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Abstract—This paper documents the application of several 

underwater robot mapping and localization techniques used 

during an archaeological expedition. The goal of this project was 

to explore and map ancient cisterns located on the islands of 

Malta and Gozo. The cisterns of interest acted as water storage 

systems for fortresses, private homes, and churches. They often 

consisted of several connected chambers, still containing water. A 

sonar-equipped Remotely Operated Vehicle (ROV) was deployed 

into these cisterns to obtain both video footage and sonar range 

measurements. Four different mapping and localization 

techniques were employed including 1) Sonar image mosaics 

using stationary sonar scans, and 2) Simultaneous Localization 

and Mapping (SLAM) while the vehicle was in motion, 3) SLAM 

using stationary sonar scans, and 4) Localization using previously 

created maps. Two dimensional maps of 6 different cisterns were 

successfully constructed. It is estimated that the cisterns were 

built as far back as 300 B.C. 
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I.  INTRODUCTION 

This project concerns the development of an underwater 
robot system capable of mapping out and navigating 
underwater tunnel systems. The target environments for this 
project are cistern networks found in the lower chambers of 
fortresses and churches in Malta. Archaeologists looking to 
study and document such systems have found it too expensive 
and difficult to use people. Furthermore, the human exploration 
of these subterranean water storage systems is limited by safety 
and physical constraints and could possibly result in 
irreversibly damaging to the site under study. 

A small underwater robot, or specifically a VideoRay 
micro-ROV [Remotely Operated Vehicle] was used, (see Fig. 
1). Investigators lowered the ROV down well access points 
until it was submerged in the cistern. The investigators then 
tele-operated the robot to navigate the tunnels. Two 
dimensional maps of the cisterns were created using a 
SeaSprite scanning sonar mounted on top of the ROV. These 
sonar measurements were used in four ways to develop cistern 
maps and conduct localization.   

The paper is presented as follows. Section II presents 
related robot mapping techniques. Section III explains the 
methodology used during the expedition. In section IV, details 
are provided of the specific mapping and localization 
techniques. Results from these experiments are shown in 
section V, followed by conclusions in section VI. 

     

(a)          (b) 

Figure 1. Depicted in (a) is the VideoRay Pro III Micro ROV with 
a SeaSprite sonar mounted on top and the skid removed. 
In (b), a typical cistern access point is shown.  

II. BACKGROUND 

Several methods exist for mapping underwater 

environments when using underwater robots. The maps 

constructed are used both for the application at hand (e.g. 

oceanography, marine biology, archaeology, etc.) and to 

improve the navigation capabilities of the robot itself. 

When the robot is localized with respect to some inertial 

coordinate frame (i.e. the robot’s position is known), mapping 

while in motion is a much simpler task. An approach typically 

used when operating wheeled robots within indoor 

environments is to use an occupancy grid map that is updated 

via the log likelihood approach that assigns a probability of 

occupation for that each cell in the grid [1].  

A common method used for mapping underwater seafloors 

involves mosaicing bottom images obtained from different 

locations. Once combined, the resulting mosaic can be used as 

a map with which the robot can localize itself. Such mapping 

systems do not rely on the deployment of infrastructure like 

acoustic positioning systems and do not suffer from drift like 

IMU based systems. For example, in [2] an ROV was 

equipped with a real-time mosaicking system. Also, in [3], 

video mosaicing is used for Autonomous Underwater Vehicle 

(AUV) navigation. 

In recent years, a large amount of research has been 

conducted in the area of Simultaneous Localization and 

Mapping (SLAM). SLAM techniques have been developed 



         

and modified for a large number of applications and 

environments. A good survey of the core techniques including 

both Kalman Filtering and Particle Filtering based techniques 

can be found in [4]. 

One example of robots conducting SLAM in tunnel 

systems is found in [5]. In that work, the mapping of 

underground mines was conducted using an autonomous 

wheeled robot called “Groundhog”.  

Other relevant work includes the work conducted in 

underwater robot SLAM. One of the first instances includes 

the work done in [6], where sonar scans were used to map and 

track features of the environment. More recently, successful 

3D tunnel mapping in underwater environments was 

demonstrated in [7].   

Unlike the work in [7], this paper describes applications 

which only permit the passage of small-scale robot systems 

(i.e. passage opening diameters on the order of 0.3m). 

Furthermore, the ROV was equipped only with a depth sensor, 

compass and scanning sonar. To overcome this limitation in 

sensing, a dynamic model of the ROV was used for the 

prediction step of both the SLAM and Particle Filter 

localization algorithm.  

A major issue associated with this approach is that tether 

snags and collisions with walls are not considered in a typical 

dynamic model. Such occurrences are accounted for and it is 

shown that when implemented within a particle filter based 

SLAM approach, i.e. FastSLAM [4], mapping is possible even 

when frequent tether snags or collisions occur.  

III. EXPERIMENT DESCRIPTION 

Eight different sites in Malta and Gozo were visited. The 

cisterns were estimated to be constructed between 300 BC and 

the 15
th
 or 16

th
 century. At each site, the ROV was initially 

lowered through a small opening and then down a 3-15 meter 

deep chute before submerging in the cistern. As shown in Fig. 

2(a), several layers of construction can be observed with 

increasing depth. A reflection of the ROV’s two lights can be 

seen on the water’s surface below as it descends down the 

chute, (see center of image).  

Once submerged, the ROV would be flown throughout the 

cistern, exploring any passageways and chambers. To 

accomplish this, pilots used video from the onboard camera 

and a joystick controller. An example of one such video image 

is shown in Fig. 2(b), where the ROV is facing back through a 

tight passage it once travelled. The ROV’s yellow tether can 

be seen feeding back into the initial chamber. Also note the 

water clarity in this particular cistern allowed for a reflection 

on the water surface, (as seen in the top half of the image). 

To aid in SLAM experiments, auto depth and auto bearing 

controllers were used. Shown in Fig. 2(c) is one ROV using 

these autonomous control methods to hold station while 

viewing a cistern wall. It should be noted that these images 

were obtained by lowering two ROVs down through two 

different chutes that lead to the same cistern. The second ROV 

was used to obtain the image of the first ROV in Fig. 2(c).  

After video images of the cistern were recorded, stationary 

sonar scans were obtained. Each scan was taken while the 

ROV was sitting on the bottom of the cistern. For each scan, 

the ROV was positioned to ensure that scans would overlap 

each other to facilitate easy mosaicing. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2. For each site, the ROV was initially lowered down a 
deep narrow chute, (a). In (b), an image obtained while 
returning through a tight passage. Shown in (c) is the 
view from one ROV while it records images of another 
ROV inspecting the cistern wall. 

Once a sufficient number of stationary scans were 

obtained, sonar scans were recorded while the ROV was in 

motion. Control signals, depth and heading measurements 

were also recorded for use with SLAM. 



         

IV. MAPPING AND LOCALIZATION TECHNIQUES 

Four different mapping and localization techniques were 
used, each producing maps consistent with one another, but of 
different formats. 

A. Sonar Image Mosaics with Stationary Scans 

The first approach taken was to mosaic several overlapping 
360 degree sonar scans. Figure 3 displays an example mosaic 
created from six scans. Each scan on the mosaic has an obvious 
circle of high-strength returns indicating the robot’s position 
within the scan. Note the high quality of the images and 
obvious correspondence between them allows for them to be 
easily fused by a human operator.  

 

Figure 3. On the left are a collection of sonar scans obtained from 
site 8, a private home in Mdina Fortress of Malta. On the 
right is the mosaic created from the scans. 

 

B. SLAM  with the ROV in Motion 

A goal of this project is to implement Simultaneous 
Localization and Mapping (SLAM) in real time. Since very 
little was known about the cisterns under investigation (i.e. 
size, types of features, number of features, etc.), an occupancy 
grid was used to represent the belief state of the environment 
[4]. That is, the cistern model was discritized into square cells 
of equal size. Each cell is assigned a probability that it is 
occupied (e.g. by a wall). Figure 4 shows an occupancy grid 
map for site 8. Note the height of the cell indicates probability 
of occupation.  

The particular SLAM algorithm used in this project was 
FastSLAM for learning occupancy grids [4] since it doesn’t 
require features like most SLAM algorithms. FastSLAM is a 
particle filter based approach to SLAM, in which a collection 
of M particles denoted as Xt is used to model the belief state. 
For this case, the k

th
 particle consists of an occupancy grid mt, 

the robot’s state xt
k
 = , and a 

weight wt
k
 that represents the likelihood that particle k 

represents the true state. As shown in Table 1, the t
th
 time step 

of the algorithm updates all particles as new sensor 
measurements zt are observed. 

The three key steps to this algorithm are on line numbers 4, 
5 and 6. The first, sample_motion_model, propagates the 
previous state xt-1

k
 of the robot forward in time according to the 

control inputs ut. A certain degree of randomness is added 
propagation, in accordance with the robot’s motion model. 

TABLE 1. THE FastSLAM ALGORITHM 

1: Alg. FastSLAM_occupancy_grids(Xt-1, ut, zt): 

2: Xt’ = Xt = 0 

3: for  k = 1 to M   do 

4:      xt
k
 = sample_motion_model(ut, xt-1

k
) 

5:      wt
k
 = measurement_model_map(zt, ut, mt-1

k
) 

6:      mt
k
 = updated_occupancy_grid(zt, ut, mt-1

k
) 

7:      X’ = X’ +{ xt
k
, mt

k
, wt

k
 } 

8: endfor 

9: for  k = 1 to M   do 

10:      draw i with probability ~ wt
i
 

11:      add { xt
i
, mt

i
 } to Xt 

12: Endfor 

13: return Xt 

When the ROV is in motion, this function uses a dynamic 
model xt

k 
=f(xt-1

k
, ut), which predicts the state of the ROV given 

the last state and current control signals. This model is based on 
that developed in [8]. While the model is nonlinear, it assumes 
decoupling between many states. Furthermore, the model in [8] 
doesn’t include any model of the tether’s effect on dynamics. 

To account for both tether snags and the ROV’s motion 
being obstructed by collision with walls, the propagation model 
was modified accordingly: 

 (1) 

   (2) 

In equation (1), r1 and r2 are normally distributed random 
variables. The value of ε is either 1 or 0, representing a tether 
snag or no tether snag respectively. This is set according to a 
uniformly distributed random variable r3, and a probability of 
tether snag or obstruction λ. 

The next step in the algorithm invokes the 
measurement_model_map function, which calculates the 
weight of the k

th
 particle. At a high level, the expected sonar 

measurement is calculated given the robot state xt, and the map 
mt-1. This expected sonar measurement is compared with the 
actual measurement zt. If the two measurements are similar, a 
high weight is returned, otherwise a low weight is returned.  

To quantify this similarity, we first note a sonar 
measurement z has the form z = [β s

1 
… s

B
], where β is the 

direction the sonar head and s
i
 is the i

th
 strength of return signal 

measured at a distance i/maxRange. To determine the weight of 
the particle, each strength of return s

i
 is converted to a 

corresponding occupancy probability according to a log odds 
mapping approach [4] to yield pz = [pz

1
…pz

B
]. If the map’s 

cells that correspond with the B sonar measurement locations 
currently have occupation probabilities pm =[ pm

1
…pm

B
], then 

the weight can be calculated using a Gaussian model as: 



         

 (3) 

The last core function of the algorithm, 
updated_occupancy_grid, updates the map with the new 
sonar measurements. Each return signal strength s

i
 is first 

mapped to a position according the robot state and sonar 
heading β. The occupancy of the cell that corresponds to this 
position is updated, again according to the log odds mapping 
approach [4]. In general, a high signal return strength will 
result in a high probability of occupancy. 

 
(a) 

 
(b) 

 
(c) 

Figure 4. The ROV is mapping the cistern at site 8. In (a), the 
ROV sits on the bottom and maps out the mound of silt 
just in front of it. In (b), we see that without a model for 
tether snags, mapping performance is poor. Using the 
proposed model from equation (1), successful mapping 
is possible (c). The red line within the cistern indicates 
the path of the ROV. The two straight red lines indicate 
the direction of the current sonar measurement. 

Lines 8 through 11 in Table 1 correspond to the resampling 
phase of the algorithm. In this phase, a new collection of 
particles Xt is generated from Xt’. That is, particles are 
randomly selected from Xt’ and added to Xt, giving higher 
likelihood of selection to those particles with higher weights. 

An example of the effectiveness of the SLAM 
implementation is shown in Figure 4. In (a), the ROV has 
conducted 2 sonar scans while resting motionless on the 
bottom. The ROV is sitting in front of a mound of sediment, 
resulting in a large number of strong sonar returns falsely 
indicating a wall just in front (i.e. just to the left of the robot in 
the image). With no modeling of tether or collisions, the 
algorithm greatly overestimates the amount of motion the ROV 
travels, resulting in the mapping of several walls which 
replicate the original wall (b). Finally, in (c) is presented 
mapping after several minutes of forward motion, part of which 
is slowed by a collision and/or tether snag. The map shows no 
replication of walls and appears consistent with maps produced 
from other methods (see Fig. 3). 

C. SLAM with Stationary Sonar Scans 

When using stationary scans with FastSLAM, the 
sample_motion_model function doesn’t use actual control 
inputs. Instead the transformations (i.e. translations and 
rotations), required for mosaicing the stationary scans were 
recorded. These transformations were easy to obtain, but are 
subject to error. To model this error, a 2D Gaussian distribution 
was used, with a mean of 0 and a standard deviation σm. The 
value for σm was set according to the variation in 
transformations. Specifically, the operator transformed several 
sonar scan images, each 10 times, to fit within the mosaic. The 
standard deviations of each scan’s x and y coordinates after the 
transformation were calculated. Of the scans transformed, the 
maximum value of σm = 0.020m was obtained.  

Figure 5 shows a map constructed using the SLAM 
algorithm with stationary sonar scans. Note the blue square 
which represents the initial scan position, located directly 
below site 8’s access chute. Also note the ROV’s final scan 
position in the bottom of the image.  

 

Figure 5. An example of a map created by inputting static sonar 
scans into a SLAM algorithm. The ROV in the image 
indicates the state of the ROV during the final sonar 
scan. The blue square indicates the approximate position 
of the cistern access point.  



         

D. Localization Using Previously Constructed Maps 

Once maps are constructed using any of the previous 

techniques, the robot can navigate using a localization 

algorithm to estimate the robot’s state within the map. In this 

work, Particle Filter Localization was implemented [4]. The 

algorithm was similar to the FastSLAM algorithm presented in 

Table 1, with step 6 removed to leave the map unchanged over 

time.  

V. RESULTS 

Six of the eight 8 sites visited had a sufficient water depth 
and were mapped, providing new and useful information for 
archaeological purposes. However, different levels of success 
were achieved depending on the method used and the site in 
question. 

The mosaics created for all sites provided information 
regarding the orientation, scale, and complexity of the cisterns. 
Figure 6 shows examples from two sites. As can be seen in (a), 
a small chamber which lies at the bottom of the access point to 
site 2 is connected to a larger reservoir. This was observed in 3 
of the 6 sites.  

 
(a) 

 
(b) 

Figure 6. Examples of sonar mosaics created using stationary 
sonar scans. A map of the cistern in site 2 (Gozo Citadel) 
is shown in (a). In (b), a map of the cistern from site 6 
(Private home in Mdina) is shown. 

In Fig. 6(b), a tight passage connects two bulb-shaped 
chambers. The north-east chamber lies at the bottom of the 
access point of site 6. Upon visual inspection using video 
camera, another access point (although covered) was found to 
be above the south-west chamber.  

In validating the SLAM while-in-motion approach to 
mapping cisterns, data was only obtained for 2 of the sites. A 
significant issue that limited data was the inability to drive the 
ROV with complete control when running the on-line SLAM 
algorithm. When the algorithm is running, the ROV must be 
controlled via computer interface which was not a problem in 
previous pool trials. However, navigating narrow passageways 
required more sensitive control similar to that provided by the 
ROV’s original joystick control. 

Despite these difficulties, it has been shown that the 
algorithm works well in mapping the cisterns. Figure 7 shows 
an occupancy grid map created for site 8, (accessed from a 
private home in Mdina). In this example, only 25 particles were 
used.  

 

Figure 7. Example of a map created from implementing 
FastSLAM while in motion. 

Using static sonar scans within the SLAM algorithm proved 
effective in mapping the cisterns. Figure 8 shows a map of the 
cistern at site 8. 

 

Figure 8. Example of a map created from implementing 
FastSLAM with static sonar scans. 



         

Finally, the Particle Filter implementation showed positive 
results in that the robot always converged to within 0.5m of the 
actual location, despite having no knowledge of the initial state. 
An example is provided in Figure 9. In (a), 500 particles are 
shown that each represents a possible state of the robot. The 
robot’s state estimate is calculated as the weighted average of 
all particle states, and is shown in the center of the image. The 
actual position is shown as a blue square. Despite the fact that 
the robot has not moved, it can localize itself with only 2 scans 
of the area, as shown in (b). Figure 9(c) shows the localization 
error as a function of time. 

 
(a)    (b) 

 
(c) 

Figure 9. An example of Particle Filter localization being 
conducted with data from site 8. Initially, the robot has 
no idea where it is located, as shown by the randomly 
distributed set of red particles (a), After a few sonar 
scans (b), the robot can successfully localize itself with 
respect to the actual position (blue square). In (c), the 
error in position is plotted. 

 

 

 

VI. CONCLUSIONS & FUTURE WORK 

The first cistern mapping expedition in Malta and Gozo 
successfully constructed maps for use in archaeology study of 
these ancient water storage systems. In each cistern, a small 
ROV was deployed which collected sonar data from various 
positions in the cistern. Using these data sets, four methods for 
mapping and localization were investigated. Stationary scan 
methods, including scan mosaicing and FastSLAM, worked 
well. Implementing FastSLAM while moving had success but 
was validated by only a few data sets. Particle Filter 
localization also worked very well in that state estimates 
converged to actual states despite there being no knowledge of 
initial conditions. 

In the future, scalability of the FastSLAM implementation 
will be improved. Also, computer control will be fine tuned, 
allowing precision control of the ROV in narrow passages.  
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