subtree of node.

sortRobotsByDepthOfGoal() orders the robots according to the depth of

their goal nodes, from deepest to shallowest, in the spanning tree. This

order is applied in the following for each robot... loop.

The process is shown graphically in Figure 3.4 for the example problem,

and each phase is described in detail in the following sections.

3.3.3 Phase 1: Reaching Leaf Nodes

In Phase 1, we develop a plan that will move all robots to leaf nodes of the

spanning tree. This is accomplished by repeatedly selecting a robot Ri that

Multi-Robot Motion Planning 62

(a) Phase 1 (b) Phase 2-a (c) Phase 2-b (d) Phase 3

Figure 3.4: A multi-phase solution to the planning problem of Figure 3.1(a)

.

is not currently on a leaf node (lines 2-6 of the pseudo-code shown in Figure

3.5), and selecting an unoccupied leaf node Li (line 7). This is guaranteed

to succeed, since there are L leaf nodes, and r < L robots to occupy them.

A heuristic may be used to select a leaf node close to the robot or its goal.

In the example in Figure 3.1(a), node E may be selected as the leaf node for

robot R1.

An A* search is then used to find a path (sequence of nodes) Pi, from the

initial position of robot Ri to the target leaf node Li, ignoring all other robots

in the system (line 8). The path Pi is then examined for robots occupying

any nodes of the path (line 9). If the path is clear, the path moving Ri to

the leaf node is added to the plan (line 11). Otherwise, let Rj be the robot

on a node of Pi that is closest to Li. In this case, we plan for Rj to move

to Li instead, using the obstacle-free subpath of Pi that connects Rj to Li

(lines 13-15).

In Figure 3.4(a), since robot R2 is an obstacle between the selected robot

R1 and leaf node D, a path P1 moving R2 from node B to D is added instead.

Continuing the process, R1 remains to be moved to a leaf node, and either

node E or F may be selected, indicated by path P2.

Multi-Robot Motion Planning 63

1 func t i on plan phase1 ()
2 f o r each robot
3 s t a r t = currentNode (robot)
4 i f i sLeafNode (s t a r t)
5 cont inue
6 end i f
7 l e a f = freeLeafNode ()
8 path = astarPath (s ta r t , l e a f)
9 ob s t a c l e = f indObstac leRobot (path)

10 i f (ob s t a c l e not found)
11 addPath (path , robot)
12 e l s e
13 s t a r t = currentNode (ob s t a c l e)
14 path = astarPlan (s ta r t , l e a f)
15 addPath (path , ob s t a c l e)
16 end i f
17 end f o r
18 end func t i on

Figure 3.5: Pseudo-code for Phase 1

Multi-Robot Motion Planning 64

3.3.4 Phase 2: Sorting Robots by Depth of Goals

In Phase 2, we move all robots into positions where they can reach their

goals without creating an obstruction for another robot. The need for this

arrangement step can be seen in Figure 3.4(a): robots R2 and R3 have goals

on the interior nodes C and B respectively, and if either moves directly to

its goal, it will create an obstacle for the other. For a general algorithm to

resolve this potential deadlock, we consider the problem in terms of robot

positions relative to their goals within the spanning tree structure.

Let TGi
be a subtree of the spanning tree with root at the goal node Gi

of robot Ri. A deadlock condition occurs only if

• when Gi is occupied, another robot Rj is inside the subtree of TGi
and

is blocked from reaching its goal outside the subtree, or

• when Gi is occupied, another robot Rj is outside the subtree of TGi
,

and is blocked from reaching its goal inside the subtree.

We can prevent these conditions by:

• moving robots to nodes within the subtree of their goal nodes, and

• ordering the depth of the robots within the subtree based on the depth

of their goals.

To accomplish this task, we process robots in the order of the depth of

their goals, that is, the distance from the goal node to the root of the spanning

tree (refer to Figure 3.2 and lines 20-21 of the pseudocode in Figure 3.6). For

each robot Ri, we determine whether it is already in TGi
, in which case the

requirements are already satisfied (lines 24-25). If not, we test whether filling

the goal Gi will create an obstacle for any robots in the subtree TGi
, and if

so, select the deepest positioned such robot Rj (line 27). The blocked robot

Rj can be moved out of the subtree if an unoccupied leaf is available outside

of the subtree (lines 30-33). Otherwise, the free leaf must be within the

subtree; the depth ordering condition can be achieved by moving Ri to the

Multi-Robot Motion Planning 65

available leaf within subtree TGi
, and moving Rj to the original goal node

Gi (lines 34-38). This phase achieves the two conditions required above to

avoid deadlock conditions when filling interior node goals.

The total path length can be reduced by only partially completing the

swap in some cases:

• If the temporary unoccupied leaf used for swapping is not in TGi
, robot

Rj may remain at that leaf rather than completing the swap to the

previous position of Ri.

• If Rj is the only robot that would be blocked into the subtree, robot

Ri can fill its goal node immediately after robot Rj has been moved.

In the example, R1 has the deepest goal node A, so is processed first. The

subtree of the goal consists of only the node A, and contains the robot R3,

which must be moved to avoid the deadlock condition (line 27). R3 is there-

fore moved to the unoccupied leaf node F (line 32), before moving R1 to its

goal node A (line 33), shown by paths P3 and P4 in Figure 3.4(b).

The goals of robots R2 and R3 are interior nodes C and B, with C being

the root of the spanning tree T ∗. R3 has the deeper goal node B, so is

processed first. Its goal node B is the root of the subtree containing nodes

A and D, as shown in Figure 3.2, so we must check for robots that would be

blocked into the subtree (line 27). Referring to Figure 3.4(b), R2 at node D

is such a robot. We therefore move R2 to an unoccupied leaf node E (line

32), then plan robot R3 to its goal node (line 33), indicated by paths P5 and

P6 in Figure 3.4(c). This leaves R2 and R3 in subtrees of their goal nodes,

and in the same depth order as their goals, as required.

3.3.5 Phase 3: Filling Remaining Goals

In Phase 3, we move any robots to the remaining unfilled goals. If we plan

for robots with goals closest to the top of the tree first (line 47 in Figure

3.7), an obstacle-free path for each robot is guaranteed by the arrangement

Multi-Robot Motion Planning 66

19 func t i on plan phase2 ()
20 sortRobotsByDepthOfGoal ()
21 f o r each robot
22 s t a r t = currentNode (robot)
23 goa l = goalNode (robot)
24 i f subTreeContains (goal , s t a r t)
25 cont inue
26 end i f
27 blockedRobot = getBlockedRobot (goa l)
28 i f (blockedRobot found)
29 blockedNode = currentNode (blockedRobot)
30 l e a f = f reeLea fNot InSubtree (goa l)
31 i f (l e a f found)
32 planRobotToNode (blockedRobot , l e a f)
33 planRobotToNode (robot , blockedNode)
34 e l s e
35 l e a f = f r e eLea f InSubt r e e (goa l)
36 planRobotToNode (robot , l e a f)
37 planRobotToNode (blockedRobot , goa l)
38 cont inue
39 end i f
40 e l s e
41 l e a f = f r e eLea f InSubt r e e (goa l)
42 planRobotToNode (robot , l e a f)
43 end i f
44 end f o r
45 end func t i on

Figure 3.6: Pseudo-code for Phase 2

Multi-Robot Motion Planning 67

determined in Phase 2, where the robots are sorted in order of the depth of

their goals. For the example scenario, this requires planning robot R2 to its

goal at node C (line 51), resulting in the desired goal configuration shown in

Figure 3.4(d).

46 func t i on plan phase3 ()
47 reverseSortRobotsByDepthOfGoal ()
48 f o r each robot
49 goa l = goalNode (robot)
50 i f (robot i s not at goa l)
51 planRobotToNode (robot , goa l) ;
52 end i f
53 end f o r
54 end func t i on

Figure 3.7: Pseudo-code for Phase 3

3.3.6 Phase 4: Building a concurrent plan

The plan determined in phases 1-3 consists of a sequences of segments or

paths Pi, in which only one robot moves at any time, as shown in Figure 3.3

for the example problem. The sequence of paths guarantees that all robots

reach their goal positions without collisions with other robots. However, the

sequence of paths is generally very sub-optimal in terms of time and total

distance required to reach the goal positions, compared to a decoupled plan-

ning solution (if one is possible). Since travel time and distance are often

significant evaluation criteria in practical applications, a number of meth-

ods may be applied to generate a more optimal solution from the sequence

of segments. This stage introduces a tradeoff between solution optimality

and computational complexity; the ideal method will depend on the scale

of the application (number of robots and size of the map), the computa-

tional resources available, the requirements for real-time performance, and

the relative importance of optimality in the trajectory solution.

Multi-Robot Motion Planning 68

Because the algorithm first moves robots to leaf nodes of the spanning

tree (a process that is required to guarantee completeness, but is often unnec-

essary in the final solution), a significant reduction in total distance traveled

can typically be gained by finding and removing any redundant motion. This

can be found for each robot by checking all cases where the robot returns to

a node it previously visited. If the node was not occupied in the intervening

time, the robot may simply remain at that node for the duration.

The result of this first optimization is that there may be steps of the

trajectory where no robots are moving; these can be simply removed to

reduce the total trajectory execution time.

P1

P2

P3

P4

P5

P6

P7

TimeT0

Phase 4:

Figure 3.8: Individual path segments are overlapped in time whenever pos-

sible while avoiding collisions.

Concurrency by overlapping segments

An additional step is then to allow multiple robots to move concurrently

by overlapping the individual segments in time as much as possible without

introducing any collisions, as shown in Figure 3.8. Each successive segment of

the original plan is added to a concurrent plan by first considering it appended

to the end of the plan. The start position of the segment is then moved earlier

in time until the motion in the new segment would create a collision between

robots in the concurrent plan. The motion of the robot in the new segment

is then incorporated into the concurrent plan. This approach was used in

generating the simulation results of Section 3.4, involving up to 40 robots

Multi-Robot Motion Planning 69

operating in a map of several hundred nodes, with sub-second computation

times.

Concurrency by a space-time search

An alternative approach to generating a concurrent plan is to generate a

concurrent plan for all robots using a sequential A* search in time and space,

based on the method described for general multi-body motion planning by

Erdmann and Lozano-Perez [16].

• For each segment of the plan, consider the initial and final positions of

the moving robot in each segment.

• Perform an A* search, in a space-time map. This map is based on the

topological node-based map used in Phases 1-3, but extended in the

time dimension with resolution corresponding to the movement of a

robot between two adjacent nodes. The initial and final states for the

A* search are the initial and final states of the robots in the trajectory

segment.

• Add the A* solution trajectory for the moving robot to the space-time

map as an obstacle to be avoided in future searches.

Note that each A* search is guaranteed to find a solution, due to the

conditions and ordering of the sequences established in Phases 1-3. In the

worst case, for each segment, the initial state will correspond to the final

state of the space-time map generated so far, and the A* search will append

the same motion as found in the original trajectory segment. Typically,

however, the space-time search will find a solution where the motion of the

one moving robot can be at least partially concurrent with the motion of

previously added segments.

This approach of a full space-time search for each trajectory segment is

very effective, as the shortest possible paths are found for each required robot

motion, and the maximum concurrency of motion is obtained. However, this

Multi-Robot Motion Planning 70

comes at a substantial computational cost, since the space-time map adds

an additional dimension to the A* search space, and the length of the time

dimension grows with the number and length of individual segments of the

original plan. The method was found to be practical for up to 20 robots

in simulation, and was used in the real-world implementation described in

Chapter 5.

3.3.7 Complexity Analysis

The plan completed at the end of Phase 3 will move all robots to their re-

spective goals, as required for a complete planner. In each of the 3 phases,

we iterate once over the set of r robots, and require at most 3 (in the case of

swapping) A* plans for each. Each A* search has a fixed complexity C that

depends on the size of the graph and the heuristic used, but remains indepen-

dent of the number of robots in the environment. The total computational

complexity of the first 3 phases is therefore O(r · C) for r robots.

As discussed above, the complexity of Phase 4 depends on the method

used, and the degree of optimization required. In the method of overlapping

segments, for example, as each segment overlaps the concurrent plan by one

additional step in time, a “collision check” is required for the moving robot

at each state in the segment. The worst case complexity of the operation,

given a trajectory of s states is O(s2).

3.3.8 Hybrid Planning

The multi-phase planner is fast and complete; it will quickly generate a

solution to the planning problem for a large number of robots in a complex

graph. However, the resulting plans are typically sub-optimal, in terms of

path length for each robot.

A decoupled planning approach, such as that proposed by Bennewitz [4],

can use priority scheduling to consider many different possible plans. Unfor-

tunately, the generation of many plans using different sequence of priorities

Multi-Robot Motion Planning 71

is CPU intensive, and may fail to find a solution for complex planning prob-

lems. When successful, the resulting plans from the decoupled approach are

typically shorter than those found by the multi-phase planner.

To take advantage of the properties of each approach, a hybrid planner

was implemented and evaluated. One valid plan is first quickly generated

using the multi-phase planner. The decoupled planner is then invoked in an

attempt to find a shorter path solution. The decoupled planner may then be

terminated at any time, and the most optimal plan selected.

3.4 Simulation Results

The 4-phase planner described above was implemented and evaluated in

Monte-Carlo simulations in the underground (“tunnel”) mine map shown

in Figure 3.4, using between 3 and 40 robots. Refer to Appendix A for an

animation video of the simulation. The planner was also evaluated on a map

with more open space, shown in Figure 3.4, using between 3 and 150 robots.

For each map, a topological representation was generated from an occu-

pancy grid by finding adjacent circular regions of open space (nodes) and

connecting all adjacent nodes by edges. The spanning tree selected for the

tunnel map contains 43 leaf nodes, allowing for motion planning of up to 42

robots in the environment. Random initial and goal positions are selected

for each robot. For the environment with open spaces, a mesh-like topolog-

ical structure results, allowing robots to pass each other in the open areas.

The resulting spanning tree has 142 leafs, allowing for planning of up to 141

robots.

As expected from the analysis above, the multi-phase planner finds a

collision-free plan for every configuration in both maps.

For comparison, a Decoupled Planner using a sequential A* planning ap-

proach for each robot was also implemented, which randomly selects a prior-

ity sequence of robots. This sequential planner finds the shortest collision-free

path for each robot through the space-time map, avoiding obstacles includ-

Multi-Robot Motion Planning 72

Figure 3.9: Tunnel simulation environment: floor-plan of the Mathies Mine,

from http://www.cs.cmu.edu/ 3D/mines/html/map6.html, courtesy of Se-

bastian Thrun

Open area simulation map of a mine-like environment, created by hand

(a) Open area simulation environment

Multi-Robot Motion Planning 73

ing the trajectories of all previously planned robots. The results of such a

planner are dependent on the priority sequence used, so up to 100 randomly

selected priority sequences were applied for each case in an attempt to find

a sequence for which a plan could be found. Finally, the hybrid planner ap-

proach described in Section 3.3.8 was used to evaluate the benefit of using a

combination of multi-phase and decoupled planning.

The plots in the following sections show the results of applying the algo-

rithms to the same randomly-generated problems in the two different envi-

ronments.

3.4.1 Planning Success Rate

The first measure of the algorithm performance is the success rate of finding

a feasible solution. As expected for a complete algorithm, the success rate of

the multi-phase planner is 100% for up to 42 robots given a spanning tree in

the tunnel map with 43 leafs. However, the sequential planner failed to find

solutions for some randomly generated problems with 14 or more robots, and

failed to find solutions for all problems with 25 or more robots.

In the open space map, the spanning tree with 142 leafs guarantees a

solution for up to 141 robots using the multi-phase planner. The decoupled

planner began to fail for some problems with 25 robots, and failed to find a

solution for any problems with 75 or more robots.

The success rate of the sequential planner will increase if more randomly

selected priority sequences are tried; however, the planning cost also increases

with each additional priority sequence. 100 different sequences was a practi-

cal maximum value to run the planner in real-time with less than 10 seconds

of CPU time per plan.

3.4.2 Average Robot Path Length

The average distance required for each robot to travel to reach its goal is

plotted in Figure 3.10. The results indicate that in the tunnel map, the multi-

Multi-Robot Motion Planning 74

phase planner typically generates longer paths for each robot, particularly

as the number of robots increases. This is not unexpected, since the planner

first directs robots to positions other than their goals in order to create an

obstacle-free path for the final phases of the process.

In the open map, the average path lengths are very similar. This is due to

the increased density of leaf nodes in the map; when the multi-phase planner

moves robots to leaf nodes, the average additional distance is much less than

for the tunnel map.

When the sequential planner begins to fail for some of the randomly

generated problems (> 14 robots in the tunnel map and > 25 robots in the

open map), the average path length is computed only for those scenarios

where a solution was found.

0 10 20 30 40 50
30

35

40

45

50

55

60

65

70
Average path length

Number of robots

P
at

h
le

ng
th

 (
st

ep
s)

Multi−phase
Decoupled

(b) Tunnel Map

0 50 100 150
16

18

20

22

24

26

28

30
Average path length

Number of robots

P
at

h
le

ng
th

 (
st

ep
s)

Multi−phase
Decoupled

(c) Open Map

Figure 3.10: Average robot path length generated by each planner

3.4.3 Average Total Execution Time

The average execution time (the number of time steps required for all robots

to execute their plans) is plotted in Figure 3.11. The plans generated by

the decoupled planner can typically be executed in less time than the multi-

phase planner solutions. This is due to the serialized nature of the multi-

Multi-Robot Motion Planning 75

phase planner path generation, where the plan is constructed of a sequence of

individual robot movements. The execution time of the multi-phase planner

is reduced in Phase 4 by executing multiple segments concurrently; however,

improving the concurrency involves greater computational complexity.

In contrast, the decoupled planner attempts to immediately move all

robots toward their goals from the first time step. This results in greater

concurrency, and a shorter execution time. However, this gain comes at a

cost of complexity and loss of completeness. In the open-space map, the

decoupled planner failed to find solutions for some random scenarios of 25

robots. In the tunnel environment, it failed to find solutions for any trials

with 25 or more robots.

0 10 20 30 40 50
0

100

200

300

400

500

600
Average plan execution time

Number of robots

P
la

n
tim

e
(s

te
ps

)

Multi−phase
Decoupled

(a) Tunnel Map

0 50 100 150
0

100

200

300

400

500

600
Average plan execution time

Number of robots

P
la

n
tim

e
(s

te
ps

)

Multi−phase
Decoupled

(b) Open Map

Figure 3.11: Average execution time for paths generated by each planner

3.4.4 Search Cost

The search cost is a measure of the complexity of the planning algorithm,

or the time required to complete the search for a feasible solution. Figure

3.12 shows the CPU time required by each algorithm; the processing time

has been normalized by the number of robots in the plan, and shows the

exponential growth in complexity of the decoupled planning method. The

Multi-Robot Motion Planning 76

values indicate the time required to find a feasible solution given the graph

representation, and not the (one-time) cost of generating the graph and tree.

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8
Planner CPU time

Number of robots

C
P

U
 ti

m
e

(s
)

Multi−phase
Decoupled

(a) Tunnel Map

0 50 100 150
0

5

10

15

20
Planner CPU time

Number of robots
C

P
U

 ti
m

e
(s

)

Multi−phase
Decoupled

(b) Open Map

Figure 3.12: Average CPU time used by each planner

These results demonstrate that while a decoupled approach can find

shorter paths for simpler planning problems, the multi-phase planner in-

volves much less computational cost. The cost of the sequential planner

grows exponentially, since it requires many attempts with different random

priority sequences to find a solution. The cost of the multi-phase planning

algorithm, however, increases close to linearly with the increase in number of

robots. For 100 robots in the open-space map, feasible plans were computed

by the multi-phase planner in less than 1.5 seconds using a 1.5 GHz Pentium

M processor.

3.4.5 Hybrid Planner

The graph of the algorithm selection in the hybrid scheme, shown in Figure

3.13, indicates the algorithm behaviour as the number of robots in the system

increases. The plots show the percentage of time the results of each planner

are selected, indicating how often the multi-phase planner generates a more

optimal result (a shorter total travel distance) than the decoupled planner.

Multi-Robot Motion Planning 77

For very small numbers of robots, the multi-phase planner results are often

better than the decoupled planner results. The randomly selected order used

by the decoupled planner is typically suboptimal, required longer paths to be

generated for some robots. As the number of robots increases, the decoupled

planner can often find shorter path solutions. However, beyond a threshold,

the decoupled planner fails to find any solutions, and the multi-phase planner

results are required.

0 10 20 30 40 50
0

20

40

60

80

100
Hybrid algorithm selection

Number of robots

P
er

ce
nt

ag
e

of
 tr

ia
ls

Multi−phase
Decoupled

(a) Tunnel Map

0 50 100 150
0

20

40

60

80

100
Hybrid algorithm selection

Number of robots

P
er

ce
nt

ag
e

of
 tr

ia
ls

Multi−phase
Decoupled

(b) Open Map

Figure 3.13: Hybrid Planner Selection

3.5 Discussion and Summary

This chapter presented a multi-robot planning algorithm that is based on a

topological graph and spanning tree representation. By breaking the plan-

ning algorithm into several phases, it is shown that the algorithm guarantees

a solution to the planning problem, and is scalable with linear increase in

complexity for up to r < L robots given a spanning tree with L leafs.

In this development, maps of tunnels and corridors were considered specif-

ically, since they present a challenging environment for the coordination of

a large number of robots, and occur in practical applications environments

such as buildings and underground mines. For more general cases, including

Multi-Robot Motion Planning 78

arbitrary obstacles and non-holonomic motion constraints, the generation of

a suitable roadmap or graph representation can be a challenging problem

in itself. However, once a suitable graph is created, the multi-phase algo-

rithm can be applied directly. For this development, a graph was created by

connecting nodes of adjacent circular regions in the obstacle-free workspace.

This straightforward approach can be made robust to robot failures by mark-

ing the areas around disabled robots as obstacles in the environment, and

re-generating the graph representation.

Considering the performance comparison between the sequential planner

and the multi-phase planner, it may be advantageous to consider a hybrid

approach, taking advantage of the features of both algorithms. By first gen-

erating a plan using the multi-phase planner, a feasible solution can be gener-

ated very efficiently. To search for a more optimal plan, a sequential planner

could then be applied to the same problem, and permitted to run within the

time bounds of the application.

In comparison to a decoupled sequential planning algorithm, the multi-

phase planner typically produces longer paths, but at a much reduced com-

putational cost when planning for many robots. A hybrid algorithm demon-

strated the value in using both the multi-phase and decoupled planning meth-

ods when planning for a variable number of robots in an environment. A

real-world implementation of the planning algorithm with physical robots is

presented in Chapter 5, which demonstrates the practicality of the multi-

phase planner in real-world applications.

Applying this planning algorithm to a multi-robot task allocation problem

is the topic of the following chapter.

Chapter 4

Multi-Robot Task Allocation in

Corridor Environments

Given a set of tasks to accomplish, and a team of multiple robots available

to perform the tasks, a system is required to assign each task to a particular

robot. The goal of such a system is to allocate the tasks in an optimal

manner, minimizing a cost function such as the total time to complete all of

the tasks, or the total energy expended by all of the robots.

This chapter considers a specific type of task, where robots are required to

visit certain locations in their environment, and the environment is composed

primarily of narrow corridors or tunnels. A task is defined as the node in the

graph representation of the environment that is closest to a location of inter-

est. This type of problem arises in a number of practical applications. For

security applications, a team of robots may need to patrol a building, period-

ically visiting a set of rooms and monitoring for intruders. Another example

includes mining applications, where loose rock and ore must be picked up

from multiple locations by autonomous earth-moving vehicles and delivered

out of the mine. In each of these cases, a tunnel or corridor environment

can limit the ability of robots to pass one another at arbitrary locations;

this creates a need for appropriate task allocation and coordinated motion

planning.

79

Task Allocation 80

A class is associated with each task, corresponding to the type of opera-

tion to be performed at the task location. Each robot also has an associated

class, corresponding to the type of operations it can perform. For the build-

ing patrol application, the particular robot that visits each location is not

relevant; the robots in the team are typically considered functionally equiva-

lent, and any of the robots can perform the observation operation required at

any task location. We define this as a single-class task allocation problem,

where all tasks and all robots are of the same class. The task allocation

problem is then to find an efficient path for all of the robots through their

environment, such that at least one robot visits each of the task locations.

Depending on the particular application, the objective may be to minimize

the travel time of all robots, or to minimize the time between visits to each

task (for maximum coverage in the building security example).

For the autonomous mining application, all vehicles are not function-

ally equivalent; empty trucks can be assigned certain tasks (picking up fresh

material), and trucks that are full of material can be assigned other tasks

(delivering the material at the mouth of the shaft). We define problems of

this type as multi-class task allocation problems. This chapter discusses the

different requirements for single-class and multi-class task allocation sys-

tems, and presents algorithms for both scenarios, suitable for many robots

operating in a confined environment.

4.1 Literature Review

Several approaches have been applied to the general problem of allocating

tasks between multiple robots in a team. A more specific problem, in the

context of this thesis, is the allocation of tasks that are the visiting of specified

locations (task points) within the environment. To gauge the complexity

of the problem, this section first reviews a similar problem, the traveling

salesman problem, which has been well studied in combinatorial optimization

(refer to [44] for a thorough discussion). The remainder of the review focuses

Task Allocation 81

on market-based approaches, which have been applied to the multi-robot

task allocation problem in numerous applications.

4.1.1 Traveling Salesman Analogies

One goal of the task allocation problems addressed in this chapter is to

minimize the total travel time or distance of the robots. This objective is

closely related to the commonly studied traveling salesman problem (TSP). A

review of research on the TSP can provide some insights into the complexity

of the problem, and suggest directions toward an effective solution. In the

standard traveling salesman problem, one salesman has a set of cities to

visit, and the goal is to find the shortest route that visits each of the cities

exactly once and returns to the starting location. A brute-force search of

all possible permutations will yield the optimal answer; however, there are

N ! permutations for a problem of N cities. The TSP has been shown to

be NP-complete [61], and exact solutions can be found by algorithms with

exponential complexity O(2N ×N2). In practice, heuristics and approximate

solution methods (see [68] for examples) are typically used to find solutions

for large values of N , or if computation time is limited (as for real-time robot

motion planning).

The multi-robot planning problem described here includes a number of

variations from the standard TSP:

• The allocation of tasks between multiple robots must be considered.

For N tasks and a team of R robots, N × R different allocations are

possible, before considering the order of the task execution for each

robot. This is often termed a multiple traveling salesman problem, or

MTSP.

• The constraints of motion within the environment must be considered;

while the standard TSP assumes a fully connected graph, where the

salesman can travel directly between any two cities, the robot task

allocation system involves motion planning using only the open areas

Task Allocation 82

of the environment. As a result, unlike the standard TSP, the same

points may be visited multiple times in one solution. As tasks are

completed, new tasks may be added, creating a dynamic allocation

and planning problem requiring a real-time algorithm.

• The task allocation must take into account the motion of other robots

working in the same environment. This is particularly significant in

constrained environments of tunnels and corridors, where there may

not be room for multiple robots to move simultaneously, and explicit

coordination is required to avoid collisions.

• For this application, we require tasks to be visited repeatedly, while

the standard TSP is complete after a single visit to each task point.

These variations from the standard TSP definition (in particular, the re-

quirement for coordinating collision-free motion of all robots in the solution)

increases the complexity of the problem and prevents the direct application

of existing TSP solution methods. However, some of the common TSP so-

lution heuristics, such as selecting a nearest neighbour task, can be used to

guide the multi-robot task allocation process.

4.1.2 Market-Based Methods

The concept of using an economic model to allocate tasks between agents was

proposed by Smith [76], in a system called Contract Net. Contract Net defines

a protocol for negotiation communication, allowing some agents (acting as

managers) to announce tasks, and other agents (acting as contractors) to

respond with bids. Contracts are established by managers comparing bids

received from contractors, and allocating tasks to the lowest cost bid.

This approach has been applied to many task allocation problems, sum-

marized in a survey by Dias et al. [14]. In that survey, market-based systems

are characterized by the following 5 features:

Task Allocation 83

• The task to be accomplished can be subdivided into subtasks, which

can be allocated for individuals or sub-groups to perform. A limited

set of resources are available to be shared by the team members.

• The quality of solutions to the task problem can be quantified by a

global objective function.

• An individual utility function quantifies a robot’s relative ability to

perform a subtask.

• A mapping function relates the individual utility functions and the

global objective function, quantifying how well an individual’s contri-

bution to a subtask helps achieve the overall team task.

• Individual subtasks and resources can be allocated to individuals within

the team, using a mechanism such as auction system.

This general definition can be applied to many task allocation problems,

including the multi-robot navigation problem considered in this chapter. The

navigation problem involves determining which robots should attend to which

task locations, as well as determining mutually collision-free trajectories for

all of the robots to reach those tasks. In terms of the characteristics proposed

above, the components of a market-based solution to the coordinated multi-

robot motion planning and task allocation system are:

• The global task consists of one or more sets of locations (task sites) to

be visited by the robots. The set of resources are the open spaces of

the environment which must be shared for navigation over time.

• The solution quality is measured as a function of the total distance

traveled by the robots, or the time between visits to the task points.

• A robot’s ability to achieve a task may be measured in terms of the

distance between the task and the robot’s currently planned trajectory.

Task Allocation 84

• The mapping function determines the change in the objective function

based on a robot’s new trajectory including the new task location.

• Assigned robot trajectories, as functions of time, determine the alloca-

tion of the available resources (the open space) and tasks amongst the

robots.

Considering the challenge of task allocation and trajectory execution,

Dias et al. note that “[planning] coordination between teammates during

task execution becomes necessary when robots interfere with each other dur-

ing execution... It is also necessary in domains where teammates continuously

constrain each others actions” [14]. These are the situations commonly en-

countered in the problem of task allocation among many robots in a tunnel

environment.

4.1.3 Task Allocation Solutions

TraderBots is a “market-based approach for resource, role, and task alloca-

tion in multirobot coordination”, developed by Dias and Stentz [13]. The

architecture is fundamentally distributed, gaining the advantages of scalabil-

ity and robustness. However, it opportunistically forms sub-groups to take

advantage of the performance benefits of centralized task allocation.

Simmons et al. present a system for coordinating multi-robot planning

for exploration and mapping [74]. In this application, value is based on the

amount of information gained, measured by the number of frontier cells (un-

explored area) that will be observed. Cost is measured by the total distance

traveled.

4.1.4 Inter-Robot Coordination

Some approaches to task allocation require no explicit coordination between

robots. Parker’s ALLIANCE architecture for allocation of tasks among het-

erogenous robots [62] is one such example. Two primary goals of the AL-

Task Allocation 85

LIANCE architecture are robustness and adaptive control of the robot team;

these are accomplished with a distributed, behaviour-based approach to task

allocation. In this approach, the activation and inhibition of behaviours in

one robot is triggered by the selection of tasks by other robots.

Auction-based approaches, also requiring no explicit coordination, have

been applied to the task allocation problem, as presented by Gerkey and

Mataric [22], and Sariel and Balch [72]. In these systems, each robot bids

on a task, based on the perceived cost of performing the task. Each task is

assigned to the robot offering the lowest bid, and the tasks are then executed

by the robots. Within this framework, various strategies can be applied

to tune the algorithm for a particular problem. Mataric et al. present an

investigation of four different auction-based task allocation strategies [50].

The varying strategies considered the effect of commitment (whether a robot

completes a task before accepting another, or opportunistically switches

tasks) and coordination (whether tasks are exclusively assigned to individ-

ual robots) on the system performance. The conclusion from Mataric’s work

is that no single strategy is optimal for all task allocation scenarios. The

most suitable strategy depends on factors that can change dynamically in a

real-world environment, such as the amount of sensor noise in the system.

The specific task allocation scenarios considered in this thesis involve the

movement of multiple robots to task locations within a corridor environment.

As discussed in previous chapters, planning for collision-free motion of multi-

ple robots within such an environment may require the explicit coordination

of motion between robots to avoid collisions and deadlocks. A suitable task

allocation strategy for this problem should therefore take into account the ex-

plicit coordination and trajectory planning that may be required to execute

the allocated tasks within a corridor environment.

Task Allocation 86

4.2 Single-Class Task Allocation

In this section, an auction-based task allocation approach is considered,

specifically for problems involving multi-robot navigation in corridor envi-

ronments, such as the building patrol robot scenario described above. For

this problem we assume:

• All robots and tasks are of a single class. That is, all robots are equiv-

alently capable of performing any of the tasks.

• A communication network is available between each robot and a central

processor. No communication is required directly between individual

robots.

The auction-based approach considers each task in turn, and requests a

bid from each robot, which includes the trajectory that the robot will follow

to reach the task point. The cost of the bid is determined as the average time

between visits to all of the currently assigned tasks (though this objective

function may be varied depending on the particular application). The task is

then assigned to the robot producing the lowest-cost bid. The trajectories of

all robots are updated based on the new trajectory of the winning robot. The

process is then repeated for each remaining unassigned task, as summarized

in the pseudo-code in Figure 4.1.

The pseudo-code below assumes the following functions are available:

currentNode(robot) returns the node occupied by robot at the current timestep

of the plan.

astar search(robot, start, end) returns the shortest obstacle-free path for robot

between nodes start and end, taking into account as obstacles all tra-

jectories currently assigned to other robots.

assign task(robot, task) allocates the specified task to the robot, and up-

dates the current set of trajectories to include the trajectory generated

for the winning bid by that robot.

Task Allocation 87

eval bid(trajectory) computes the time between visits for all task nodes in

the trajectory, according to Equation (4.1).

4.2.1 Bid Generation

To generate a bid for a task, a robot must find a trajectory that:

• passes through the currently auctioned task point, as well all of the

robot’s previously assigned tasks, and

• avoids collisions with other robot, based on their current trajectories.

To generate the optimal bid, the trajectory should minimize the time

between successive visits to all of the robot’s tasks. This time between visits

includes the time since each task point was last visited (such that tasks which

haven’t been visited recently should be included close to the beginning of the

trajectory), and the time until the task will be reached (such that the length

of the trajectory should be minimized, to reach all task points as quickly as

possible).

The bid cost Br for robot r is evaluated at time t according to Equation

(4.1):

Br =
N∑

j=0

((t− t prevj) + (t nextj − t)) (4.1)

where j iterates over the N tasks assigned to robot r, and t prevj and t nextj

are the times of the previous and planned visits to task j respectively.

For each bid, all possible permutations of the task order could be consid-

ered, to ensure that the optimal possible trajectory is found for each robot.

However, as the number of task points increases, the exponential computa-

tional complexity (as with the standard TSP problem) makes this approach

impractical. Instead, a fixed sequence of current tasks is maintained by each

robot, and the auction task is considered for insertion before each task in the

current list, and at the end of the list.

Task Allocation 88

1 func t i on s i n g l e c l a s s a u c t i o n ()
2 f o r each auc t i on ta sk
3 f o r each robot
4 b id va lue = bid (robot , auc t i on ta sk)
5 i f b id va lue < be s t b i d va l u e
6 winning robot = robot
7 end i f
8 end f o r
9 a s s i g n t a s k (winning robot , auc t i on ta sk)

10 end f o r
11 end func t i on
12
13 func t i on bid (robot , task)
14 f o r each a l l o c a t e d t a s k in t a s k l i s t
15 i n s e r t (t a s k l i s t , task)
16 t r a j e c t o r y = a s t a r s e a r c h (robot , t a s k l i s t)
17 i f t r a j e c t o r y not found
18 cont inue
19 b id va lue = eva l b i d (t r a j e c t o r y)
20 i f b id va lue < be s t b i d va l u e
21 b e s t b i d va l u e = b id va lue
22 b e s t t r a j e c t o r y = t r a j e c t o r y
23 end i f
24 remove (t a s k l i s t , task)
25 end f o r
26 re turn b e s t b i d va l u e
27 end func t i on
28
29 func t i on a s t a r s e a r c h l i s t (robot , t a s k l i s t)
30 i n i t i a l i z e empty t r a j e c t o r y
31 s t a r t = current node (robot)
32 f o r each task in t a s k l i s t
33 path = a s t a r s e a r c h (robot , s t a r t , task)
34 i f path not found
35 return not found
36 append (t r a j e c t o r y , path)
37 s t a r t = task
38 end f o r
39 re turn t r a j e c t o r y
40 end func t i on

Figure 4.1: Pseudo-code for single-class task allocation

Task Allocation 89

For each insertion point, an A* search is used to generate the shortest

obstacle-free path through the environment that moves the robot from its

current position to each task location in sequence. Each solution is then

checked for collisions with other robots on their currently selected trajecto-

ries, and rejected if a collision would occur.

4.2.2 Completeness, Optimality and Scalability

The auction-based approach for single-class task allocation is particularly

suited to problems requiring coordinated trajectory planning in confined en-

vironments. A significant feature of this approach over other methods is its

completeness — it is guaranteed to find a feasible, collision-free solution that

reaches all of the task points within a connected graph.

N r2 r3

r1

Figure 4.2: Illustrative graph for single-class task allocation.

To show the completeness of the algorithm, we first consider the task of

planning for one of the robots to reach a specific task node in a connected

graph map. A simple graph is shown in Figure 4.2 for illustration, with a

task node N and robots occupying the three nodes indicated by r1, r2, and

r3.

Lemma 1 For every node n in a connected graph, there is an obstacle-free

path between node n and at least one robot r in the map.

Task Allocation 90

To see that this is true, consider a path generated by A* from node n to a

candidate robot r1. If no other robots lie on the path, we have the solution

using robot r1. However, if another robot lies on this path, is it not an

obstacle-free path. In this case, consider the first robot r2 which lies along

the path from n to r1. Since all robots are of the same class, we can consider

r2 as the candidate robot instead. Since r2 is the first robot on the path from

n to r1, and the A* path to r2 is a subset of the path to r1, r2 must have

an obstacle-free path to node n. Thus, an obstacle-free path can always be

found between any node n and one of the robots.

Considering the task allocation process, as every task is auctioned, every

robot submits a bid if it finds a collision-free trajectory to the task node.

By Lemma 1, at least one robot will have an obstacle-free path from its

final position to the task node, guaranteeing that at least one bid will be

submitted as each task is auctioned. This process guarantees that a collision-

free solution will be found for any set of assigned tasks, as required for a

complete algorithm.

The use of an A* search and the consideration of each possible position

of new tasks into the existing task lists generates shortest-path solutions at

each step. Since the algorithm doesn’t consider re-ordering or re-assignment

of previously assigned tasks, the solution is not globally optimal. The glob-

ally optimal solution would determine the shortest possible path of all robots

that would pass through each of the tasks. As discussed above, such an ap-

proach would involve exponential complexity. Instead, the computational

complexity of this method increases linearly with the number of robots and

the number of tasks assigned, so the method is practical for real-time plan-

ning applications with many robots.

4.2.3 Algorithm Behaviour

To demonstrate the behaviour of the single-class task allocation, three robots

are shown working in a small environment (a graph of 16 nodes), where 8

nodes are defined as the task points to be monitored. Figures 4.3 and 4.4

Task Allocation 91

shows a sequence of images from the task allocation process. The positions

of robots r0, r1, and r2 are indicated by the red, green, and blue rectangles

respectively. The planned trajectory of each robot is indicated by a solid

lines of the corresponding colour. The task nodes are indicated by circles,

which are the colour of the robot assigned to the task, or black if no robot

is assigned.

In the sequence of Figure 4.3, each of the tasks is auctioned in sequence

before the robots begin to move. In (a), robot 2 is first assigned to node 3

— no other robot has a collision-free path to node 3, so robot 2 will offer

the only bid for that task. Likewise, in (b) and (c), robot 2 has the only

collision-free path to nodes 5 and 8, and is assigned those tasks as well.

Node 9 is then auctioned in (d), and assigned to robot 1. This is a result

of the current planned trajectory of robot 2, which gives robot 1 the shortest

collision-free trajectory to node 9. Sub-figures (e)-(h) show the continuing

process for the remaining nodes.

After all nodes have been auctioned, the robots begin following the as-

signed trajectories. As each robot reaches a task node, the node is marked as

un-assigned and is re-auctioned at a subsequent time step. Figure 4.4 shows

the following eight auction events as trajectories are dynamically updated.

(a) Node 3 is assigned to robot 2 (b) Node 5 is assigned to robot 2

(c) Node 8 is assigned to robot 2 (d) Node 9 is assigned to robot 1

(e) Node 6 is assigned to robot 0 (f) Node 13 is assigned to robot 1

(g) Node 14 is assigned to robot 2 (h) Node 16 is assigned to robot 2

Figure 4.3: Initial task allocation sequence for 3 robots and 8 tasks

(a) Node 1 is assigned to robot 0 (b) Node 3 is assigned to robot 0

(c) Node 5 is assigned to robot 0 (d) Node 6 is assigned to robot 0

(e) Node 8 is assigned to robot 2 (f) Node 9 is assigned to robot 1

(g) Node 1 is assigned to robot 1 (h) Node 13 is assigned to robot 2

Figure 4.4: Task allocation sequence for 3 robots and 8 tasks

Task Allocation 94

4.2.4 Simulation Performance Results

The performance of the algorithm can be quantified by a metric correspond-

ing to the objective for the particular problem. For the building patrol ap-

plication, we use the average time between visits of each task as the metric

— a lower value indicates better performance.

For a single robot, the minimum average time between visits corresponds

to the optimal solution of the corresponding traveling salesman problem, if

each task is only visited once in the circuit. For the problem defined here, the

average time between visits may be lower, since some tasks may be visited

multiple times as a robot completes a circuit. As more robots are added to

the team, the number of tasks allocated to each robot decreases, and the

optimal average time between visits is expected to decrease.

To investigate this performance in a larger environment, the algorithm

was run in simulation with the map shown in Figure 4.5 1. The number of

robots was varied between 1 and 50, while holding the number of tasks fixed

at 50.

In this type of tunnel environment, the shortest path to repeatedly visit

a set of randomly selected nodes is frequently a circuit, or closed path, which

avoids backtracking over tasks that have already been visited. One circuit

around the tunnel traverses approximately 230 nodes. We can therefore

expect an average time between visits to each node of approximately 230

time steps using a single robot.

As robots are added, the average time between visits should reduce to

approximately 230/R for R robots if the algorithm effectively allocates the

tasks amongst the robots. The average time between visits will decrease as

expected if either

• all of the robots follow the same circuit, with each robot visiting all of

the tasks in turn, or

1Map source used with permission, courtesy of Sebastian Thrun, available from
http://www.cs.cmu.edu/˜thrun/3D/mines/groundhog/loops/map-2nd-corr.png.

Task Allocation 95

Figure 4.5: The tunnel simulation environment, with 50 tasks assigned to

three robots. Three different classes of tasks are indicated by the red, green,

and blue circles.

• the set of tasks is divided amongst the robots, resulting in a shorter

circuit (of approximately 230/R steps) for each robot.

The latter case is the pattern that emerges in the example shown in Figure

4.5.

The resulting average time between visits as the number of robots changes

is shown in Figure 4.6. As predicted, the time between visits is approximately

230/R for R robots, indicating that the algorithm effectively distributes the

tasks amongst the robots. However, the performance remains approximately

constant for R > 30 robots.

Two factors contribute to the smaller incremental performance improve-

ment as R increases. First, the impact of additional robots decreases as

predicted by the 230/R curve. In addition, increased congestion in the envi-

ronment reduces the incremental system performance as the number of robots

increases. This effect is examined further in the following section (refer to

Figure 4.9).

Task Allocation 96

0 10 20 30 40 50 60
0

50

100

150

200

250
Single Class Task Allocation Performance

Number of Robots

T
im

e
B

et
w

ee
n

V
is

its
 (

st
ep

s)

Predicted (nodes / # robots)
Simulation average time between visits

Figure 4.6: Simulation performance results in the tunnel environment, show-

ing the average time between visits to each node.

4.2.5 Computational Complexity

A primary design goal of this algorithm is scalability; the method should be

suitable for real-time planning of many robots operating simultaneously in

a confined environment. The real-time performance of the algorithm can be

seen in Figure 4.7, showing the CPU time required for the simulations with

up to 50 robots and 50 tasks in the tunnel environment. The simulation was

run on a single 1.4GHz Intel Pentium M processor.

Figure 4.7 shows an interesting result; the computational cost increases

initially, as the number of robots increases, then decreases as the number

of robots approaches the number of tasks. To understand this trend, con-

sider the elements that contribute to the complexity: the number of auctions

performed, and the number of bid evaluations required in each auction.

First, as the number of robots increases, the number of auctions required

at each time step increases proportionally, as shown in Figure 4.8. This cor-

responds to the performance results in Figure 4.6; as the number of robots

Task Allocation 97

0 10 20 30 40 50 60
0

50

100

150

200

250
Complexity: CPU time (ms) per step

Number of Robots

C
P

U
 ti

m
e

(m
s)

Figure 4.7: Real-time CPU usage (ms) per simulation time step.

increases, the average time between visits to task nodes decreases, requiring

the tasks to be re-auctioned more frequently. As the number of robots in-

creases beyond R = 30, the time between visits becomes relatively constant,

as does the number of auctions required.

Each auction requires a number of evaluations of each potential solu-

tion. This evaluation is performed for every plan that is generated as robots

attempt to insert a new task into their existing task list. The number of

evaluations required per auction decreases as the number of robots increases,

as shown in Figure 4.9. This trend is due to the increasing congestion in the

map; the greater the number of robots, the fewer obstacle-free paths can be

found between robots and tasks, and the fewer bid evaluations are required.

4.2.6 Observations

From the simulation results a number of observations can be made:

• The algorithm effectively distributes tasks for the patrol-type applica-

tion among a team of R robots, achieving a time between visits of less

Task Allocation 98

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

9
Complexity: Auctions per time step

Number of Robots

N
um

be
r

of
 a

uc
tio

ns
 p

er
 ti

m
e

st
ep

Figure 4.8: Number of auctions per time step

than N/R where N is the number of steps required for a single robot

to reach all tasks in a circuit.

• As the number of robots increases, the performance reaches a minimum

time between visits due to the lower incremental impact of each robot,

and increased congestion in the environment; in the example scenario,

this occurs at approximately R = 30 robots.

• The algorithm is suitable for real-time performance, even with a cen-

tralized implementation; in the example scenario, solutions require less

than 300ms at each time step using a single 1.4GHz processor.

4.3 Multi-Class Task Allocation

For some practical applications, tasks and robots can be categorized into

multiple classes, where certain robots can address only a subset of the tasks,

Task Allocation 99

0 10 20 30 40 50 60
0

10

20

30

40

50

60
Complexity: Bid evaluations per auction

Number of Robots

B
id

s
pe

r
au

ct
io

n

Figure 4.9: Number of bids per auction

and other robots can address a different subset. We define these as multi-class

task allocation problems.

The example of autonomous mining vehicles can be formulated as a multi-

class task allocation problem, by considering vehicles that are full of material

as one class, which are assigned tasks of dumping the material they are

carrying at the mouth of the shaft. Vehicles which are empty are considered

as a separate class, and are assigned the tasks of picking up material from

the face where it is being extracted.

In such cases, the approach described for single-class task allocation can-

not be used, because robots of one class may present obstacles to the move-

ment of robots of another class. Lemma 1 no longer holds because, unlike the

single-class case, tasks cannot be swapped between robots if they are of dif-

ferent classes. This results in scenarios where a simple iterative A* approach

may not be sufficient to find a set of collision-free trajectories to reach all of

the assigned tasks.

For example, as shown in Figure 4.10, if robot rA follows a direct path

Task Allocation 100

TA rB

rA

TB

Figure 4.10: A simple multi-class task allocation example.

to task TA, it will create an obstacle for robot rB to reach task TB, and

vice versa. In such cases, a coordinated motion planning and task allocation

approach, considering the required trajectories of all of the robots in the

system simultaneously, is required to guarantee that a solution is found.

4.3.1 Coordinated Task Allocation and Path Planning

To address the multi-class task allocation problem, the planning algorithm

presented in Chapter 3 can be applied to find coordinated collision-free tra-

jectories for each robot in a given set of task assignments, and an optimization

search method can be used to determine the most suitable task assignment.

An initial solution is found by assigning each robot one task of its class, and

using the multi-phase planner to find a trajectory for all robots from their

current positions to their assigned tasks. The planner guarantees that a so-

lution will be found for any initial and goal conditions, and generates fast

solutions suitable for real-time planning applications.

The results of the multi-phase planner can then be evaluated as an op-

timization objective function, based on total distance traveled or total time

required to complete the plan for the selected set of tasks. Continuing the

optimization process, alternative task allocations can then be generated, eval-

uated, and selected if found to be better than prior solutions.

The generation of alternative task allocations in the optimization process

can be based on a complete search, a heuristic search (if some a-priori knowl-

Task Allocation 101

edge of the specific application is available), or other optimization methods

such as genetic algorithms.

This optimization approach allows for a distributed implementation, where

each robot can evaluate a set of different task allocations for the entire group,

and the best solution found within the team is selected. Note that, since the

multi-phase planner guarantees a fast solution to the initial task allocation

selection, this is an anytime algorithm, making it suitable for real-time ap-

plications. The optimization process can be run at every timestep, and the

best trajectories available at the end of each time-step can be assigned to the

robots, as summarized in the pseudo-code in Figure 4.11.

The pseudo-code below assumes the following functions are available:

current node(robot) returns the node occupied by robot at the current timestep

of the plan.

multi phase plan(start state, end state) generates, using the multi-phase

planner, a set of trajectories moving the robots from their current po-

sitions (start state) to the final position defined by the task allocation

(end state).

assign trajectories() assigns the trajectories most recently computed by

multi phase plan() for the robots to execute.

random robot() randomly selects one robot from the team.

random boolean() randomly returns true or false.

assign random task(allocation, robot) updates allocation with a randomly

selected task for robot, from the set of all tasks of the same class as

robot.

swap random task(allocation, robot) updates allocation by swapping the

tasks of robot and another randomly selected robot of the same class.

Task Allocation 102

tasks achieved(plan) returns the number of task points reached in the plan.

total travel time(plan) returns the total number of steps that will be trav-

eled by all robots if the plan is fully executed.

1 func t i on m u l t i c l a s s t a s k a l l o c a t i o n ()
2 cu r r en t va lu e = eva luate (c u r r e n t a l l o c a t i o n)
3 whi l e t ime remain ing > 0
4 new a l l o ca t i on = update (c u r r e n t a l l o c a t i o n)
5 i f eva luate (new a l l o ca t i on) > eva luate (c u r r e n t a l l o c a t i o n)
6 c u r r e n t a l l o c a t i o n = new a l l o ca t i on
7 a s s i g n t r a j e c t o r i e s ()
8 end
9 end whi le

10 end func t i on
11
12 func t i on update (a l l o c a t i o n)
13 robot = random robot ()
14 i f random boolean () == true
15 new a l l o ca t i on = ass ign random task (a l l o c a t i o n , robot)
16 e l s e
17 new a l l o ca t i on = swap random task (a l l o c a t i o n , robot)
18 end
19 return new a l l o ca t i on
20 end
21
22 func t i on eva luate (a l l o c a t i o n)
23 plan = mul t i phase p lan (cu r r en t s t a t e , a l l o c a t i o n)
24 v i s i t s = ta sk s a ch i ev ed (plan)
25 d i s t ance = t o t a l t r a v e l t im e (plan)
26 ob j e c t i v e = value / d i s t ance
27 re turn ob j e c t i v e
28 end func t i on

Figure 4.11: Pseudo-code for multi-class task allocation

The behaviour of the algorithm is shown in Figure 4.12 with a simple

example of three robots, and two classes of tasks:

Task Allocation 103

• 6 ’fill’ locations indicated by blue rings, on the right hand half of the

map.

• 3 ’dump’ locations indicated by purple rings, on the right hand half of

the map.

The colour of the robots indicates their current class, corresponding to

the class of goals to which they should be assigned. Blue robots are empty,

and are assigned to ’fill’ task locations to pick up material. When an empty

robot reaches its assigned fill task, it changes colour to purple, indicating

the robot is carrying material, and should be assigned to a dumping task

location (indicated by the purple rings).

When a full robot reaches its assigned dumping task, its color changes

back to blue, indicating that it is empty, and is then assigned once again to

one of the filling tasks. The currently assigned tasks of the three robots are

indicated by the goal indicators G0, G1, G2, above the task circles.

Note that when robots take material from a fill location, the number of

units available at that task (indicated by the number within the blue task

circle) is decremented. When the number of units available reaches zero,

the dot at the center of the task is changed from green to red, indicating

that the task is idle, and will not be assigned to a robot. The number of

units available at each fill task is periodically incremented, simulating the

production of more material at each task to be moved.

The task selection optimization used for this example is straight forward,

since the number of tasks and robots is quite small. At each time step, for

each task, a trajectory is generated using the multi-phase planner, sequen-

tially assigning each robot (within the appropriate class) to the task. The

trajectory that reaches the maximum number of goals with the minimum

total distance traveled is selected.

For a larger team of robots operating in a larger environment, a more

sophisticated algorithm is required to effectively sample the search space

of possible task assignments. One approach evaluated here is to consider

Task Allocation 104

random modifications to the goal state of the current plan at each time step,

in a manner similar to the mutation step of genetic algorithms.

A multi-robot plan is found to the new goal state, and if the objective

function for the new plan is better than the current plan, the current plan is

replaced with the new plan.

Task Allocation 105

(a) ’Fill’ tasks are assigned to all robots (b) As robots are traveling, a more efficient
task allocation is found and assigned

(c) Robots reach their ’fill’ tasks, and are as-
signed ’dump’ tasks

(d) a more efficient task allocation is found by
swapping goals G1 and G2

(e) Robots reach the ’dump’ tasks, and return
trajectories to ’fill’ tasks are assigned

(f) A more efficient allocation is assigned

Figure 4.12: Multi-class task allocation simulation sequence

Task Allocation 106

4.3.2 Optimization Performance

Performance of the planner is measured by how well a particular objective

function is maximized or minimized. For the examples below, the objective

is to maximize the number of task points reached per 100 units of distance

traveled:

J = 100 · Ntasks

Distance
(4.2)

In the results below, the calculation of the objective function for the

current plan is based on the number of goals and total distance remaining

to travel in the current plan. Note that as a plan is executed, the number

of goals remaining in the plan decreases when individual robots reach their

goals, decreasing the objective function value. However, the number of steps

remaining also decreases (by the number of robots moving during that time

step), which increases the objective function value. These two trends result

in different optimal behaviour, depending on the relative distance between

goals for multiple robots.

• If several robots are approaching their goals at approximately the same

time, the optimal solution selected is typically to complete the current

plan, waiting for all robots to reach their goals.

• If one robot reaches a goal while others still have a long way to travel,

the optimization typically finds a new plan, driving the completed robot

to a new goal while the others continue on to their original goals.

Small Environment Performance

To illustrate the performance of the algorithm in a simple environment, per-

formance results are plotted for a simulation using the multi-phase (MP)

planner for the scenario shown in Figure 4.13.

Figure 4.13 shows the performance of the algorithm as defined by the

objective function in Equation (4.2). The instantaneous objective value,

based on the number of goals and number of steps to move in the current

Task Allocation 107

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Objective value vs time

Time (steps)

O
bj

ec
tiv

e
(g

oa
ls

 /
10

0
tr

av
el

 s
te

ps
)

Current plan
Cumulative performance
Optimal average

Figure 4.13: Performance results in a small environment: the average system

performance approaches the optimal performance of 14.28 tasks per hundred

steps traveled.

plan, is shown by circles in Figure 4.13. This instantaneous value fluctuates

between zero (no tasks are assigned) and 100 (all robots will reach a task in

one step).

The overall objective function, plotted as a solid line, is computed from

Equation (4.2) at each time step, based on the actual number of tasks reached

and the total distance traveled by all robots up to that time. This cumu-

lative objective function is expected to converge to an average value as the

simulation continues.

For simple scenarios, where an optimal solution can be found by inspec-

tion, the overall objective function can be compared to the optimal value.

For this scenario, considering the time for robots to travel in a complete

Task Allocation 108

circuit from the dumping tasks to the top 3 fill tasks, back to the dumping

tasks, to the bottom 3 fill tasks, and back to the dumping tasks, we have

• Ntasks = 12 (3 robots reaching 4 tasks points each), and

• Distance = 84 (3 robots each traveling a total of 28 steps between

nodes in the graph).

Evaluating the objective function from Equation (4.2) gives J = 100· 12
84

=

14.28 which is the overall objective value that would be approached by an

ideal planner. This optimal objective is plotted in Figure 4.13 as a dashed

line. As expected, the overall objective approaches a steady-state average

value, slightly below the optimal solution.

Decoupled and Hybrid Planning

A sequential planning approach to multi-robot planning can also be applied

to this problem. While a sequential planner doesn’t guarantee a solution for

any arbitrary initial and goal states, if a solution is found it is often shorter

than than the guaranteed solution found by the multi-phase planner.

By running both planners for each goal configuration considered, a hy-

brid planner is achieved, where a solution is guaranteed by the multi-phase

planner, and a more optimal solution may be found by the sequential planner.

The simple scenario was executed using three different planners: the

multi-phase (MP) planner, the decoupled (DC) sequential planner, and the

hybrid planner using both the multi-phase and sequential algorithms. The

performance of the three planners is summarized by the objective function

value computed over time, shown in Figure 4.14.

In this scenario with 3 robots, the three different planners give very similar

performance, with cumulative objective function values within 10% of each

other. For this example, the optimal task assignment does not typically

require the multi-robot coordination provided by the multi-phase planner

solution, so the decoupled planning approach is often effective. As is shown in

Task Allocation 109

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16

18
Cumulative Objective Value

Time (steps)

O
bj

ec
tiv

e
(g

oa
ls

 /
10

0
tr

av
el

 s
te

ps
)

MP
DC
Hybrid

Figure 4.14: Algorithm performance comparison with 3 robots

the following section however, the benefit of the multi-phase planner becomes

apparent as the number of robots and tasks increases.

Large Environment Performance

Creating a similar scenario in a larger environment, 20 robots were simulated

in the tunnel mine environment shown in Figure 4.5. The scenario was

again simulated using the multi-phase, decoupled, and hybrid planners. The

performance of the three planners is summarized by the objective function

of Equation (4.2) computed over time, shown in Figure 4.15.

In this scenario, the decoupled (DC) planner average objective value con-

verges toward about 2 goals per 100 steps traveled, while the multi-phase

planner performs 30% better, achieving about 2.6 goals per 100 steps. The

hybrid planner results track the poorer decoupled planner performance.

These results suggest that the multi-phase planning approach to task

allocation is more scalable to larger environments with a larger number of

robots. To see the reason for this difference in scalability, the plan evaluation

Task Allocation 110

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5
Cumulative Objective Value

Time (steps)

O
bj

ec
tiv

e
(g

oa
ls

 /
10

0
tr

av
el

 s
te

ps
)

MP
DC
Hybrid

Figure 4.15: Algorithm performance comparison with 20 robots

rate is shown in Figure 4.16 for the simulations in the tunnel environment.

The total number of plans evaluated at each time step (or equivalently, the

number of different task assignments considered) is plotted over time, for the

three different simulations.

The benefit of the multi-phase planner for large environments is clear

from this plot. Since the multi-phase planner quickly generates a solution

for any task allocation, it allows many more different allocations to be eval-

uated at each time step. The multi-phase planner evaluates about 10 times

as many goal scenarios as the sequential planner; the sequential planner be-

comes slower as the number of robots increases, because it must consider an

increasing number of permutations of planning priorities.

4.4 Summary

For large-scale planning problems, the ability to quickly evaluate alterna-

tive task allocations is more significant than the possibly shorter paths that

may or may not be found by a decoupled planner. The scalability of the

Task Allocation 111

0 50 100 150 200 250
0

100

200

300

400

500

600
Plan Evaluation Rate

Time (steps)

P
la

ns
 e

va
lu

at
ed

 p
er

 ti
m

e
st

ep

MP Planner
DC Planner
Hybrid Planner

Figure 4.16: Task assignment evaluation rate comparison with 20 robots

multi-phase planner makes it suitable for large real-time task allocation ap-

plications in tunnel and corridor environments. Robustness of the system is

achieved by dynamically updating the task allocation for the currently ac-

tive set of robots. The following chapter presents an implementation of the

task allocation system with physical robots, demonstrating its practicality

real-world applications.

Chapter 5

Multi-Robot System

Implementation

5.1 Introduction

To validate the algorithms presented in Chapters 3 and 4, a real-world imple-

mentation was developed using a system of three WBR-914 PCBot robots,

provided by FrontLine Robotics. The environment for testing the robots was

the fourth floor of building E3x at the University of Waterloo, consisting pri-

marily of a 2m wide, 32m long hallway. One of the robots in the environment

is shown in Figure 5.1.

This chapter describes the architecture and software used to coordinate

the team of robots and execute plans generated by the multi-phase motion

planner. The implementation demonstrates the execution of multi-phase

plans, requiring the robots to execute coordinated trajectories to arbitrarily

assigned goals using the multi-phase planner presented in Chapter 3, and

multi-class task allocation, where the trajectories are dynamically updated

using the task allocation strategy presented in Chapter 4.

As shown in Figure 5.2, a centralized host PC coordinates the system,

communicating with the mobile robots via wireless ethernet. Each robot

localizes itself within the hallway using an a-priori map of the floor plan;

112

Multi-Robot System Implementation 113

Figure 5.1: The PC-Bots in the test environment

the same map is used by the centralized controller for planning the robot

trajectories.

5.2 Robot Platform

The system implementation was developed around three WBR-914 PCBot

robots. Each robot includes a 2-wheel differential-drive transmission, sonar

sensors, motor controllers, analog sensor interfaces, and an on-board PC-

based computer, as detailed in Table 5.1.

Motion estimation is accomplished by integrating the commanded speed

of the differential drive wheels. This basic odometry works well on the PCBot

platform, since the DC stepper motors track desired rotations to a reso-

lution of less than 1◦, and the rubber drive wheels and casters result in

very little wheel slip. To enable global localization with respect to a world

map, a Hokuyo URG series scanning laser rangefinder was mounted on the

top of each robot. This sensor provides range measurements from 20mm

Multi-Robot System Implementation 114

Height 54 cm

Weight 25 kg

Mobility Front and rear roller ball casters

Left and right differential drive wheels

Propulsion Differential drive DC stepper motors

Sensors 8 fixed position sonar sensors

CPU Intel 2 GHz CPU and 1 GByte of RAM

Storage 80 GB Hard disk

Communication 802.11 wireless networking interface

Power 2 x 12V 9Ah lead acid batteries

Table 5.1: WBR-914 PCBot Specifications

to 4000mm, with a scanning range of 225◦, and a resolution of 0.36◦. The

unit is 50mm square and 70mm high, and interfaces with the on-board CPU

through either an RS232 serial or USB interface.

5.3 Control Architecture

The robot control architecture is based on the Player/Stage robot server

developed by Gerkey, Vaughan, and Howard [24]. Player is a network server

for robot control. An overview of the architecture is shown in Figure 5.2,

and each component is described in more detail in the following sections.

5.3.1 Player Client and Server

It provides an interface to a robot’s sensors, motors, and control processes

through a TCP/IP network socket. The modular architecture abstracts the

details of particular hardware components, and allows new hardware and

software components to be integrated into the open-source system. For the

PCBot system, 5 Player drivers were required:

WBR914: This module is supplied by WhiteBox Robotics to support the

Multi-Robot System Implementation 115

Central Controller

Multi-Phase

Motion Planner

Multi-Vehicle Control Application

Graphical UI
Planner

Interface

Player

Interface

Goals

Trajectories

Estimated

Positions

Player

Client

Player

Client

Player

Client

Commanded

Trajectories

Robot 1

Player

Server

Robot 2

Player

Server

Robot 3

Player

Server

Figure 5.2: The multi-robot communication architecture

Multi-Robot System Implementation 116

PCBot platform, and provides an interface to the drive the motors and

read back odometry measurements based on rotations of the stepper

motors.

URG laser: The URG driver provides an interface to read the range mea-

surements from the scanning laser rangefinder.

Mapfile: This module provides an interface to a bitmap representation of

the environment, stored as an image file.

Localization: The Adaptive Monte-Carlo Localization algorithm developed

by Fox [17] is implemented in the AMCL module included with the

Player software package. The module performs a particle filter local-

ization based on the laser scan data from the URG laser module to

estimate the position and orientation of the robot in the map provided

by the Mapfile module.

Trajectory tracker: The trajectory tracking module drives the robot through

a sequence of waypoints at specified times, by monitoring the current

position estimate from the AMCL module, and commanding desired

velocities through the WBR914 module. The trajectory tracker was

developed specifically for this implementation, and is described in more

detail in Section 5.3.3.

The Player server software runs under the Linux operating system on

each of the mobile robots. To control the robots, a Player client program

connects to the server through a network socket, through which it can receive

state information and send control commands.

5.3.2 Control Application

For this project a centralized control architecture was used, where one PC

takes the role of a central controller and interfaces directly with each of the

Multi-Robot System Implementation 117

robots. The interface to each robot requires an instance of a Player client,

as shown in the architecture diagram of Figure 5.2.

In this system, the Multi-Vehicle Control Application is a program written

in Java, including:

• a graphical user interface, showing a map of the environment, the

robots, and their trajectories,

• a configuration module, which defines the map and robot parameters,

• an interface to the multi-phase planner, which accepts a set of current

and goal locations for the robots and returns a set of solution trajecto-

ries, and

• interfaces to the Player clients for each robot.

The output of the multi-phase planner is a set of collision-free trajectories

for the robots to follow — that is, a list of waypoints for each robot. Each

waypoint is specified by three coordinates, xi, yi, ti, defining a point in the 2

dimensional map, and a time when the robot should arrive at that point.

5.3.3 Trajectory Tracker

To execute the planned trajectory, a trajectory tracking function was added

to Player as a plug-in module. This tracker module runs on each robot, and

receives trajectories from the central controller. The goal of the tracker is to

follow the trajectory by arriving at each waypoint position xi, yi at the speci-

fied time ti. It achieves this by planning a planning a sequence of straight-line

segments between waypoints, and in-place rotations at waypoints when re-

quired to change direction.

For each waypoint in the trajectory, the tracker determines an entry angle

at which it will arrive (based a straight line from the previous waypoint) and

an exit angle at which it will leave (based on a straight line to following

waypoint). If the entry and exit angles are the same, and the trajectory

Multi-Robot System Implementation 118

does not require the robot to pause at the waypoint, the tracker plans a

constant-velocity motion through the point, with a velocity determined by

the specified arrival time and the distance from the previous waypoint. If

the entry and exit angles differ, the tracker plans a decelerating approach

to stop at the waypoint, followed by a fixed position rotation toward the

next waypoint. Using these velocity profiles, the tracker drives the robot at

the corresponding translational and rotational velocity using the standard

Player interfaces. The tracker module continually monitors the estimated

position of the robot determined by the localization module, and updates

the velocities to correct for deviations from the specified trajectory using a

PD control loop.

5.4 Multi-Phase Plan Execution

The coordinated planning task selected for the robots was to cooperatively

navigate in a long, narrow corridor, repeatedly traveling between an eleva-

tor and randomly selected locations, as would be required for autonomous

delivery robots. We assume that robots may not pass each other within

the hallway due to size and safety constraints. As a practical application,

note that the trajectory planning problem in this scenario is similar to that

for several autonomous mining vehicles operating in a common area of an

underground mine.

The floor-plan and graph representations of the environment are shown

in Figure 5.3. By selecting a node near the center of the map as the root

of the spanning tree (node 3 for example), the tree has L = 4 leafs, and the

planner is guaranteed to find a solution for up to r = 3 robots.

As shown in Figure 5.2, the host PC monitors the positions of the robots,

and assigns a new goal position for each robot as the goals are achieved.

Whenever a new goal is assigned, a new multi-robot plan is generated for all

of the robots, and the individual trajectories are transmitted to the trajectory

followers of each robot.

Multi-Robot System Implementation 119

Figure 5.3: Graph representation of hallway environment, showing 9 nodes

in the graph and the positions of three robots.

The addition of a time-dependent trajectory following module to the

Player robot server allows for scalable simultaneous motion control of many

robots from a centralized server. A new multi-robot plan is generated only

when the goals change, and the communication to each robot involves only

a list of waypoints with arrival and departure times. Current localization

and status information is transmitted from each robot to the central server

periodically to detect and resolve problems in plan execution (pausing in a

corridor to avoid colliding with a person walking past, for example). In such

cases, a new plan is generated from the current positions of all robots, and

the trajectories are updated.

Figure 5.4 shows an example problem requiring a coordinated solution

to demonstrate the implementation. The required transitions are indicated

by dotted arrows, moving robots to the goal locations indicated by squares.

Robots 1 and 2 are required to swap positions, and robot 0 is required to

move from the top to the bottom of the map, crossing the direct paths of

robots 1 and 2. Figure 5.5 shows the robots in the hallway environment.

Multi-Robot System Implementation 120

Robot 0

Robot 1

Robot 2

Elevator

Figure 5.4: Multi-robot planner user interface view of the sample problem

For this problem, a typical decoupled planning approach will fail; if any

robot takes the most direct path to its goal, it creates an unavoidable obstacle

for another robot. However, the multi-phase algorithm finds a solution by

first moving robot 1 to the leaf node 8, then robot 2 to node 7. From this

arrangement, all robots reach their goal nodes: first robot 1 to G1; then

robot 0 to G0; and finally robot 2 to G2.

The planning algorithm and the trajectory follower have been validated

in the corridor environment by randomly allocating new goals as each robot

completes its current trajectory. The system was run for continuously for 30

minutes in the experiment. Refer to Appendix B for a video of the robots

executing the coordination plan in the hallway environment.

5.5 Task Allocation Implementation

The task allocation system presented in Chapter 4 was demonstrated in the

same environment shown in Figure 5.3. Two classes of tasks were defined, a

pick-up class and a delivery task, based on the autonomous mining problem

considered in Chapter 4. In this scenario, robots must alternate between

pick-up task nodes (where material is waiting to be moved out of the mine)

Multi-Robot System Implementation 121

Figure 5.5: Robots executing the solution for the sample multi-robot plan-

ning problem

Multi-Robot System Implementation 122

and delivery task nodes (where material can be dropped off). The position

of the tasks in the map, and the task allocation at a particular instant are

shown by a view of the user interface in Figure 5.6.

Figure 5.6: Multi-robot multi-class task allocation scenario. The user in-

terface indicates the current position of the three robots (rectangles), two

deliver task nodes (0 and 4), and 4 pick-up nodes (3, 8, 9, and 11). The

currently assigned tasks (goals) for the robots are indicated by squares G1

at node 9, G2 at node 3, and G3 at node 8.

For each pick-up task, a value representing the number of loads of mate-

rial available at that node is maintained. The number of loads available is

decremented when a robot reaches that node, and is incremented periodically

over time; when a task has no loads available to pick up, it is not included in

the task allocation process. The multi-class task allocation is accomplished

by alternating the class of each robot between pick-up and delivery as it

completes each task, and repeatedly executing the process defined in Section

4.3. Both of the delivery tasks are always included in the allocation, on the

assumption that there is always capacity for material to be dropped off.

The system architecture for this demonstration is the same as that shown

in Figure 5.2 for the multi-phase planning demonstration, with the modifi-

Multi-Robot System Implementation 123

cation that the control application includes a task allocation process. As

described in Section 4.3, the task allocation optimization process generates

potential allocations (goal assignments for all of the robots), and uses the

multi-phase motion planner to generate a solution set of trajectories for each

allocation considered. The total distance traveled by all of the robots fol-

lowing the trajectory is used as the objective function to select the best task

allocation solution. The corresponding set of trajectories is then passed to

the robots through the Player client/server interface.

As the robots are following the assigned trajectories, the task allocation

application continues to evaluate different goal assignments based on the

current positions of the robots and the state of the tasks. A more efficient

task assignment may be found when:

• the optimization process generates a potential solution that was not

considered in the previous allocation;

• a robot reaches its assigned goal, and needs to be assigned to a new

task;

• a pick-up task becomes active (indicating a load of material available

to be picked up), and is now included in the allocation process;

• one or more robots have deviated from their assigned trajectories due

to obstacles in the environment.

The Player interface and trajectory tracking module allows trajectories to

be dynamically updated as new task assignments are generated. The system

runs in a continuous loop, updating the trajectories whenever a robot reaches

its goal or when a more efficient task allocation is found. Refer to Appendix

C for a video of the robots performing the task allocation in the hallway

environment.

Multi-Robot System Implementation 124

5.6 Results and Discussion

In the development of this demonstration, two aspects of the implementation

that significantly affected the overall system performance were localization

and waypoint tracking.

Localization was implemented using the AMCL particle filter module in-

cluded with Player. Driven by the stepper motor odometry and range mea-

surements from the URG scanning laser rangefinder, the localization system

performed very well in tracking position, typically accurate to within 5cm

of the actual robot position. However, the system was often unable to glob-

ally localize to a correct estimate on initialization, and would require a user

to supply an approximate initial position. This was likely due to the lack

of distinctive features in the hallway environment, and the limited range

(approximately 4m) of the scanning laser. The inability to perform global

localization was not a significant issue for this demonstration since a user-

supplied position was only required on initialization, after which the tracking

performance always maintained an accurate estimate. For systems of many

robots, autonomous global localization would be a more significant concern,

and a cooperative mechanism such as that proposed in Chapter 2 could be

an effective solution.

Trajectory tracking, implemented as a module within the Player archi-

tecture, was a key element to the system performance, since the planner

assumes that all robots will accurately follow the specified trajectories in

order to maintain obstacle-free paths. In the trajectories generated by the

multi-phase motion planner, if a plan requires one robot to wait for another

to pass by, the first robot will be commanded to wait no longer than abso-

lutely necessary. In the solution in Figure 3.1(a) of Chapter 3 for example,

robot R3 will be commanded to move to node B as soon as R2 should have

vacated the node. Any significant lag or position error would result in a

depended on low-level obstacle avoidance and frequent re-planning to avoid

collisions.

The tracking algorithm described in Section 5.3.3 typically maintained

Multi-Robot System Implementation 125

the robots on their specified trajectories within a tolerance of approximately

10cm. Larger tracking errors, up to 80cm, occurred when a robot was re-

quired to stop at a waypoint and rotate to a different heading before contin-

uing on to the next waypoint. The trajectory generated by the multi-phase

planner does not include additional time for this maneuver, since the plans

are based on topological maps and are independent of orientation. Despite

the tracking lag when rotations were required, the tracker was sufficiently

accurate that no additional obstacle avoidance was required between robots

to avoid collisions, and re-planning was never necessary due to trajectory

tracking errors.

5.7 Summary

The planning and task allocations presented in this thesis were demonstrated

in a real-world implementation of three robots operating together in a hall-

way environment, with a central server coordinating their motion. The multi-

phase motion planner developed in Chapter 3 was demonstrated by driving

robots to assigned goals in a scenario requiring coordination that could not be

achieved with a decoupled planner. The task allocation algorithm developed

in Chapter 4 was demonstrated with a multi-class task scenario where task

allocations are continually updated in real-time, and the robots follow the

corresponding collision-free trajectories generated by the multi-phase plan-

ner.

Chapter 6

Conclusions

Teams of multiple mobile robots can be effectively applied to numerous appli-

cations, such as space exploration, underground mining, and building secu-

rity. Compared to individual robots, cooperative teams allow for simultane-

ous presence in multiple locations, improved system performance, faster task

execution, and greater system redundancy. However, effective use of multiple

robots in a common environment requires coordination and distribution of

the planning and control systems used for navigation.

This thesis presented new approaches for three aspects of navigation in

the context of multi-robot teams: cooperative localization using inter-robot

range measurements; scalable and complete motion planning for large teams

of robots; and task allocation for multi-robot teams operating in corridor and

tunnel environments.

6.1 Localization

A cooperative method of global localization for mobile robots was developed,

based on an trilateration algorithm using range measurements among a triad

of robots. A particle filter approach was used to estimate the centroid and

orientation of a triangle formed by the triad of robots. Using the sensor

data from all of the robots, the absolute pose of the centroid of the triangle

126

Conclusions 127

in the environment can be estimated, and the position of each robot can be

determined relative to the centroid using the inter-robot range measurements.

Simulation results demonstrated the performance of the algorithm with only

simple range sensors on each robot, while the number of particles used is

varied over a range of relatively small values. Three robots are able to localize

themselves in an environment where isolated particle filters on individual

robots failed to converge. Cooperative localization of a team of many robots

was investigated by extending the triad-based algorithm to sub-teams of three

robots. Dynamic selection of the cooperative triads, based on the visibility

between robots at any time, makes the system robust to failure of individual

robots or the communication network. Using a geometric selection criteria of

maximizing the area enclosed by the robots in the triad leads to a decrease

in the convergence time as the size of the team increases up to 18 robots in

the simulation environment.

6.2 Motion Planning

A new approach was developed to address the problem of finding collision-

free trajectories for many robots moving towards individual goals within a

common environment. Most popular algorithms for multi-robot planning

manage the complexity of the problem by planning trajectories for robots

individually; such decoupled methods are not guaranteed to find a solution

if one exists. In contrast, this thesis presented a multi-phase approach to

the planning problem that uses a graph and spanning tree representation to

create and maintain obstacle-free paths through the environment for each

robot to reach its goal. The resulting algorithm guarantees a solution for a

well-defined number of robots in a common environment.

A description of the algorithm was presented and illustrated using a sim-

ple example of a planning problem that cannot be directly solved using a

common decoupled approach. Monte Carlo simulation results demonstrated

that the multi-phase algorithm is particularly valuable for planning prob-

Conclusions 128

lems requiring complex coordination, and in scenarios with over 100 robots.

The computational cost is shown to be scalable with complexity linear in

the number of the robots, and demonstrated by solving the planning prob-

lem for 100 robots, simulated in an underground mine environment, in less

than 1.5 seconds with a 1.5 GHz processor. The practicality of the algorithm

was demonstrated in a real-world application requiring coordinated motion

planning of multiple physical robots.

6.3 Task Allocation

Task allocation was considered in this thesis for a specific type of task, where

robots are required to visit certain locations (tasks) in their environment,

and the environment is composed primarily of narrow corridors or tunnels.

This type of problem arises in a number of practical applications, such as

building security and autonomous underground mining. The limited working

space in these environments requires suitable task allocation combined with

coordinated motion planning.

Two task allocation systems were developed and investigated. The first

considered single-class problems, where the team was considered homoge-

nous, and any robot could be assigned to any task. In this case, an auction-

based allocation system was used, capable of finding a set of collision-free

trajectories reaching all of the assigned tasks. The algorithm effectively dis-

tributes tasks for the patrol-type application among a team of R robots,

requiring less than N/R steps between visits, where N is the number of

steps required for a single robot to reach all tasks in a circuit.

The second system considered multi-class problems, where the team of

robots is heterogenous, and some types of tasks may only be assigned to

certain types of robots. For such problems, some scenarios required coor-

dinated motion planning to find collision-free trajectories for all robots. To

determine a suitable task allocation, an optimization loop was developed,

where the task assignment is modified at each iteration, and the fitness of

Conclusions 129

each assignment is evaluated using the multi-phase motion planner described

in Chapter 3.

6.4 Real-World Implementation

To validate the motion planning and task allocation algorithms in a real

world application, a system of three WBR-914 PCBot robots was used. Each

robot runs the Player robot server, and is equipped with a scanning laser

rangefinder for localization. A trajectory tracking function was added to

Player as a plug-in module, to drive the robot through a sequence of time-

dependent waypoints as generated by the multi-phase planner. A centralized

host PC coordinates the system, communicating with the Player server on

each robot via wireless ethernet. Localization and status information is trans-

mitted from each robot to the central server periodically, while the server per-

forms task allocation and coordinated motion planning for the team. This

implementation demonstrated the real-time performance and practicality of

the algorithms for real-world applications.

6.5 Future Directions

The developments presented in this thesis may be extended by future re-

search in several areas. First, the trilateration-based cooperative localization

algorithm could be validated by a hardware implementation, based on a sonar

system for generating inter-robot range measurements. An adaptation to the

cooperative localization method may also be considered, using an analogous

triangulation approach based on the measurement of the bearing, rather than

the distance, between pairs of robots.

Future developments of the multi-phase motion planning algorithm, and

the related task allocation system, could focus on the generalization of the

system to handle additional constraints of different robots, such as maximum

speeds and minimum turning radii. Kinematic constraints could be taken

Conclusions 130

into consideration by embedding geometric features of the environment into

a graph representation, as additional properties of nodes and edges. Velocity

constraints of different robots could be addressed by varying the size of time

steps in the trajectory generation, and constraining the motion of individual

robots between steps in the trajectory.

The motion planner system and implementation may be extended to use a

distributed architecture. This development would eliminate the requirement

of a centralized controller, and allow distribution of the computational effort

of trajectory planning across all of the robots in the system.

6.6 Summary

As the number of applications for mobile robots increases, and larger teams

of multiple robots are required to work in shared environments, the need for

efficient, scalable, and practical algorithms to control their behaviour also

grows. The developments presented in this thesis address this need, with

novel approaches to three aspects of cooperative navigation for multi-robot

teams. The proposed future research directions will build on these algorithms

and make them applicable to a wide range of real-world applications.

Appendix A

Planner Animation

This appendix is an animation video file of the multi-phase planning algo-

rithm presented in Chapter 3. The animation shows the behaviour of the

planner in a simulation of 30 robots in a tunnel environment, as described in

Section 3.4. The file name of this video is “planner animation.mpg”.

If you accessed this thesis from a source other than the University of

Waterloo, you may not have access to this file. You may access it by searching

for this thesis at http://uwspace.uwaterloo.ca.

131

Appendix B

Planner Video

This appendix is a video file of three WBR-914 robots executing plans gen-

erated by the multi-phase planning algorithm presented in Chapter 3. The

file name of this video is “planner video.mpg”. Figure B.1 shows 2 screen

captures from the video.

(a) User interface showing the planned
trajectory.

(b) Robots executing the trajectory plan.

Figure B.1: Motion planner video screen captures

If you accessed this thesis from a source other than the University of

Waterloo, you may not have access to this file. You may access it by searching

for this thesis at http://uwspace.uwaterloo.ca.

132

Appendix C

Task Allocation Video

This appendix is a video file of the three-robot system implementation pre-

sented in Chapter 5, executing the task allocation algorithm presented in

Chapter 4. The file name of this video is “task allocation video.mpg”. Fig-

ure C.1 shows 2 screen captures from the video.

(a) The user interface showing dynamic
task allocation.

(b) The WBR-914 robots driving to the
specified tasks by following the coordi-
nated motion plan trajectories.

Figure C.1: Task allocation video screen captures

If you accessed this thesis from a source other than the University of

Waterloo, you may not have access to this file. You may access it by searching

for this thesis at http://uwspace.uwaterloo.ca.

133

Bibliography

[1] R. Alami, F. Robert, F. Ingrand, and S. Suzuki. Multi-robot cooperation

through incremental plan-merging. In ICRA, pages 2573–2579, 1995.

[2] K. Azarm and G. Schmidt. Conflict-free motion of multiple mobile

robots based on decentralized motion planning and negotiation. In Proc.

IEEE Int. Conf. on Robotics and Automation, pages 3526–3533, 1997.

[3] J. Barraquand and J.-C. Latombe. Robot motion planning: a dis-

tributed representation approach. Int. J. Rob. Res., 10(6):628–649, 1991.

[4] M. Bennewitz, W. Burgard, and S. Thrun. Optimizing schedules for

prioritized path planning of multi-robot systems. In Proc. IEEE Int.

Conf. on Robotics and Automation, pages 271–276, 2001.

[5] R. A. Brooks. A robust layered control system for a mobile robot. IEEE

Journal of Robotics and Automation, 2(1), 1986.

[6] Y. U. Cao, A. S. Fukunaga, and A. Kahng. Cooperative mobile robotics:

Antecedents and directions. Autonomous Robots, 4(1):7–27, 1997.

[7] J. Casey. A Sequel to the First Six Books of the Elements of Euclid,

Containing an Easy Introduction to Modern Geometry with Numerous

Examples. Hodges, Figgis, & Co., 5 edition, 1888.

[8] S. Chien, A. Barrett, T. Estlin, and G. Rabideau. A comparison of coor-

dinated planning methods for cooperating rovers. In AGENTS ’00: Pro-

134

135

ceedings of the fourth international conference on Autonomous agents,

pages 100–101, New York, NY, USA, 2000. ACM Press.

[9] H. Choset and J. Burdick. Sensor based motion planning: The hierarchi-

cal generalized voronoi graph. In Workshop on Algorithmic Foundations

of Robotics, 1996.

[10] C. Clark. Dynamic Robot Networks: A Coordination Platform for Multi-

Robot Systems. PhD thesis, Stanford University, 2004.

[11] C. Clark and S. Rock. Randomized motion planning for groups of non-

holonomic robots. In Proceedings of the 6th International Symposium

on Artificial Intelligence, Robotics, and Automation in Space, 2001.

[12] M. A. Crespo, J. M. Caas, and V. Matellan. Comparing bayesian and

montecarlo localization for a robot with local vision. In Proceedings of

the 2003 Conference of the Spanish Association for Artificial Intelligence

(CAEPIA), pages 171–174, 2003.

[13] M. B. Dias and A. T. Stentz. Traderbots: A market-based approach

for resource, role, and task allocation in multirobot coordination. Tech-

nical Report CMU-RI -TR-03-19, Robotics Institute, Carnegie Mellon

University, Pittsburgh, PA, August 2003.

[14] M. B. Dias, R. M. Zlot, N. Kalra, and A. T. Stentz. Market-based multi-

robot coordination: A survey and analysis. Technical Report CMU-RI-

TR-05-13, Robotics Institute, Carnegie Mellon University, Pittsburgh,

PA, April 2005.

[15] A. Elfes. Using occupancy grids for mobile robot perception and navi-

gation. Computer, 22(6):46–57, 1989.

[16] M. Erdmann and T. Lozano-Perez. On multiple moving objects. Algo-

rithmica, 2:477–521, 1987.

136

[17] D. Fox. Kld-sampling: Adaptive particle filters. In Advances in Neural

Information Processing Systems 14. MIT Press, 2001.

[18] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte carlo localization:

Efficient position estimation for mobile robots. In AAAI/IAAI, 1999.

[19] D. Fox, W. Burgard, H. Kruppa, and S. Thrun. A probabilistic approach

to collaborative multi-robot localization. Autonomous Robots, 8(3):325

– 344, 2000.

[20] D. Fox, S. Thrun, W. Burgard, and F. Dellaert. Particle filters for mobile

robot localization. In A. Doucet, N. de Freitas, and N. Gordon, editors,

Sequential Monte Carlo Methods in Practice, 2001.

[21] S. Ge and Y. Cui. Dynamic motion planning for mobile robots using

potential field method. Autonomous Robots, 13(3):207–222, 1997.

[22] B. Gerkey and M. Mataric. Experimental Robotics VII, LNCIS 271,

edited by D. Rus and S. Singh, chapter Principled Communication for

Dynamic Multi-Robot Task Allocation, pages 353–362. Springer-Verlag

Berlin Heidelberg, 2001.

[23] B. Gerkey and M. Mataric. Sold!: Auction methods for multirobot co-

ordination. IEEE Transactions on Robotics and Automation, 18(5):758–

768, 2002.

[24] B. P. Gerkey, R. T. Vaughan, and A. Howard. The player/stage project:

Tools for multi-robot and distributed sensor systems. In ICAR 2003,

pages 317–323, Coimbra, Portugal, June 2003.

[25] V. Gervasi and G. Prencipe. Coordination without communication: the

case of the flocking problem. Discrete Appl. Math., 144(3):324–344,

2004.

137

[26] D. Goldberg, V. Cicirello, M. B. Dias, R. Simmons, S. Smith, and A. T.

Stentz. Market-based multi-robot planning in a distributed layered ar-

chitecture. In Multi-Robot Systems: From Swarms to Intelligent Au-

tomata: Proceedings from the 2003 International Workshop on Multi-

Robot Systems, volume 2, pages 27–38. Kluwer Academic Publishers,

2003.

[27] R. Grabowski and P. Khosla. Localization techniques for a team of small

robots. In IEEE Int. Conf. on Intelligent Robots and Systems, 2001.

[28] R. Grabowski, L. Navarro-Serment, C. Paredis, and P. Khosla. Het-

erogeneous teams of modular robots for mapping and exploration. Au-

tonomous Robots - Special Issue on Heterogeneous Multirobot Systems,

1999.

[29] Y. Guo and L. Parker. A distributed and optimal motion planning ap-

proach for multiple mobile robots. In Proc. IEEE Int. Conf. on Robotics

and Automation, pages 2612–2619, 2002.

[30] J. Gutmann, W. Burgard, D. Fox, and K. Konolige. An experimental

comparison of localization methods continued. In IEEE International

Conference on Intelligent Robots and System (IROS), 2002.

[31] J.-S. Gutmann, T. Weigel, and B. Nebel. Fast, accurate, and robust

self-localization in polygonal environments. In IEEE International Con-

ference on Intelligent Robots and System (IROS), 1999.

[32] E. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic

determination of minimum cost paths. IEEE Transactions on SSC, 4,

1968.

[33] Y. Hidaka, A. Mourikis, and S. Roumeliotis. Optimal formations for

cooperative localization of mobile robots. In IEEE International Con-

ference on Robotics and Automation, 2005.

138

[34] J. E. Hopcroft, J. T. Schwartz, and M. Sharir. On the complexity of

motion planning for multiple independent objects: PSPACE-hardness

of the “warehouseman’s problem”. International Journal of Robotics

Research, 3(4):76–88, 1984.

[35] A. Howard, M. J. Matarić, and G. S. Sukhatme. Putting the ‘I’ in

‘Team’: An Ego-Centric Approach to Cooperative Localization. In IEEE

International Conference on Robotics and Automation, pages 868–892,

Taipei, Taiwan, Sep 2003.

[36] S. Julier and J. Uhlmann. A new extension of the Kalman filter to

nonlinear systems. In Int. Symp. Aerospace/Defense Sensing, Simul.

and Controls, 1997.

[37] R. E. Kalman. A new approach to linear filtering and prediction prob-

lems. Transactions of the ASME - Journal of Basic Engineering, 82:35–

45, 1960.

[38] K. Kant and S. W. Zucker. Toward efficient trajectory planning: the

path-velocity decomposition. Int. J. Rob. Res., 5(3):72–89, 1986.

[39] K. Kato, H. Ishiguro, and M. Barth. Identifying and localizing robots

in a multi-robot system environment. In IEEE Int. Conf. on Intelligent

Robots and Systems, 1999.

[40] L. Kavraki and J. Latombe. Practical Motion Planning in Robotics:

Current Approaches and Future Directions, chapter Probabilistic

Roadmaps for Robot Path Planning, pages 33–53. John Wiley, 1998.

[41] K. Konolige, C. Ortiz, R. Vincent, B. Morisset, A. Agno, M. Eriksen,

D. Fox, B. Limketkai, J. Ko, B. Stewart, and D. Schulz. Centibots:

Very large scale distributed robotic teams. In IFIP Congress Topical

Sessions, page 761, 2004.

[42] J. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.

139

[43] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[44] E. L. Lawler, J. K. Lenstra, A. H. G. R. Khan, and D. B. Shmoys. The

Traveling Salesman Problem: A Guided Tour of Combinatorial Opti-

mization. John Wiley & Sons, 1985.

[45] M. A. Lewis and G. A. Bekey. The behavioral self-organization of

nanorobots using local rules. In IEEE/RSJ IROS, page 13331338, 1992.

[46] H.-I. Lu and R. Ravi. A fast approximation algorithm for maximum-

leaf spanning tree. In ISPAN ’97: Proceedings of the 1997 International

Symposium on Parallel Architectures, Algorithms and Networks (ISPAN

’97), page 351, Washington, DC, USA, 1997. IEEE Computer Society.

[47] V. Lumelsky and K. Harinarayan. Decentralized motion planning for

multiple mobile robots: The cocktail party model. Autonomous Robots,

4(1):121–135, 1997.

[48] R. Madhavan, K. Fregene, and L. Parker. Distributed heterogeneous

outdoor multi-robot localization. In IEEE Int. Conf. on Robotics and

Automation, pages 374–381, May 2002.

[49] R. Madhavan, K. Fregene, and L. E. Parker. Distributed coopera-

tive outdoor multirobot localization and mapping. Autonomous Robots,

17:23 – 39, July 2004.

[50] M. Mataric, G. S. Sukhatme, and E. H. stergaard. Multi-robot task

allocation in uncertain environments. Autonomous Robots, 14:255–263,

2003.

[51] D. McFarland. Towards robot cooperation. In Simulation of Adaptive

Behaviour, 1994.

[52] J. McLurkin. Stupid robot tricks: A behavior-based distributed algo-

rithm library for programming swarms of robots. Master’s thesis, M.I.T.,

2004.

140

[53] J. McLurkin. Distributed algorithms for multi-robot systems. In IPSN

’07: Proceedings of the 6th international conference on Information pro-

cessing in sensor networks, pages 545–546, New York, NY, USA, 2007.

ACM Press.

[54] H. Moravec and A. Elfes. High-resolution maps from wide-angle sonar.

In Proc. IEEE Int’l Conf. on Robotics and Automation, 1985.

[55] A. Mourikis and S. Roumeliotis. Optimal sensing strategies for mo-

bile robot formations: Resource constrained localization. In Robotics:

Science and Systems Conference, 2005.

[56] L. Navarro-Serment, C. Paredis, and P. Khosla. A beacon system for

the localization of distributed robotic teams. In Proceedings of the In-

ternational Conference on Field and Service Robotics (FSR ’99), 1999.

[57] L. E. Navarro-Serment, R. Grabowski, C. Paredis, and P. Khosla. Mil-

libots. IEEE Robotics and Automation, pages 31 – 40, December 2002.

[58] R. R. Negenborn. Kalman filters and robot localization. Master’s the-

sis, Institute of Information and Computer Science, Utrecht University,

Utrecht, Netherlands, 2003.

[59] F. R. Noreils. Toward a robot architecture integrating cooperation be-

tween mobile robots: application to indoor environment. Int. J. Rob.

Res., 12(1):79–98, 1993.

[60] P. A. O’Donnell and T. Lozano-Pérez. Deadlock-free and collision-free

coordination of two robot manipulators. In Proceedings IEEE Interna-

tional Conference on Robotics & Automation, pages 484–489, 1989.

[61] C. H. Papadimitriou and K. Steiglitz. Some complexity results for the

traveling salesman problem. In STOC ’76: Proceedings of the eighth

annual ACM symposium on Theory of computing, pages 1–9, New York,

NY, USA, 1976. ACM Press.

141

[62] L. Parker. Alliance: An architecture for fault-tolerant multi-robot coop-

eration. IEEE Transactions on Robotics and Automation, 14(2):220–240,

1998.

[63] J. Peng and S. Akella. Coordinating multiple robots with kinodynamic

constraints along specified paths. Int. J. Rob. Res., 24(4):295–310, 2005.

[64] N. B. Priyantha. The Cricket Indoor Location System. PhD thesis,

Massachusetts Institute of Technology, June 2005.

[65] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The cricket

location-support system. In 6th ACM MOBICOM, 2000.

[66] I. M. Rekleitis, G. Dudek, and E. Milios. Multi-robot collaboration for

robust exploration. In IEEE Int. Conf. in Robotics and Automation,

pages 3164–3169, San Francisco, USA, April 2000.

[67] C. W. Reynolds. Flocks, herds and schools: A distributed behavioral

model. In SIGGRAPH ’87: Proceedings of the 14th annual conference on

Computer graphics and interactive techniques, pages 25–34, New York,

NY, USA, 1987. ACM Press.

[68] D. J. Rosenkrantz, R. E. Stearns, P. M. Lewis, and II. An analysis of

several heuristics for the traveling salesman problem. SIAM Journal on

Computing, 6(3):563–581, 1977.

[69] S. I. Roumeliotis and G. A. Bekey. Distributed multi-robot localization.

IEEE Transactions on Robotics and Automation, 18(5):781–795, 2002.

[70] M. R. K. Ryan. Graph decomposition for efficient multi-robot path

planning. In IJCAI, pages 2003–2008, 2007.

[71] A. Rynn, W. A. Malik, and S. Lee. Sensor based localization for multiple

mobile robots using virtual links. In IEEE Int. Conf. on Intelligent

Robots and Systems, 2003.

142

[72] S. Sariel and T. Balch. Efficient bids on task allocation for multi robot

exploration. In The 19th International Florida Artificial Intelligence

Research Society (FLAIRS) Conference, 2006.

[73] T. Siméon, S. Leroy, and J.-P. Laumond. Path coordination for multiple

mobile robots: A resolution complete algorithm. IEEE Transactions on

Robotics & Automation, 18(1), Feb. 2002.

[74] R. G. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors,

S. Thrun, and H. Younes. Coordination for multi-robot exploration

and mapping. In AAAI/IAAI, pages 852–858, 2000.

[75] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial

relationships in robotics, pages 167–193. Springer-Verlag New York, Inc.,

New York, NY, USA, 1990.

[76] R. G. Smith. The contract net protocol: High-level communication

and control in a distributed problem solver. IEEE Trans. Computers,

29(12):1104–1113, 1980.

[77] A. Stentz. Optimal and efficient path planning for partially-known en-

vironments. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA ’94), volume 4, pages 3310–3317, May

1994.

[78] P. Svestka and M. Overmars. Coordinated path planning for multiple

robots. Robotics and Autonomous Systems, 23:125–152, 1998.

[79] J. D. Sweeney, H. Li, R. A. Grupen, and K. Ramamritham. Scalability

and schedulability in large, coordinated, distributed robot systems. In

Proceedings of IEEE International Conference on Robotics and Automa-

tion (ICRA). IEEE, 2003.

[80] S. Thrun. Probabilistic algorithms in robotics. AI Magazine, 21(4):93–

109, 2000.

143

[81] S. Thrun. A probabilistic online mapping algorithm for teams of mobile

robots. International Journal of Robotics Research, 20(5):335–363, 2001.

[82] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press,

2005.

[83] UNECE. 2004 world robotics survey. Technical report, United Nations

Economic Commission for Europe, 2004.

