
 

 

 

  

Abstract—Wheeled-mobile robots operating in human 

environments typically encounter small steps. Surmounting 

steps is normally not considered when determining peak torque 

needs, yet it can be the maximum requirement. This work looks 

at the statics and dynamics of this situation to determine the 

necessary peak torque. It finds that using a dynamic model that 

includes the wheel elasticity is essential for properly 

representing a real-world tire. When torque is increased using 

a step function, energy is stored in the tire—higher tire 

elasticity eases climbing. Knowledge of this phenomenon could 

facilitate the use of smaller actuators. The model is numerically 

integrated and results are found to agree with experiment. 

I. INTRODUCTION 

ETERMINING the torque requirements for powered 

wheeled vehicles is typically based on acceleration and 

velocity requirements, e.g. [1], [2]. However, for vehicles 

that must surmount small steps at slow speeds, e.g. indoor 

mobile robots, climbing the step can easily be the peak 

torque demand. A simple static analysis of this situation 

using rigid elements is insufficient to explain the behavior of 

a deformable wheel typically used in indoor mobile robotics, 

and overestimates the required torque. Some tire models 

designed for car tires can handle steps [3], [4], but these 

cannot be easily translated to typical robot tires and their 

complexity makes it difficult to understand the underlying 

phenomenon in passing over steps. 

The remainder of this paper is organized as follows: in 

II.A, a simple static model is developed. This model is 

extended in II.B into a dynamic model that includes wheel 

elasticity, and is non-dimensionalized in order to allow 

comparison of different designs. A simulation is performed 

in III, and results are compared to experiment in IV. Finally, 

the implications of the model results are discussed in V and 
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conclusions about the improved model are drawn in VI. 

II. THEORY 

A. Rigid-Wheel Model  

To create the simple rigid-element model (Fig. 1), the 

front wheel of radius r is replaced by a rigid link (CF) pin-

jointed at one end to the ground and to the cart at the other. 

The rear wheel is replaced by a pin joint attached to a slider 

joint at R. 
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Fig. 1.  Rigid system model showing similarities to a slider-crank 

 

Described in this way, the problem is similar to a slider-

crank, a mechanism that is often used as an example in 

literature, e.g. [5], where the front wheel is like the crank. 

There are several differences from the typical representation 

of a slider-crank as a device to convert linear into rotational 

motion: the slider is vertically offset from the crank origin 

by distance e; the ‘connecting rod’ (RF) of length b (the 

vehicle) has a large mass m and inertia ICM at B which is a 

distance cx and cy from F; and, most importantly, the torque 

Tf is applied not at the ‘crank origin’ C but at the front wheel 

centre F. Introducing a torque in the middle of the 

mechanism means that its reaction also plays a role, acting 

both onα , the angle of the platform from horizontal, and θ , 

the angle of CF from horizontal. The mass and inertia of the 

wheels are neglected. 

The maximum torque Tmax required for static balance of 

this mechanism occurs at the base of the step and is 
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when 2bcx = . The cosine of the starting angle initθ  can 

be found as follows: 

( ) rhrhinit −−= 2cosθ . (2) 

Combining (1) and (2) using three non-dimensionalized 
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(ND) groups, mgbTmax , rb , rh , results in the ND 

expression for torque 
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which allows for the observation of generalized trends that 

hold true for the more detailed model to follow and which 

are visible in Fig. 2: 

•  ND peak torque decreases with increasing wheelbase, 
though the benefits are minimal for large wheelbase-to-

wheel-radius ratios (b/r). Compared to applying a torque 

at the origin C as in a typical slider-crank, 

( )initrbb θcos+  less peak torque is required. 

•  A larger wheel radius increases ND peak torque (the 
moment arm is larger), though the effect is reduced for 

small step heights.  

•  ND peak torque increases with step height 

 

 
Fig. 2.  Static torque relationship for non-dimensionalized parameters. 

 

An important additional consideration is that the friction 

between the corner and the wheel must be sufficient to 

prevent slip. Experiments show that the effective friction 

factor is higher at the corner than on a flat surface, in some 

cases even exceeding 1—this suggests that there are other 

forces at play in the indented part of the tire. Nevertheless, 

the available normal force decreases with increasing h/r, 

reaching zero when h=r, at which point a front-wheel-driven 

platform has reached its ultimate step height limit. 

B. Spring-Damper Wheel Model 

It has been found that modifying the model above in the 

following way better describes the non-linear dynamics of 

small-step passing: the rigid ‘crank’ (FC) is replaced with an 

ideal spring-damper element with spring constant kc, 

damping constant kd and displacement c. Also, it is essential 

to include a ground support force at the base of the tire. This 

is realized by a vertical spring-damper with spring constant 

kv, damping constant kd, and displacement d which only acts 

when in contact with the ground. 

Two different spring constants are used to reflect the fact 

that the tire behaves differently when compressed on a level 

surface versus compression on a corner. Tire spring forces 

become non-linear for large deformations such as at corners, 

but this simplification has proven effective. The model will 

lose validity towards the top of the step, where the 

compression point reverts from a corner to a flat surface and 

the tire’s standard spring constant for level surfaces should 

begin to apply again. However, this region does not play a 

role in determining peak torque requirements, since, as is 

evident from (1), torque required decreases towards zero as 

cosineθ approaches 90
o
. 
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Fig. 3.  Improved system model with spring-damper wheel. 

 

With the tire in contact with the ground, the kinetic energy 

of the system, T, can be expressed as 
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where the velocity of B is  
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and the potential energy, U, can be expressed as 

( )( )ααθ cossinsin
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where time derivatives are expressed in dot notation. 

To express the motion of the system using Lagrange’s 

equations, four generalized coordinates, dc,,,θα are chosen 

and are related by the constraint equations 

( )( )ecrbC +−−= θαλ sinsin11  (6) 

( )( )θλ sin22 crdeC −−−=  (7) 

that relate α to θ and d to c & θ respectively, where 21 ,λλ  



 

 

 

are Lagrange multipliers and where 

hre −= . (8) 

The Lagrangian L is 

21 CCUTL −−−= . (9) 

External forces are expressed in the generalized 

coordinates as 

fTQ =α  (10) 

fTQ −=θ  (11) 

ckQ dc
&=  (12) 

dkQ dd
&= . (13) 

The four dynamic equations are thus found using  
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where q stands for the generalized coordinates dc,,,θα : 

dkdkd vv −=− 2: λ  (15) 
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d can be eliminated by substituting the constraint 

relationship and its derivative, 

( ) ecrd +−−= θsin  (19) 

( ) θθθ cossin &&& crcd −−=  (20) 

into (15), which we can then be solved for 2λ :  

( )( ) ( ) θθθλ cossin2
&&

vvv kcrekkcrc −−+−−= . 

Eliminating the Lagrange multipliers at this point is 

preferable to including them in the numerical integration [6]. 

Solving for 1λ using (17) and substituting 21 ,λλ  into (16) 

and (18) gives 
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Similarly, α can be eliminated using 

( )( ) becr +−= θα sinsin  (23) 

( )( ) becrb
22 sincos ++−= θα  (24) 

( ) ( )αθθθα coscos)(sin bcrc &&& −+−=  (25) 
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We are left with two equations that can be rearranged into 

the form 

( )ccf ,,, &&&& θθθ =  (27) 

( )ccfc ,,,, &&&& θθ=  (28) 

which can then be integrated numerically. Integration 

must be stopped when d > 0 and the final coordinates used 

as initial conditions for the system equations without ground 

contact that are described below. 

To model the dynamics when the tire is not touching the 

ground, the potential energy and damping force of the 

ground contact spring-damper is set to zero, eliminating the 

external work Qd and making the new potential energy term  

( )( )ααθ cossinsin
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Only three generalized coordinates c,,θα  and one 

constraint equation, (6), are now needed, which are solved in 

the same manner as before. Numerical integration is 

performed until d < 0, at which point the first set of dynamic 

equations must be used, and the process repeated ad infinum.  

In order to easily compare different mobile platforms, the 

equations and results can be non-dimensionalized with the 

following 18 ND groups: 
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To determine what friction factor, µc, is necessary at the 

corner to prevent slip, one must determine the radial normal 

force,  

ckckF dcN
&+=  (30) 

and the tangential force,  

( )crTF fT −= . (31) 

The friction factor to prevent slippage is 

NTc FF=µ . (32) 

Note that there is an additional friction force at the ground 

contact point so long as d < 0, during which time the above 

equations do not apply. 

Since µc fluctuates somewhat due to the changes in tire 

compression c, for a corner with a particular friction factor 

there will be a set of parameters creating a border-line case 

where some slippage occurs during tire compression. 

However, periods of traction while the tire is less 

compressed are sufficient such that the wheel will still 

surmount the step. Determining this point would require 

extending the model to include slip. 

Other possible extensions include consideration of non-

powered wheels, where the external force comes from a 

different point, and of rear wheels, which are loaded more 

heavily because platform tilt moves the CM towards the 

back, thus causing them to need more torque. Also, 

approaching the step with a velocity or acceleration lowers 

the torque requirements but can lead to undesired 

oscillations and lift-off after impact. 

III. SIMULATION 

A. Setup 

The vertical spring constant was determined 

experimentally, as no published data was available for the 

tire. The radial spring constant was found by calibrating the 

model to fit the experimental data. The model will be poor 

for step heights much greater than those used during 

calibration. For example, for no step, the radial spring 

constant should be the same as the tire’s normal spring 

constant for flat ground. Thus, calibration should be 

performed to include the expected maximum step height to 

ensure the model is accurate when finding the peak torque 

required for this height. A damping value for both dampers 

of 200 N·m/s was chosen; results were found to have low 

sensitivity to changes in damping within a range (50–500) 

typical for tires.  

The simulation was created using the Modelica language 

and its multi-body physics library [7], which is implemented 

in Dymola [8], allowing for animation and easy 

programming of loss-of-contact conditions. It was run using 

the ‘Dassl’ integrator set to a tolerance of 1e-5. Results were 

compared to direct numerical integration of the dynamic 

equations from section II in Maple using the Runge-Kutta 

Fehlberg method [9] and found to be identical. Parameters 

for wheelbase, mass, inertia, centre of mass, wheel radius 

and step height were chosen to match the experimental setup 

(Table I). Note that the 3D functionality of the library was 

made use of to include the cart’s off-diagonal inertia terms 

TABLE I 

EXPERIMENTAL CART SPECIFICATIONS 

Component Details 

Drive Motor Maxon RE 40 – 148877 
DC Brush, 150W, 48V 

Rated 0.148 Nm @ 7000 rpm, Peak 2.5 Nm 

Drive 

Gearing 

15:1 - Maxon GP 42C – 203116, 2 Stage 

2:1 Toothed Pulley 
Efficiency: 79% max at rated torque 

Drive Wheel IMPAC 32-86 IS300 foam filled, polyamide surface 

6" x 1 ¼" (152.4 mm x 31.75 mm) nominal, 
147.6 mm x 31 mm measured undeformed, 

100 mm hub diameter 

Wheelbase 0.477m 
Cart Mass 20.64 kg 

Cart Inertiaa 

(kg·m2) 

Ixx:0.929, Ixy:-0.256, Ixz:0.001, IIyy:1.24, Iyz:0.007, 

Izz:1.959, relative to CM, where x is forward, z is up  
Cart CM 0.25m above tire centre, 0.215m behind tire centre 

 



 

 

 

in order to improve agreement with experiment.  

The torque input Tf was varied for each simulation run 

until the minimum value sufficient to overcome the step was 

found. 

Adding a vertical spring-damper element to simulate the 

rear tire, including gear-train dynamics, including gear-train 

elasticity and backlash, and adding motor dynamics all had 

negligible impact. 

B. Analysis 

Because the elastic tire compresses, the effective wheel 

radius is reduced. The small reduction due to compression, 

on the order of 3% with the parameters used in the 

simulation, causes a 1.7% reduction in torque in the static 

analysis. However, the reduction in radius is not the only 

benefit of an elastic tire. 

From Fig. 5 - Fig. 4 that show results for the 16 mm step, 

it is apparent that the elastic tire first absorbs energy in the 

radial spring element while the cart is still partially 

supported by the ground. The spring compresses, spring 

potential energy increases, and it only slowly starts 

contributing to the total vertical support force. The vertical 

ground contact spring expands, releasing stored energy as its 

component of the vertical support force diminishes until it 

vanishes completely when ground contact is lost at 3.07 

seconds. The radial spring then continues damped 

oscillations, contributing a vertical force component that 

puts the vertical force on average at the same level as the 

rigid system – this despite a lower torque and thus a lower 

contribution from the torque reaction to the vertical force. 

Since the system is nearly conservative with small loses 

due to damping, the elasticity only acts to redistribute the 

energy over time, but this is sufficient to reduce the peak 

torque.  

IV. EXPERIMENT 

A. Setup 

A three-wheeled cart with one driven wheel was used in 

experiments, details of which are given in table I. Torque 

was controlled using a Copley Controls 4122CE run in 

torque mode, where a reference and monitor signal are set 

and recorded by a PC-based controller/DAQ at 10kHz. 

Controller reaction times were found to be significantly 

smaller than observed physical behavior. 

Two different step heights – 8.42 mm and 16 mm or 11% 

and 22% of undeformed tire radius, representing 84% and 

105% of rated motor torque for static balance – were tested. 

The tire was a modified polyurethane foam-filled wheelchair 

tire of type IMPAC 32-86 IS300 with a polyamide surface 

and nominal dimensions of 6" x 1 ¼ ". 
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Fig. 4.  Energy for 16 mm step height, comparing rigid and elastic tire 
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Fig. 5.  Spring compression, 16 mm step height, torque step from 0.73 to 

3.91Nm at 3 s, tire lifts off ground at 3.07 s. 
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Fig. 6.  Forces at front wheel resolved into vertical components for both 

spring-damper and rigid model, 16 mm step height. Torque step from 0.73 
to 3.91 Nm at 3 s for elastic wheel, 0.73 to 4.63 Nm for rigid wheel. Elastic 

wheel reaches top of step at 3.66 s, rigid wheel at 3.86 s. 
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8.42 3.53±0.29 step 2.67±0.05 -24 2.67 0.0 

  ramp 3.23±0.13  3.19  

16.00 4.63±0.43 step 3.89±0.06 -16 3.91 0.3 

  ramp 5.07±0.17  4.44 -12 
a based on the wheel radius as measured on a flat surface 
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An initial torque of 0.73 Nm was applied to eliminate play 

in the system and bring the wheel into contact with the 

corner. 

B. Results 

Slowly increasing current (and thus torque) to achieve a 

near static condition—increasing torque in small increments 

and waiting for motor rotation to settle—causes the platform 

to pass over the step within range of the calculated static 

value. Increasing the current from 0.73 Nm to the test value 

in one step requires a smaller value to pass over the step, 

which agrees with the model presented in section II.B. The 

results are compared in table II; the theoretical static torque 

value is calculated from equation (1), where uncertainty is 

propagated from the measurement uncertainty in the 

physical variables (r, h, m, cx, cy, b). Experimental results for 

both step heights agree well with simulation. This also 

shows the effective spring constant to be applicable at least 

over this range. A video comparing experimental and 

simulation results for a 16 mm step trial with torque increase 

by step-function is provided, both clearly showing similar 

oscillations due to tire elasticity. The video of the 

experiment also shows some slippage when the torque is 

first applied, which is understandable since the normal force 

drops significantly at this point and the necessary friction 

factor likely exceeds that which is available. 
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Fig. 7.  ND static torque compared to simulation results showing effect of 

different ND spring constants, where mgbkK c= and all other ND 

groups are held at experimental conditions. K=146 is experimental setup. 

V. PARAMETRIC ANALYSIS OF DYNAMIC RESPONSE 

From Fig. 7 a number of observations can be made. The 

reduction in ND peak torque with the elastic tire, both in 

relative and absolute terms, is largest at small step-height-to-

radius ratios and with soft spring constants. It gets relatively 

smaller quickly as the step height to radius ratio increases, 

and also decreases in absolute terms, though this decrease is 

at a fairly low rate, particularly for hard spring constants. At 

high h/r ratios, the curves converge, approaching but not 

reaching the static curve.  

In general, a softer spring increases the time period over 

which energy can be stored and released, reducing the peak 

torque required. Its ability to do so appears dependent on the 

h/r ratio (likely because of the initial contact angle, initθ ). Of 

course, a softer tire may have unwanted repercussions in the 

vehicle’s overall behavior, where high stiffness is often 

desirable for instance to improve positioning accuracy of a 

mounted sensor or end-effector. Thus, the benefits of a large 

soft tire for step passing must be weighed against potential 

negatives for each application.  

A larger wheel can climb higher steps because its initial 

contact angleθ is higher, increasing the radial normal force 

and thus decreasing the necessary friction factor. However, 

it requires more torque, takes up more space, weighs more, 

and tends to have a higher rolling resistance. 

VI. CONCLUSIONS 

The dynamic model of step-climbing presented in section 

II.B is much better at predicting the necessary torque to 

overcome the step than a static rigid model. It accurately 

demonstrates the reduced torque required due to energy 

storage in an elastic tire, as is evident from the agreement 

between experimental and model results. Using the ND 

parameters, different mobile robot designs can be evaluated 

and compared for their step-climbing ability. Since climbing 

small steps is a significant torque requirement, especially 

when approached at slow speed, and potentially the highest 

torque requirement in some mobile robotics applications, 

modeling this situation more accurately will lead to lower 

actuator requirements with associated benefits for mass and 

power consumption.  It will also allow for better selection of 

tire characteristics—choosing between suspension and step–

passing qualities.  
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