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Abstract

This thesis presents a novel approach to several problems in intelligent transportation

systems using collaborative driving coordination. With inter-vehicle communication and

intelligent vehicle cooperation, important tasks in transportation such as lane position de-

termination, lane assignment and platoon formation can be solved. Several topics in regard

to inter-vehicle communication, lane positioning, lane assignment and platoon formation

are explored in this thesis:

First, the design and experimental results of low-cost lane-level positioning system

that can support a large number of transportation applications are discussed. Using a

Markov-based approach based on sharing information among a group of vehicles that are

traveling within the communication range of each other, the lane positions of vehicles can

be determined. The robustness effectiveness of the system is shown in both simulations

and real road tests.

Second, a decentralized approach to lane scheduling for vehicles with an aim to in-

crease traffic throughput while ensuring the vehicles exit successfully at their destinations

is presented. Most of current traffic management systems do not consider lane organiza-

tion of vehicles and only regulate traffic flows by controlling traffic signals or ramp meters.

However, traffic throughput and efficient use of highways can be increased by coordinat-

ing driver behaviors intelligently. The lane optimization problem is formulated as a linear

programming problem that can be solved using the Simplex method.

Finally, a direction for cooperative vehicle platoon formation is proposed. To enhance

traffic safety, increase lane capacities and reduce fuel consumption, vehicles can be orga-

nized into platoons with the objective of maximizing the travel distance that platoons stay

intact. Toward this end, this work evaluates a proposed strategy which assigns vehicles

to platoons by solving an optimization problem. A linear model for assigning vehicles

to appropriate platoons when they enter the highway is formulated. Simulation results

demonstrate that lane capacity can be increased effectively when platooning operation is

used.
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Chapter 1

Introduction

1.1 Intelligent Transportation Systems

Increasing passenger and freight travel has led to growing congestion in many countries’

transportation systems, which have posed a burden on the quality of life through wasted

energy, time, and money; increased pollution; and threats to safety (see Fig. 1.11). Ac-

cording to transportation researchers, even with slow growth in jobs and travel, the cost of

transportation in terms of extra fuel used and time spent in congestion was $63 billion in

2003 in the US economy [1], and between $2.3 billion and $3.7 billion for the nine largest

urban areas in Canada in 2002 [2]. Specifically, more than 90% of this cost was associ-

ated with the time lost in traffic to drivers and passengers; 7% occurred because of fuel

consumed; and 3% was from increased greenhouse gas emissions [2].

The annual total costs of congestion by Canadian city in 2002 are summarized in Ta-

ble 1.1 in which urban congestion levels were measured using a speed threshold that reflects

a percentage of free flow speed along a roadway. This study also estimated an increase of

1.2 to 1.4 megatonnes of greenhouse gas due to congestion every year. Moreover, passenger

and freight traffic are expected to grow substantially in the future, increasing the challenge

of preventing congestion from overwhelming the transportation systems. Also according

to the US Government Accountability Office (GAO) [1], by 2010, the US Department of

Transportation forecasts that travel on roads will have increased by about 25% from 2000,

while freight traffic will have increased by 43% from 1998.

It is important to note that these estimates of congestion costs are conservative be-

cause there was insufficient data on the costs associated with non-recurrent congestion

(i.e., congestion caused by random events, such as bad weather, accidents, stalled vehicles

1Image from http://www.urbancompass.net
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and other incidents), freight transportation, off-peak congestion, vehicle operating costs

other than fuel, and other congestion-related costs such as noise and stress. Therefore, the

actual costs due to congestion are much higher than the costs estimated.

Figure 1.1: Highway congestion is causing negative effects in many cities.

There have been a wide range of strategies employed with the effort to reduce the effect

of increasing congestion, including building new infrastructure, corrective and preventive

maintenance, rehabilitation, and managing system use through pricing or other techniques.

However, although building new infrastructure can ease congestion, it is not always a viable

solution due to constraints such as the cost of construction or limited availability of land.

Another tool available to help reduce congestion is the use of Intelligent Transporta-

tion Systems (ITS) in order to improve transportation system operations, management,

and performance. Many transportation projects have been initiated to define the next

generation of land transportation systems with the objective of improving road traffic

efficiency and safety. Examples of these programs include: the California Partners for

Advanced Transit and Highway (PATH) program in the US, the Automobile of the 21st

Century (AUTO21) project in Canada, as well as the Prometheus and DRIVE projects in

Europe, and the Super-smart Vehicle Project in Japan.

Improving system operations, management, and performance through the use of ITS

technologies has the potential to reduce congestion without major capital investments.
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Table 1.1: Annual Total Costs of Congestion by City (millions of 2002 $).

Urban area At 50% threshold At 60% threshold At 70% threshold

Quebec City $37.5 $52.3 $68.4

Montreal $701.9 $854.0 $986.9

Ottawa-Gatineau $39.6 $61.5 $88.6

Toronto $889.6 $1,267.3 $1,631.7

Hamilton $6.6 $11.3 $16.9

Winnipeg $48.4 $77.2 $104.0

Calgary $94.6 $112.4 $121.4

Edmonton $49.4 $62.1 $74.1

Vancouver $402.8 $516.8 $628.7

Total $2,270.2 $3,015.0 $3,720.6

ITS technologies range in complexity from ramp meters, which are small traffic light-

like devices that control the traffic flow on ramps, to fully integrated systems in which

several technologies work together to process information and respond to traffic conditions.

Fig. 1.22 depicts some of ITS applications that can be employed and integrated to improve

transportation system management.

Although the goals of the recent activities in ITS are quite broad and include increased

traffic throughput, less accidents, reduced fuel consumption and better driving experience;

less research has been done on developing appropriate technologies that allow cars to sense

and intelligently affect the traffic flows that could result in more efficient use of highways.

With that in mind, we address several issues in ITS with the objective to enhance the

efficient use of the highway through the development of a system based on the coordination

of vehicles.

1.2 Thesis Objectives

The overall objective of this thesis is to improve highway congestion through the develop-

ment of a system based on dynamic collaborative driving. In order to assess the applications

of ITS in different domains, this thesis has the following objectives:

The first objective of this thesis is to develop a localization system that determines

2Image from [1]
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Figure 1.2: Examples of ITS technologies that can be deployed and integrated in urban

areas.

lane positions of cars. A lane determination system is a necessary condition for the lane

assignment system to work since the cars must be able to know which lanes they are

occupying. Our fundamental assumption is that the cars are equipped with GPS receivers

and processors. Each car has an ability to communicate with other cars within a certain

radius (communication range) and be able to send its information to other cars via an

ad-hoc network. The highway environment is chosen in this investigation to address the

problem where traffic congestion and highway safety are among the most pressing problems.

The results from this work show that lane positions for cars can be effectively estimated

using only low-cost GPS receivers and a simple localization algorithm.

Minimizing the cost of sensors is beneficial because if the system becomes commercially

available, this low-cost GPS sensor would help reduce the total cost of the products, and

would reduce maintenance cost in case a sensor needs to be replaced. The drawback of

minimizing the cost of sensors is a reduction of information available. Sensor aliasing may
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also become more noticeable. Therefore, in general it becomes harder to localize. Vehicles

that have been successfully employed in urban highways in the past rely on an array

of different sensors to perceive the environment, such as the one presented in [3] which

used multiple cameras, a laser scanner, proximity sensors, and GPS. Hence, an additional

challenge is to achieve localization with less resources.

The second major objective of this thesis is to deal with lane routing for vehicles with

an aim to enhance traffic system operation, reduce travel time, and improve traffic quality.

The goal is to provide a distributed control strategy for routing cars to allocate lanes

while satisfying practical constraints. Proposed is an algorithm that solves a minimization

problem in order to allocate lanes to which cars should be sent in order to balance lane

traffic flows and decrease the vehicle travel time. A proposed cost function to optimize is

also discussed. Lane selection behaviors among cars could be coordinated to achieve greater

traffic throughput. A challenge to this problem lies in the development of a cooperative

driving strategy for traffic management. This research explores the problem of optimization

of lane selection. A car’s lane selections should consider not only the maintenance of its

own performance, but also how the selection will affect the performance of other cars as

well as the overall traffic flow of the highway system.

The end objective is to develop a strategy for optimal vehicle platoon formation, where

vehicles travel in groups and are closely spaced. The platoon mode of operation was

considered in the research community as a way of abbreviating the limitation of capacity

and reducing fuel consumption that can be achieved by road vehicles. To maximize benefits,

it is desirable to form platoons that are reasonably large (five or more vehicles), and it is

also desirable to ensure that platoons remain intact for considerable distances [4].

1.3 Background to this Thesis

This thesis is divided into three main sections: lane position determination, lane assignment

optimization for single vehicles, and cooperative vehicle platoon formation.

The Automobile for 21st Century (AUTO21), a research incentive initiated by the

government of Canada to bring education institutes and industries together for the de-

velopment of new automotive technologies, provided funding for this research. The first

part of the thesis (Chapter 4) was carried out with an aim to develop a system for deter-

mining lane positions of cars on highways based on the transmitting and relaying of vital

traffic information between vehicles. To expand on this idea, position localization and a

communication network between vehicles will allow warning systems and driver aids to be

implemented to improve driver awareness. In addition, traffic flows can improve as drivers
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receive forecasts of road and traffic conditions ahead. This technology will be applicable to

intelligent vehicles that are either semi-autonomous (i.e., human driven vehicles that can

make advisories) or fully autonomous capable of dynamic collaborative driving. Overall,

this technology will be beneficial not only to the Canadian society, but to all drivers across

the world.

The second and third parts of this thesis (Chapters 5 and 6) had their origins in the

results of Chapter 4 and the general interests of the author and the project supervisors.

It was found that through the reduction of unnecessary lane changes on the highway [5],

the total traffic time for all cars can be minimized. This approach, however, assumed that

cars can access information of all other cars on the highway. A distributed control strategy

for individual cars was not presented. This thesis aims to provide a distributed control

strategy to make the system possible using inter-vehicle communication.

A layout of this thesis is shown in Fig. 1.3.

Figure 1.3: Flow-chart of thesis layout.
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1.4 Contributions

In developing this approach to intelligent transportation systems, several research contri-

butions were made that are summarized below:

1.4.1 Lane Positioning

1. Developed a strategy that allows for the determination of lane positions of cars on

the highway using inter-vehicle communication. Our fundamental assumption is that

the cars are equipped with GPS receivers and processors. Each car has an ability to

communicate with other cars within a certain radius (communication range) and be

able to send its information to other cars via an ad-hoc network.

2. Introduced a filtering strategy based on the fusion of particle and Butterworth filters

that can effectively reduce GPS receiver noise. GPS receiver noise, which is dependent

on the antenna design, the method used for the analogue to digital conversion, the

correlation process, etc., is not common to all GPS receivers and can affect the lane

estimation results by introducing a high-pitched noise to the GPS measurements.

3. Proposed an architecture to manage the communication and information sharing

between vehicles across wireless ad-hoc networks. A multi-threaded software module

was written in C++ to process GPS signals from satellites, convert GPS latitudes

and longitudes into cartesian coordinates, eliminate GPS receiver error, and handle

the sending and receiving of information between vehicles.

4. Demonstrated, through simulations in VISSIM [6], the lane positioning strategy.

The inter-vehicle communication (IVC) simulator was designed on top of the exist-

ing commercial microscopic traffic simulator VISSIM. The IVC simulator module was

programmed in C++. It worked in parallel with the VISSIM simulator engine by cre-

ating multiple threads for handling various tasks such as inter-vehicle communication

and GPS coordinate reading.

5. Demonstrated, on hardware, the lane positioning system using low-cost GPS receiver

units. Real road tests and simulations demonstrated that, in most situations, the

lane positioning system can give correct lane positions more than 95% of the time,

even when the vehicles were oscillatory weaving within their lanes (although this is

unlikely to happen on real highways due to safety concern). The only data needed

for lane estimation was the most recent GPS fixes, i.e., the latitude and longitude (4

bytes of data in total) of the GPS measurements specifically, of the cars.
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1.4.2 Lane Assignment

1. Proposed a decentralized control strategy for collaboratively sending cars to appro-

priate lanes with an aim to reduce vehicle traffic time.

2. Introduced a method for traffic flow estimation using inter-vehicle communication.

3. Demonstrated, through simulations in VISSIM the lane assignment algorithm. Sim-

ulation results showed that the strategy is viable and traffic throughput can be ef-

fectively increased through the coordination of cars.

1.4.3 Platoon Assignment

1. Developed a method for grouping cars into platoons to increase highway capacity.

The optimization problem was solved by minimizing an objective function while

ensuring that platoons remain intact for maximal distances.

2. Demonstrated, through simulations in VISSIM the platoon formation strategy. Sim-

ulation results demonstrated that lane capacity can be increased effectively when

platooning operation is used.



Chapter 2

Collaborative Driving

2.1 Introduction

Collaborative driving has emerged as an important component of ITS that has the poten-

tial to significantly improve road safety and reduce human casualties by avoiding highway

accidents. The concept of collaborative driving is based on the exchange of information

between vehicles instrumented to perceive their surroundings and collaborating in dynam-

ically formed groups. These vehicle groups, or ad-hoc networks, can form a collective

driving strategy, which would require little if any operator intervention. The vehicles in

these groups usually follow the same route while linked with each other through knowledge

of relative positions and velocities and inter-vehicle communication. It is assumed in this

work that no modification is made to the roadway infrastructure, and that the intelligence

of the system is distributed over all of the vehicles in the automated highway system (AHS).

In order to create an efficient system that will meet the required objectives, a collabo-

ration architecture must be developed that controls the interaction between vehicles (with

the aid of a communication system) and between vehicles and their environment. The idea

is the use of sensors and a wireless ad-hoc network to successfully replace human drivers

or minimize human operator intervention.

In this work, inter-vehicle communication through an ad-hoc networking architecture

are studied in highway traffic conditions. Collaborative driving strategies based on infor-

mation exchange will be either tested on real experiments or simulated in a Virtual Reality

(VR) environment.

9
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2.2 Inter-vehicle Communication

2.2.1 Overview

The goal of inter-vehicle communication is to provide drivers with the ability to see further

down the road and know if a collision has occured, or if they are approaching a traffic jam.

This can become possible if drivers and vehicles communicate with each other and with

road-side base stations. If traffic information was provided to drivers, police, and other

authorities, the road could be safer and traveling on them would become more efficient.

The communication can be made through a network of several vehicles that have com-

munication devices. These vehicles would form a mobile ad-hoc network, and could pass

information about road conditions, accidents, congestions, and vehicle states as illustrated

in Fig. 2.11. A driver could be made aware of the emergency braking of a preceding vehi-

cle, or the congestion due to an obstacle in the roadway. Such a network could also help

vehicles determine their lane positions on a highway collaboratively as shown in Chapter 4

or help vehicle platoons utilize the roadway efficiently (Chapter 6). It can also help vehi-

cles negotiate critical points like crossing intersections without traffic lights and entries to

highways.

2.2.2 Ad-hoc Networks for Inter-vehicle Communication

An inter-vehicle communication network is a type of mobile ad-hoc network (MANET) in

which high-speed vehicles send, receive and forward packets among other vehicles on the

highways. A MANET is a self-configuring network of mobile routers (and associated hosts)

connected by wireless links, the union of which forms an arbitrary topology. The routers

are free to move randomly and organize themselves arbitrarily. A MANET may operate

in a stand-alone fashion, or may be connected to the larger Internet.

To support inter-vehicle communication, Intelligent Vehicular Ad-hoc Networks (In-

VANETs) were developed to provide communications among nearby vehicles and between

vehicles and roadside equipment. InVANETs are a form of MANET and use WiFi IEEE

802.11 and WiMAX IEEE 802.16 standards for easy and effective communication between

vehicles with dynamic mobility.

More recent designs of InVANETs refer to the latest issues of IEEE 802.11p standard [7,

8] (also referred to as Wireless Access for the Vehicular Environment (WAVE)) which could

1Image from http://www.comnets.rwth-aachen.de
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Figure 2.1: Inter-vehicle communication.

guarantee a maximum communication range of up to 1000 m under optimal conditions, or

around 300 m for cars traveling at 200 km/hr.

Moreover, a new family of standards, referred to as IEEE 1609 suite [9], specifically

for inter-vehicle communication built on IEEE 802.11 chipset is now under development.

Three of the standards (IEEE Std. 1609.1 for Resource Management, IEEE Std. 1609.2

for Security Services for Applications and Management Messages, and IEEE Std. 1609.4

for Multi-Channel Operation) in the suite have been approved for trial use, and one (IEEE

Std. 1609.3 for Networking Services) is pending. Once widely adopted, these standards will

ensure that cars will have a communication range of 300-500 m on highways. Emergency

vehicles will be equipped with longer-ranged (1-km) WAVE systems. For our lane position-

ing system, a conservative communication range estimate of 200 m is used for simulations

and experiments, demonstrating our system is realizable in future highway systems.

Current research in the field of InVANETs are focusing on topology related problems

such as range optimization, routing mechanisms, or address systems, as well as security

issues such as traceability or encryption. In addition, there are also research interests such

as the effects of directional antennas for InVANETs and minimal power consumption for

sensor networks.
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2.2.3 Routing for Vehicular Networks

Position-based routing (PBR) has appeared as a promising candidate for communication in

vehicular ad-hoc networks (VANETs). PBR is a routing principle that relies on geographic

position information. The idea of using position information for routing was first proposed

in the 1980s in [10, 11]. Approaches to PBR include single-path [12, 13, 14], multi-path

[15, 16, 17, 18, 19, 20, 21] and flooding-based [22, 23, 24, 25, 26] strategies. A survey on

routing strategies for PBR can be found in [27, 28].

PBR routing in VANETs is built on top of a number of assumptions: (1) nodes can

determine their own positions, (2) nodes can determine location of their neighbors, and

(3) nodes can determine the position of the destination.

The first assumption is the most important one. This is a reasonable assumption since

GPS receivers can be installed easily in vehicles to provide knowledge of real-time positions

of nodes if they are outdoors. Alternatively, nodes can also use techniques based on

signal strength information, available in IEEE 802.11 technology. However, as localization

using GPS poses some undesired problems, several recent trends even fused a number of

localization techniques such as dead reckoning, cellular localization, and video localization

to overcome the limitations of GPS as shown in Fig. 2.22. The second assumption implies

that nodes exchange small packets between neighboring nodes to make their positions

available to others.

Figure 2.2: Several localization techniques for VANETs.

2Image from [29]
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In our system, the vehicles are assumed to have access to information of their own state

and can perceive states of surrounding vehicles, including current positions, driving speeds,

etc., using a wireless ad-hoc network. The vehicles are equipped with standard GPS units

which has the accuracy of 15 m (global average, 95%) and 36 m (worst site, 95%). The

locations of vehicles are updated in real-time with 5 Hz update rate. To improve the posi-

tion accuracy of the GPS units, a localization technique based on Markovian algorithm and

particle filtering using relative measurements between vehicles was deployed. The commu-

nication between the notebooks/vehicles was then made through the IEEE 802.11a/11g

standard D-Link DWL-AG660 108Mbps Wireless Cardbus Adapters which is equivalent to

InVANET networks. These tri-mode, dualband adapters were inserted into three laptop

PC’s to allow them to wirelessly connect to each other. The main technical specifications

for DWL-AG660 are shown in Table 2.1.

Figure 2.3: D-Link DWL-AG660 802.11a/11g 108Mbps Wireless PCMCIA Adapter.

2.3 Collaborative Driving Simulator

For simulation implementation, the VISSIM software package [6] was used. VISSIM is a

microscopic, time-step, and behavior-based simulator that is developed to analyze the full

range of functionally classified roadways. It is capable of modeling traffic with various

control measures in a 3-D environment. VISSIM lets us communicate and control the

behaviors of vehicles through a dynamic link library (DLL) file compiled from C/C++

code. Vehicle parameters from the external driver model DLL output function are stored

within member variables of a designated vehicle class object.

The collaborative driving simulator was designed on top of the existing commercial

microscopic traffic simulator VISSIM. The primary reason of selecting an existing software

is to make use of the already established driver model which controls car following and lane
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Table 2.1: D-Link DWL-AG660 technical specifications.

Specification Description

Weight 54 g

Dimension 116mm×53mm×8mm

Standards 802.11a/11g

Distance Indoor: up to 100 m; Outdoor: up to 300 m

Interface 32bit Cardbus

Maximum data rates 108 Mbps

Frequency band 2.4 GHz to 2.5 GHz; 5.150 GHz to 5.850 GHz

Transmitted Power 15 dBm to 2 dB

Antenna Dual antenna diversity switching

Temperature 0 ◦C to 55 ◦C

Features Enhanced security features

changing. VISSIM also provides a mean of constructing the infrastructure of any traffic

network. The two components listed above are essential to any traffic modeling simulators

[30]. Other useful features include the ability to implement vehicle models that govern the

dynamic characteristics (such as the engine power curve) for default or user defined vehicle

types.

VISSIM has an application programming interface (API) but the control over vehicles

within the simulator using this method is limited and therefore this method was not em-

ployed. Instead, vehicle parameter are accessed through a dynamic link library (DLL) that

is used by VISSIM when it refers to an external driver model. This dynamic link library

includes three functions which handles reading of vehicle parameters, writing of vehicle

parameters, and the addition and deletion of vehicles as well as initialization configura-

tions. Adjustable vehicle parameters include desired vehicle velocity, acceleration, and lane

position.

In a sense the collaborative driving simulator integrates itself into VISSIM’s external

driver model. The collaborative driving simulator is essentially a controller that reads

the relevant parameters for all vehicles within the simulation and make the appropriate

outputs to control vehicle behavior as depicted in Fig. 2.4. It is also possible to allow

VISSIM’s internal driver model and external driver model to concurrently control different

parameters by allowing vehicle parameters read from the output function to directly loop

back through the vehicle parameters input function. For instance, the collaborative driving
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Figure 2.4: Accessing VISSIM vehicle parameters [31].

simulator add-on module can indicate a desired velocity but the acceleration of the vehicle

to the desired velocity will be controlled by VISSIM’s internal driver model which takes into

account the presence of other neighboring vehicles to avoid collisions. Another example

of internal driver model control is lane changing behavior. By allowing VISSIM control

over this, overtaking of vehicles does not have to be handled by the collaborative driving

simulator add-on unless it is desired to do so.

The collaborative driving simulator module is programmed in C++. It works in parallel

with the VISSIM simulator engine by creating multiple threads for handling various tasks

such as inter-vehicle communication and GPS coordinate reading. Multi-threading allows

different parts of the program to run concurrently which is desirable as vehicle parameters

and other variables can be updated without waiting for a simulation time step or iteration

within the VISSIM simulator engine. One benefit of this approach is that vehicles exchang-

ing information will always have the latest vehicle states as VISSIM continually updates

vehicle parameters. All threads are created when a simulation starts and destroyed when

the simulation is stopped.

Vehicle parameters from the external driver model DLL output function are stored

within member variables of a designated vehicle class object. Instances of this class are

created at the start of a simulation run and are stored in elements within an object derived

from the standard template library (STL) vector class. The vehicle parameter storage

class also contains member functions which are used to modify the received vehicle param-
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Figure 2.5: Software architecture for collaborative driving simulator module [31].

eters for output to the VISSIM simulator engine. Other parameters related to the general

simulation environment such as simulation time and the identification of the vehicle cur-

rently being updated by VISSIM are stored and constantly updated as well. All vehicle

parameters are reset at the start of a simulation run. Fig. 2.5 illustrates an overview of

the software architecture for the collaborative driving simulator module.

More details about the collaborative driving simulator used in this work can be found

in [31].



Chapter 3

Perception for Autonomous Driving

3.1 Introduction

Sensors are vital to an autonomous vehicle to allow it to perceive its operating environment

in relation to its own position, whether the vehicle is trying to localize itself in order to

navigate, create a map of the surrounding, or simply avoid obstacles such as buildings,

cars, pedestrians, etc., in its path of travel. This thesis investigates the ability to perform

autonomous localization using a GPS as the only available sensor.

The technical capabilities and safety benefits for ITS have been greatly enhanced by

state-of-the-art sensor technologies. Sensing systems for ITS can be either infrastructure

based, vehicle based, or some combination. Infrastructure sensors are devices that are

installed on the road, or surrounding the road (e.g., buildings, posts, and signs). These

sensing technologies may be installed during preventive road construction maintenance or

by sensor injection machinery for rapid deployment of road in-ground sensors.

Among a wide range of sensors used in ITS, cameras, laser rangefinders, and GPS are

the most popular solutions for vehicle navigation. A brief overview of these three types of

sensors will be discussed in the following sections.

3.2 Cameras

Human beings gather a vast majority of their sensory input visually. Much effort has been

spent in enhancing visual acuity in humans. Lasik, eye-glasses, binoculars are examples

of such effort which improve our quality of life by enhancing our experience of the world

around us. Computer vision is a natural and logical extension of this effort. It is a

17
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branch of artificial intelligence (AI) and image-processing technology that processes video

content and identifies objects in the video stream. To date, computer vision has produced

important applications in fields such as industrial automation, robotics, biomedicine, and

satellite observation of Earth. In the field of ITS, its wide range of applications includes

road detection [32] (see Fig. 3.2); surveillance systems for parking assistance; (2) landmark

detection to assist the car in following the road; (3) traffic sign detection and recognition

for route planning and alerting the driver; (4) obstacle detection, especially detecting

the presence of pedestrians in a driver’s blind spot [33] (see Fig. 3.3); and (5) driver

condition monitoring for intelligent airbag deployment or driver distraction level monitoring

[34, 35, 36, 37] (see Fig. 3.1).
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Figure 3.1: Some applications of computer vision in ITS.

With the development of new technologies and computer capabilities, the current com-

puter vision enables the integration of views from many cameras into a single, consistent

‘super-image’. Such an image automatically detects scenes with people and/or vehicles

or other targets of interest, classifies them in categories such as people, cars, bicycles, or

buses, extracts their trajectories, recognizes limb and arm positions, and provides some

form of behavior analysis. The benefit of vision is that it is a passive system and theoret-

ically has infinite range as a camera or an eye receives light emitted from any source in
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Figure 3.2: Road-detection result for highways and the 3-D projected model with different

conditions.

Figure 3.3: Obstacle detection example: fusion of the results from two resolutions. (a)

Input image, (b) results of low-resolution processing, (c) results of original resolution pro-

cessing, and (d) final fused results.
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the three dimensional world and captures that information on a two dimensional image.

Theoretically, this means a camera has longer range than most of other types of sensors.

Providing the equipment to give vision to a machine is not difficult. There are many

charge coupled device cameras or CMOS (Complementary Metal-Oxide Semiconductor)

cameras available on the market at low cost and they can easily be interfaced with a

computer. The difficulty is interpreting the data that is retrieved from a camera frame.

A machine must interpret this raw data, which is an array of numbers representing light

intensity at each pixel.

3.3 Laser Rangefinders

Scanning laser rangefinders provide a relatively new and exciting high-resolution sensors

for robotics and autonomous vehicles navigation. Common in high-end robotics for many

years, these sensors are becoming more common on relatively inexpensive robotics appli-

cations due to the rich, high-resolution, and high-frequency data they generate.

The method a laser rangefinder uses to determine ranges can be based on time of flight

measurement, phase-shift measurement, or optical triangulation [38]. The time of flight

measurement calculates the distance to an object by using the speed of light propaga-

tion and the time it took for a laser beam to be reflected back to the sensor. For laser

rangerfinders that use phase-shift measurements, the phase of the transmitted signal is

compared to the reflected signal to determine the distance traveled. However, the maxi-

mum range is limited by the wave length of the emitted signal. In optical triangulation

sensors, the reflected light beam emitted by the sensor is focused by a lens. The position

of this focus point will vary depending on the distance to the target object from which the

light is reflected.

Laser range finders can provide data with pencil beam viewing at high data rates with

roughly millimeter resolution. Power consumption varies but tends to be somewhat greater

than smaller and less sophisticated sensors like infrared (IR) rangers, sonars, etc. The lasers

tend to be self-contained in professional and sturdy enclosures for external mounting on

mobile robots and other applications.

Lasers are often specified in resolution, frequency, and angular resolution. Resolution

refers to how accurate the distance measurement is in a given direction and is typically

around 1-3 mm. Frequency refers to how often the full 360 ◦ arc is swept by the scanning

sensor and is typically 10 Hz or even more. Angular resolution refers to how many samples

are taken with each full 360 ◦ scan of the sensor. This value is often over 500 steps of
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Figure 3.4: Hokuyo URG-04LX laser rangefinder.

resolution meaning sub-degree wedges of the full circle are measured with each sample.

Rangers typically also have a minimum and maximum range where they can measure.

Minimums are often a few centimeters and range can be over a meter up to tens of meters

and more.

Lasers are made by several manufactures with some of the most common in robotics

being SICK and Hokuyo. These lasers vary in range, performance, power consumption, and

cost. The technical specifications of one of the typical laser scanners used in autonomous

robots, the Hokuyo URG-04LX laser rangefinder, are shown in Fig. 3.4 and Table 3.1.

Lasers have drawbacks as well. One of the shortcomings of laser rangefinders is that

they are relatively expensive compared to other types of sensors such as cameras and

standard GPS units. A typical scanning laser rangefinder for autonomous robotics can

cost between $1500-$6000.

3.4 Global Positioning Systems

The Global Positioning System (GPS) is a location system based on a constellation of about

24 satellites orbiting the earth at altitudes of approximately 20,000 km. GPS was developed

by the United States Department of Defense (DOD), for its tremendous application as a

military locating utility. The GPS developed by DOD, however, is not the only one in

existence. Russia also has a satellite positioning system known as the global navigation

satellite system (GLONASS). The European Union is also launching a satellite system

called Galileo, which will be functional in the near future. The systems identified above

are able to provide global coverage. Some countries are launching their own satellites to
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Table 3.1: Hokuyo URG-04LX technical specifications.

Specification Description

Weight Approx. 160 g

Material Polycarbonate

Light source Semiconductor laser λ = 785 mm,

laser safety class 1 (IEC60825-1)

Power source 5 VDC, ±5%

Current consumption 500 mA or less

Detectable distance and objects 20 mm to 4000 mm,

white Kent sheet 70× 70 mm

Accuracy Official 20 to 1000 mm: ±10 mm,

1000 to 4000 mm: ±1% of measurement

Resolution 1 mm

Scanning angle 240 ◦

Angle resolution Approx. 0.36 ◦

Scanning time 100 ms/scan

provide regional coverage. While there are military incentives in the installation of these

satellite positioning systems, they have also benefited civilian applications, one of which is

positioning for land vehicles. The remainder of this section will focus on GPS usage and

performance.

GPS is based on satellite ranging to calculate the distances between the receiver and the

position of 3 or more satellites (4 or more if elevation is desired). Assuming the positions

of the satellites are known, the location of the receiver can be calculated by determining

the distance from each of the satellites to the receiver. GPS takes these 3 or more known

references and measured distances and trilaterates an additional position [39, 40, 41, 42]

as shown in Fig. 3.5.

GPS signals are distorted by many factors, which manifest as psuedorange (the per-

ceived satellite to receiver distance) errors [43]. The proper name for this error is user-

equivalent range error (UERE), which can be considered the statistical sum of all error

contributions associated with a particular satellite. To overcome this problem, a GPS re-

ceiver will lock on to the signals from more than four satellites to reduce the error in the

calculated position using a least squares approach [41]. Commercially available GPS re-

ceiver units are usually capable of tracking up to twelve GPS satellites simultaneously and
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Figure 3.5: The functioning of a GPS.

will not provide a solution unless it is able to track at least four satellites. The solution to

a position fix is given in geodetic coordinates (longitudes, latitudes, and elevation) accord-

ing to the world geodetic system (WGS-84). A closed form solution exists to convert the

geodetic coordinates to Cartesian coordinates in an Earth Centered Earth Fixed (ECEF)

reference frame. For more information on this matter, refer to [39, 40].

There are many sources of error for a GPS solution, and the performance of a receiver

depends on its psuedorange measurement quality. The model is used to compensate for

certain effects, and the accuracy of the satellite ephermeris (trajectory) data which the

receiver obtains. In general, GPS error is mathematically expressed as a product between

geometric error (caused by the relative location of satellites and the receiver) and the

pseudorange error.

Selective availability (SA) was a major source of psuedorange error. This feature in-

volves intentionally inducing error in satellite clock and trajectory data that is broadcasted

to receivers, and can cause errors of up to 70 m that oscillates every 4 to 12 minutes. This

feature is currently disabled to allow improved SPS (Standard Positioning Service) accu-

racy, but when activated, its spatially correlated effect can also be overcome by differential-

GPS services [42].

Multi-path is another major source of psuedorange error, and occurs when satellite

signals reflect off objects in an environment. These objects may be buildings in an urban
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Figure 3.6: Garmin-18 GPS receivers.

Figure 3.7: LocSense 40-CM GPS.

environment, or trees in a forest. This is a major concern for using GPS for localization

in urban environments. Not only do the reflections cause timing errors, they also create

multiple paths to the receiver and at times may cause a receiver to produce inaccurate po-

sition estimates. Multi-path effects are very location dependent but can cause positioning

errors of up to 150 m for SPS and 15 m for PPS (Precise Positioning Service).

Other sources of psuedorange error include atmospheric errors that can delay satellite

signals. The ionospheric (higher part of atmosphere 70 to 1000 km above the Earth’s

surface) effect is signal frequency dependent and arises from the interaction between solar

activities and the Earth’s geomagnetic field. This is very difficult to model and account for

but there are models which are able to remove about 50% of ionospheric effects. Typically,

signals from satellites that are low on the horizon with respect to a receiver are more prone

to this type of error, which can vary from a few to 20 meters in a day. The tropospheric

(lower atmosphere) error is a function of the tropospheric refractive index, which depends
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Table 3.2: Garmin-18 technical specifications.

Specification Description

Dimension 61 mm in diameter and 19.5 mm in height

Weight (5 m cable) 161.6 g

Receiver WAAS enabled, 12 parallel channel

GPS receiver continuously tracks and

uses up to 12 satellites to computer

and update GPS fixes

Acquisition time Reacquisition: less than 2 seconds (all data known)

Warm: Approx 15 seconds

Cold: Approx 45 seconds (ephemeris unknown)

Update rate 5 Hz

Accuracy Position: < 15 m, 95% typical

Velocity: 0.1 knot RMS steady state

on the temperature, humidity, and pressure at the receiver location. Most of this signal

delaying effect can be accounted for and will only cause a few meters of psuedorange error,

but the error can be as high as 20 m if the effect is uncompensated. Aside from atmospheric

effects, other physical influences include relativistic effects due to the satellites’ high speed

of orbit, clock errors on satellites and receivers, and receiver noise. For further details and

additional sources of GPS error, refer to [39, 40, 42].

Overall, the GPS available for civilian use is convenient for obtaining position measure-

ments in any outdoor localization and navigation applications. With GPS, it is unnecessary

to compare the position measurements to features on a map. All that is required is know-

ing the coordinate transformation between the global frame of reference used in GPS and

the frame of reference used by the vehicle. However, the unpredictable behavior of GPS in

urban settings due to multi-path makes it unreliable for autonomous navigation if it is the

only available sensor. The procedures for effectively reducing GPS errors will be discussed

in Chapter 4.

In this research, we employed the Garmin-18 GPS and LocSense 40-CM as shown in

Fig. 3.6 and Fig. 3.7 for localization of vehicles. The main technical specifications are shown

in Table 3.2 and Table 3.3, respectively. However, the Garmin-18’s were used most of the

time. The Garmin-18 tracks up to 12 satellites at a time while providing fast time-to-first-

fix, precise navigation update (five times per second for Garmin-18-5Hz). The Garmin-18



Perception for Autonomous Driving 26

Table 3.3: LocSense 40-CM technical specifications.

Specification Description

Dimension 43mmL×42mmW×13mmH

Weight 24 g

Receiver 12 parallel channel, L1 C/A mode

Start-up time Hot: Approx. 10 seconds

Warm: Approx 35 seconds

Cold: Approx 45 seconds

Update rate 1 Hz

Sensitivity -137 dBm acquisition

-145 dBm tracking

Accuracy Position: < 5 m CEP

Velocity: 0.1 m/second

used in this work interfaces to a serial port. The unit accepts TIA-232-F (RS-232) level

inputs and transmits voltage levels that swing from ground to the positive supply voltage

polarity. The cable contains wire for power, ground, receive, transmit, and measurement

pulse output.

At the end of the Garmin GPS cable, the wires are terminated in a connector that can

be removed and replaced with another connector such as a RS-232 serial connector and a

PS/2 connector (for power) in our work.



Chapter 4

Lane Position Determination

4.1 Introduction

In this chapter, the development of a low-cost lane-level position determination is described.

A large number of other transportation research applications would benefit from a lane-

level positioning capability. For example, such a capability could be used for a lane keeping

safety system in which an alarm will activate or autonomous driving will take over if the

vehicle deviates from the center of the lane.

Another application for lane-level positioning is a lane assignment system, which advises

the driver as to which lane should be chosen to reach the specified destination without

requiring excessive last-minute lane changing. Last but not least, lane positioning system

can be used in probe vehicles that measure lane-specific traffic conditions on a freeway [44].

In this chapter, a Markov-based approach which computes the lane position of trans-

portation vehicles such as: cars, buses, etc, is introduced. The software architecture that

enables the communication between vehicles using ad-hoc network is then described. Fi-

nally, simulation and real road test results are presented.

4.2 Problem Statement

The problem is to enable effective localization for multiple vehicles in a typical urban

highway environment where infrastructure for highly accurate sensors such as differential

GPS is not available.

In this problem, a group of nv vehicles, each of which is located in a highway lane, must

autonomously determine the lane positions they occupy. Each of them is equipped with a

27
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standard GPS receiver, a processor, and a communication capability. The vehicles must

also operate under the following conditions:

1. Unknown environment: prior knowledge of the vehicles’ initial lane positions is

unknown. The vehicles must also be able to recover from localization failures or GPS

outage in which the positions of the vehicles are lost.

2. Dynamic environment: vehicles are moving in the environment.

3. Limited communication: the cars are equipped with limited communication abil-

ity. The cars can only communicate directly with other vehicles that are within a

certain radius known as communication range. That is, a vehicle can communicate

directly with any other vehicle that lies within the circle define by this radius, but

cannot communicate directly with any vehicles outside this region. Because vehicles

will move in and out of each other’s communication range, they will only be able to

communicate directly with one another for intermittent periods of time. Figure 4.1

illustrates the communication of cars in a specific situation. Cars 2, 3 and 4 are

within communication range and they can inter-change information to one another

while car 1 can only communicate with car 2. This means that the cars can only

have a partial view of the overall traffic condition.

4. Limited sensing: vehicles are equipped with low-cost GPS receivers that can only

provide their locations having an accuracy of 5 meters CEP (Circular Error Portable).

This means that half of the data points fall within a circle of a 5-meter radius, half

lie outside this circle. This accuracy is equivalent to 15 meters in 2dRMS, where 95%

of the data points occur within a 15-meter radius.

4.3 Related Work

Much effort has been put in lane finding/positioning in the research community. Ieng et al.

[45] dealt with the multi-lane detection by using multiple cameras. Pierre-Yves and Jeff [46]

used lane-level navigation systems with a high level DGPS/DR sensor integration system

and a map database. Their system was able to detect which lane the car is driving in and

when a car is changing lanes. Another approach [47] integrated an Inertial Measurement

Unit (IMU) with the GPS receiver to allow for accurate vehicle positioning. It also used

Real-Time Kinematic DGPS (RTK-DGPS) receivers supported by DGPS base stations at

the test site and a lane-level-detailed digital map. A variety of other research directions on

lane detection and lane departure detection can also be found in [44, 48, 49, 50, 51, 52].



Lane Position Determination 29

Figure 4.1: Inter-vehicle communication.

Most of these systems involved complicated image processing algorithms and/or costly

equipments such as highly accurate sensors, high performance computers, etc. With that

in mind, we approach the problem by using sharing information between cars to determine

their lane positions. Inter-vehicle communication and co-operative driving systems have

been in development for some time [53, 54, 55, 56]. With the availability of GPS systems,

it is practical to locate a car within certain accuracy. However, GPS data are often off

the road and do not provide the exact position of cars due to degradation or multi-path

problem. Therefore, it is challenging to determine the exact lanes that cars are traveling

in even when using the digital map of the road network.

4.4 Approach to Lane Positioning

As discussed in Section 3.4, an error from GPS generally comes from several sources,

including satellite clock, ephemeris error, ionospheric effects, tropospheric effects, and the

geometry of visible satellites. This set of errors from GPS will be common for vehicles.

Other errors are local to the different receivers and include radio frequency noise from the

environment, receiver noise and resolution, multipath, and receiver clock error. Aside from

multipath, errors from this second set are generally smaller than those common to the
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receivers. Hence, if multipath is not a problem (as is the case for many open highways),

then receivers that are relatively close to one another will experience a similar GPS error.

Although the absolute vehicle positions might have considerable errors, the relative position

between vehicles should have a much lower error since many of the errors are common to the

receivers. This is similar to what happens with differential-GPS, where the GPS solution is

improved by removing the common errors. With this in mind, the problem is approached

by using the relative distance between GPS measurements of vehicles to estimate their lane

positions.

While GPS measurements can be very precise in some circumstances, they generally

are not accurate enough in rural areas where infrastructure for DGPS is not available,

making lane position determination difficult if using only GPS data from one vehicle.

Even for future Geographic Information Systems (GIS) when information might be much

improved to the point of determining where lanes are, it is still not clear to what extent

the GIS information will be available.With an improved accuracy in mapping, there could

be increased costs for access. Moreover, it is unclear how often this information will be

updated to include changes in the roadway, including construction and traffic accidents,

which divert traffic along different paths than recorded in the GIS database.

In this chapter, it will be shown that by sharing state estimates between vehicles that

are traveling close to each other, the lane-level position for each vehicle can be determined.

The architecture for the system is shown in Fig. 4.2. Each vehicle is equipped with a GPS

receiver and a processor to implement the lane-positioning algorithm and to communicate

with other vehicles. The GPS data for the vehicles can also be fed into a position filter

to reject the measurement noise from receivers. In our simulations and experiments, a

combination of a particle filter fused with a low-pass Butterworth filter (see Section 4.7.2)

can satisfy this task.

4.5 Markov Localization

Markov localization addresses the problem of state estimation from sensor data. Instead

of maintaining a single hypothesis as to which lane the vehicles might be in, Markov lo-

calization maintains a probability distribution over the space of all such hypotheses. A

probabilistic representation allows it to weight these different hypotheses in a mathemati-

cally sound way.

The target of Markov localization within this work is to determine which vehicle is

traveling in which lane using GPS data and inter-vehicle communication. To introduce

the major concepts of Markov localization, let us begin with a simple case, followed by a
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Figure 4.2: Lane positioning diagram.

mathematical description of the algorithm. The reader may notice that Markov localization

is a special case of probabilistic state estimation [57, 58, 59].

Let us start with the simplest case: two vehicles traveling on a two-lane road. The

two vehicles are assumed close enough to be able to communicate with each other. Within

this Markov localization approach, call P (v1,t = la, v2,t = lb) the probability that car 1

is traveling in lane a and car 2 is in lane b at time t, where a and b are either 1 or 2.

There are four possibilities in total, which are P (v1 = l1, v2 = l1), P (v1 = l1, v2 = l2),

P (v1 = l2, v2 = l1), P (v1 = l2, v2 = l2). No initial estimates of these probabilities are

required and they can simply be initialized with equal probability equal to 0.25. In the

course of the vehicles’ mission (i.e., for t > 0), P is updated through two basic steps: (1)

prediction, and (2) correction.

4.5.1 Prediction

In the prediction step, the state transition of a vehicle is modeled through the conditional

probability P (vi,t = la|vi,t−1 = lj), which denotes the probability for a motion action that

carries vehicle i from lane j to lane a (j and a can be equal). When the vehicle moves,

P (vi,t = la|vi,t−1 = lj), which models the uncertainty in the vehicle’s movement, is used to
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compute the probability distribution at time t as

P (vi,t = la) ←
2∑

j=1

P (vi,t = la|vi,t−1 = lj)P (vi,t−1 = lj), (4.1)

where P (vi = la) is the probability that car i is traveling in lane a. This step is repeated

for both vehicles and then uses the product to form the combined probabilities:

P (v1,t = la, v2,t = lb) = P (v1,t = la)P (v2,t = lb). (4.2)

The conditional probabilities P (vi,t = la|vi,t−1 = lj) for a car are computed by comparing

its current GPS position to the position at the last time step t − 1. For example, by

calculating the shortest distance ∆D from the vehicle position estimate from the GPS

reading at time t to the line passing through the two most recent position estimates, the

probability at which vehicle 1 switches to lane a (see Fig. 4.3) can be computed. In this case

by using zero as the mean value of the probability density function of a normal distribution
1

σ
√

2π
e
−(∆D−0)2

2σ2 , if ∆D is close to zero, the probability at which car 1 still stays in the same

lane, i.e., car 1 does not switch lane, is close to 100%. In a similar fashion, one can develop

all the conditional probabilities P (vi,t = la|vi,t−1 = lj) that cover all possible situations.

−1t

t

∆D

Moving direction in last time step

Vehicle 1

Vehicle 1

Lane j

Lane a

Figure 4.3: Prediction step: this figure illustrates a car switching lane and its position is

unknown. The shortest distance ∆D from the GPS reading at time t to the line passing

through the two most recent GPS readings is used to calculate the conditional probability.

It should be noted that a large ∆D can result from two possible situations: (1) the

car is switching lanes or, (2) the car is simply following a curve in the road. For example

Fig. 4.4 shows that the vehicle is still in lane 1, but a large value of ∆D due to the curve

would falsely indicate that the vehicle is switching to lane 2.

To resolve this ambiguity, the lane-finding algorithm must estimate the radius of the

lane curvature and compensate the drift caused by the curve. This can be done by using the

least squares fitting algorithm based on successive vehicle positions. This algorithm allows

us to fit an arc through the successive vehicle position estimates. When the vehicle changes

lanes in the curved section of the road, its last position will not lie on the estimated arc, and



Lane Position Determination 33

D∆

( )3 3,t tx y− −

( )-2 -2,t tx y

( ),t tx y

( )1 1,t tx y− −

Lane 1Lane 2 Moving direction at time step t-1
Radius of curvature R

Fitted arc

( ),c cx y x

y

Figure 4.4: Radius of curvature estimation: this figure illustrates the GPS readings for a

vehicle assumed to be traveling in lane 1. The position and moving direction of the vehicle

are estimated from GPS data. The GPS measurements are not necessarily exactly in lane

1 and the actual vehicle does not necessarily overlay with the GPS measurements as the

figure shows.
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Figure 4.5: Least squares method for approximating road curvature.
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the distance from the last position estimate to the arc will be used in the prediction step

to predict if the vehicle is switching to the other lane. In our simulations and experiments,

five successive vehicle position estimates were used to find the radius R and center (xc, yc)

of the road curvature (see Fig. 4.5). The cost function to be minimized is

S =
t∑

i=t−4

d2
i =

t∑
i=t−4

(
√

(xi − xc)2 + (yi − yc)2 −R)2, (4.3)

where (xi, yi) are the coordinates of the vehicle position estimate number i (note that in

4.3, i takes on values from t− 4 to t). The following set of equations can be solved for R,

xc, and yc using numerical method:





∂S
∂xc

= 0;
∂S
∂yc

= 0;
∂S
∂R

= 0.

(4.4)

4.5.2 Correction

Denote as z the GPS measurements that come in at time step t for both cars, and P (z|v1 =

la, v2 = lb) as the probability of perceiving z when the two cars are in lanes a and b

respectively. When the GPS measurements are taken into account, P (z|v1 = la, v2 = lb) is

used to update the probability distribution at time t according to Bayes’ rule

P (v1,t = la, v2,t = lb|zt) ← P (zt|v1,t = la, v2,t = lb)P (v1,t = la, v2,t = lb)

P (zt)
, (4.5)

where P (zt) has the purpose of normalizing the sum of all P (v1,t = la, v2,t = lb|zt).

Suppose that at time t a new measurement z (see Fig. 4.6) which is the perpendicular

distance from one vehicle to the other vehicles direction of motion in this case, is available.

The conditional probability P (z|v1 = la, v2 = lb) can be calculated based on z using the

probability density function (1/σ
√

2π)e−(z−µ)2/2σ2
. The mean µ = w × (la − lb), where w

is the lane width. For example, in the case la = 2 and lb = 1, the conditional probability

P (z|v1 = la, v2 = lb) is closer to 100% when the measurement z is closer to the lane width

w.

4.5.3 Generalization of Prediction and Correction

The result for the two-vehicle-and-two-lane-road can be extended to the general case.

Denote the number of vehicles that are communicating with each other as nv, and the



Lane Position Determination 35

Z

Vehicle 1

Vehicle 2
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Lane b

Figure 4.6: Correction step: this figure illustrates two cars traveling on a highway. The

distance z is used to update the belief in prediction step.

number of lanes as nl. Let P (v1,t = la, v2,t = lb, ..., vnv ,t = lx) be the probability that car

1 is traveling in lane a, car 2 is in lane b, etc., at time t where a, b, ..., x take on values

between 1 and nl. No initial estimates of the vehicle lane positions are required, and the

initial probabilities are equally set to 1/(nv × nl). The probability distribution at time t

for the prediction step is given by

The probability distribution at time t for the prediction step is given by

P (vi,t = la) ←
nl∑

j=1

P (vi,t = la|vi,t−1 = lj)P (vi,t−1 = lj), (4.6)

and

P (v1,t = la, v2,t = lb, ..., vnv,t = lx) = P (v1,t = la)P (v2,t = lb)...P (vnv ,t = lx). (4.7)

Bayes’ rule for the correction step is

P (v1,t = la, v2,t = lb, ..., vnv ,t = lx|zt) ← QS

P (zt)
. (4.8)

where Q = P (zt|v1,t = la, v2,t = lb, ..., vnv,t = lx) and S = P (v1,t = la, v2,t = lb, ..., vnv ,t = lx).

With the developed Markov-based algorithm, we are able to implement simulations and

experiments which will be discussed in the Sections 4.6 and 4.7.

4.6 Simulation

The lane positioning simulator is built on top of the traffic simulator described in Chap-

ter 2.3. For a precise analysis of the algorithm, a map of a road based on an actual highway,

as shown in Fig. 4.7, was built in VISSIM and a number of simulations with different situa-

tions were implemented. In all simulations, the GPS data are modeled by adding a random
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Figure 4.7: Highway 85, Waterloo, ON, Canada.

walk bias of maximum amplitude 3 m and Gaussian noise having a standard deviation of

0.5 m to the position of each car.

Fig. 4.8 and Fig. 4.9 show a simulation with three cars and a two-lane road. The

scenario is as follows: Initially, car 1 is in lane 1, and car 2 and car 3 are both in lane 2.

After 7 seconds, car 2 switches to lane 1. Car 1 switches to lane 2 after 17 seconds, and car

3 moves to lane 1 after 26 seconds (Fig. 4.9). It can be seen that the algorithm accurately

estimates the lane positions of the vehicles. The corresponding probabilities are given in

Fig. 4.8. The algorithm also works when vehicles have frequent oscillatory weaving actions

within their lanes (see Fig. 4.10), although this rarely happens on real highway systems due

to safety concerns. Fig. 4.10 shows the lane estimation results without position filtering

for three cars on a two-lane highway. It can be seen that car 1 and car 3 have wrong lane

estimation by only a small fraction of time. The improved results when position filters

consisting of a low-pass Butterworth filter and a particle filter for all three vehicles are

added to reject the modeled GPS receiver noise (Gaussian noise) are shown in Fig. 4.11.

Details about this filtering scheme will be described in Section 4.7.2. The speeds of the

vehicles in all simulations are 80-120 km/hr. Another case of interest is when the vehicles

frequently change their lanes. The convergence rate of the algorithm in this case is faster

since the localization algorithm has more frequent information update for both prediction

and correction steps.
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Figure 4.8: Probability distribution for simulation of three cars (car 1 to car 3 from top to

bottom) on a two-lane highway.

Importantly, since the lane positions of vehicles are determined relative to each other,

it is not necessary to know the number of lanes for the algorithm to work. The lowest lane

position is always lane 1, and the other lanes are numbered relative to the first lane. In

practice, as the number of vehicles increase, the algorithm will be able to estimate the lane

positions faster and more reliably. The percentage of time with correct lane estimation for
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Figure 4.9: Simulation result for three cars (car 1 to car 3 from top to bottom) on a

two-lane highway.

Figure 4.10: Impact of oscillatory weaving (car 1 to car 3 from top to bottom): This figure

shows a simulation in which car 1, car 2, and car 3 follow sinusoidal paths with different

amplitudes (-1, -1, and 1 m) and frequencies (1/4, 1/4.5, and 1/5 Hz).
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Figure 4.11: Improved lane estimation with position filters (car 1 to car 3 from top to

bottom).

the simulations are summarized in Table 4.1.

4.7 Experiment Implementation

4.7.1 Software Architecture

To demonstrate the lane positioning algorithm, an in-car localization software was written

in C++ which is responsible for reading GPS data from sensors, ensuring the smooth

communication between the vehicles via wireless ad-hoc network, and estimating vehicle

lane positions. Each vehicle is equipped with a GPS receiver and a processor to implement

the lane positioning algorithm and to communicate with other vehicles. The GPS data for

the vehicles is fed into a position filter to reject the measurement noise from receivers. The

in-car localization software is organized in a multiple-threaded program. The functionality

for the threads are as follows:

1. TCP/IP socket server thread: to send GPS data to other vehicles.

2. Client threads: to receive GPS data from other vehicles.
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Table 4.1: Percentage of time with correct lane estimation for simulations.

Simulation Correct lane estimation (%)

No oscillatory weaving, Car 1: 93.1%

no position filters Car 2: 96.3%

Car 3: 98.9%

With oscillatory weaving, Car 1: 91.8%

no position filters Car 2: 96.8%

Car 3: 94.5%

With oscillatory weaving Car 1: 95.5%

and position filters Car 2: 98.1%

Car 3: 96.7%

3. GPS thread: to read GPS measurements from sensor, i.e., GPS receiver.

4. Filters thread: to reject receiver measurement noise from raw GPS data.

5. Localization thread: to conduct localization algorithm for lane positions estima-

tion.

The architecture for the system is illustrated in Fig. 4.12 and a screenshot of the localization

software GUI is shown in Fig. 4.13.

4.7.2 GPS Receiver Noise Reduction

As described in Section 3.4, error from GPS generally comes from several sources including

satellite clock, ephemeris error, ionospheric effects, tropospheric effects, and the geometry

of visible satellites. This set of errors from GPS will be common for vehicles. Other errors

are local to the different receivers and include RF noise from the environment, receiver

noise and resolution, multi-path, and receiver clock error. Aside from multi-path, errors

from this second set are generally smaller than those common to the receivers. Hence if

multi-path is not a problem (as is the case for many open highways), then common errors

from receivers that are relatively close to one another can be eliminated by utilizing relative

distance between vehicles.

Other errors that need to be eliminated are the errors caused by receiver noise which is

dependent on the design of antenna, the method used for the analogue to digital conver-

sion, the correlation process, etc. These errors sometimes can falsely indicate a vehicle is
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Figure 4.12: Program architecture.
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Figure 4.13: Screenshot of localization program.
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switching lanes. The high pitched receiver noise can be rejected using a low-pass filter. In

the proposed lane positioning system, a combination of a low-pass Butterworth filter [60]

fused with a particle filter can satisfy this task.

A second-order low-pass Butterworth filter is used to smooth the raw data distance

measurements between two vehicles. More specifically, let the raw data measurement be

zt =distance(GPScar1
t , GPScar2

t ) where GPScar1
t and GPScar2

t are raw GPS measurements

from two vehicles. The distance zt is then smoothed using a low-pass Butterworth filter

producing the output zb
t . However, the Butterworth filter causes time delay in the output

due to phase-shift. The main objective of the particle filter is to compensate this delay

while preserving the smoothed feature of the output curve.

Particle Filter

Particle filter, also known as Sequential Monte Carlo methods (SMC), is a sophisticated

model estimation technique which approximates the sequence of probability distributions

of interest using a large set of random samples. Particle filter is an implementation of the

Bayes filter [61, 62, 63] which uses a finite number of parameters to describe the belief state

distribution. Particle filtering is based on sequential importance sampling and Bayesian

theory. It models the data distribution by random sample measures composed of particles,

that are samples from the space of the unknowns, and their associated weights.

The spatial density of the particle set reflects the shape of the probability density

function that it is sampled from, and hence the particle set is an approximation of the

belief state probability distribution. A high density of the particles in the state space

reflects the high likelihood of the true state in the vicinity [64]. In our problem, let the

relative distance x0:t ∈ < that needs smoothing be the variable of interest at time t. The

variable xt is represented by a set of M particles St = (xt[i], wt[i]) : i = 1...M , where the

index i denotes the particle. Each particle consists of an estimate of the variable of interest

and a weight wt[i] defining the contribution of this particle to the overall estimate of the

variable [61, 64, 65, 66, 67].

The first step in implementing a particle filter is generating this set of M particles that

is representative of the starting state S0 = (x0[i], w0[i]) : i = 1...M (which may or may

not be known). A random sample from a uniform distribution can be used if nothing is

known of the starting state. On the other hand, if the exact starting state is known, all

the particles can be initiated in the same state (thus occupying the same point in the state

space).

Both the ”act” and ”see” steps of the Bayes filter are still carried out with the particle
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w[1] = 0.04 w[3] = 0.06
Figure 4.14: Re-sampling: particles with higher weights are more likely to be selected and

sampled.

filter. The effects of motion control inputs (with noise) are applied to all particles using a

state transition model [67]. Any type of function (linear or non linear) can be used in this

case provided that it generates a propagated state based on the input of a previous state

and a control input. For GPS noise reduction, the propagated particle set is a sample of

the motion control propagated belief state distribution [61, 64, 65, 66] as

xt[i] ∼ P (xt[i]|xt−1[i], ut), (4.9)

where ut ∈ < is the control input which is, in this case, the output from Butterworth filter

ut = zb
t .

The weight for each particle is updated based on the probability density function as-

sociated with the measurement model. Let P (zt|xt[i]) be the probability of perceiving zt

given xt[i]. The weight wt[i] can be calculated by

wt[i] = P (zt|xt[i]). (4.10)

The calculated weights wt[i]’s are then employed to generate a new set of particles for the

next time step (re-sampling) using roulette wheel selection as shown in Fig. 4.14. In this

step, a new particle set with the same number of particles as the current particle set is

generated. Particles with a large weight are more likely to be sampled (maybe more than

once). On the other hand, particles with a small weight may not be sampled and fail

to reach the next iteration of the particle filter. The new particle set generated by this
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survival of the fittest technique is representative of an approximation to the (posterior)

state estimation after considering sensor measurements [61, 64, 65, 66, 67]. In the next

iteration of the particle filter, the posterior particle set will represent prior belief state.

The pictorial description of the particle filtering algorithm is shown in Fig. 4.151.

Figure 4.15: A pictorial description of particle filtering.

The pseudocode summarizing the particle filtering algorithm is shown in Algorithm 1

and the pseudocode for the re-sampling step using roulette wheel selection is shown in

Algorithm 2.

Noise Rejection Results

In experiments, the number of particles was chosen to be 500 so that the filtering algorithm

can work in real-time on Intel R© Pentium R©-M 1.4 GHz processors (computers used in the

experiments). Fig. 4.16 shows the GPS plot for the two notebooks used in an experiment.

The raw relative vs. filtered distances between the two computers (see Fig. 4.17) shows

the effectiveness of the filtering scheme. It can be observed that the random walk caused

by the GPS receiver noise was rejected effectively.

4.7.3 Results

A number of experiments with different scenarios were implemented on the same highway.

Real GPS data were collected for the two cars used in the test. The approximately 4-km-

1Image from [68]
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Algorithm 1 Particle Filter

Require: A set of particles at time 0: S0 = (x0[i], w0[i]) : i = 1...M

1: while t > 0 do

2: zt = Distance(GPScar1
t , GPScar2

t )

3: zb
t = Butterworth(zt) {Smooth raw distance}

4: ut = zb
t {Control input}

5: for i = 1...M do

6: Draw xt[i] with probability P (xt[i]|xt−1[i], ut) {Propagation with ut}
7: wt[i] = P (zt|xt[i]) {Update the weights}
8: end for

9: for i = 1...M do

10: wt[i] = wt[i]PM
j=1 wt[j]

{Normalize the weights}
11: end for

12: St = (xt[i], wt[i]) : i = 1...M

13: St = Resampling(St) {Generate new set of particles}
14: end while

Algorithm 2 Resampling

Require: The set of particles at time t: St = (xt[i], wt[i]) : i = 1...M

1: for i = 1...M do

2: num = Rand(0,1) {Return a random number between 0 and 1}
3: for j = 1...M do

4: if j == 1 then

5: sum = 0

6: else

7: sum = sum + wt[j − 1] {Sum of weights}
8: end if

9: if (sum ≤ num < sum + wt[j]) then

10: x∗t [i] = xt[j] {Particle j is selected}
11: w∗

t [i] = wt[j]

12: Add (x∗t [i], w
∗
t [i]) to S∗

13: end if

14: end for

15: end for

16: St = S∗ {New set of particles has been generated}
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Figure 4.16: GPS measurements for two computers.

0 20 40 60 80 100 120
-6

-4

-2

0

2

4

6

Time (s)

R
el

at
iv

e 
di

st
an

ce
 (

m
)

raw data
particle filtered data

Figure 4.17: Relative distance from raw GPS data vs. filtered data.

highway section shown in Fig. 4.7 was used to conduct the experiments. The speeds of the

vehicles used in the tests were between 90 and 110 km/hr.
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Figure 4.18: GPS measurements for two cars in experiment.

The GPS measurements and results from one of these experiments for both cars are

plotted in Fig. 4.18, Fig. 4.19 and Fig. 4.20. These figures show the lane estimation results

without using position filters to demonstrate the effect of GPS measurement noise. The

strategy was as follows: Initially, car 1 was in lane 1, and car 2 was in lane 2. After 22

seconds, car 1 switched to lane 2. Car 2 switched to lane 1 right after car 1 completed its

lane changing. Car 1 moved back to lane 1 after 40 seconds and finally moved to lane 2

after 60 seconds. Car 2 switched back to lane 2 at the fortieth second and maintained its

lane position until the end of the experiment.

In this experiment, two cars equipped with low cost GPS receivers with different sam-

pling rates and variances drove on the highway. The GPS receiver for the first car was a

Garmin 18-5 which has the sampling rate of 5 Hz. The GPS receiver for the second car

was a LocSense 40-CM whose sampling rate is 1 Hz. Both GPS receivers output National

Marine Electronics Association (NMEA) 0183 standard messages. The second GPS re-

ceiver signal has a much higher noise when compared to the first receiver. This resulted in

probability distributions with higher variability, as shown in Fig. 4.19. The performance

of lane position estimation is thus reduced in that the lane the vehicle occupied was not

always accurately predicted (see Fig. 4.20).

Fig. 4.21 and Fig. 4.22 show the effects of the improved noise rejection on the probability

and lane estimates when a position filter for car 2 was used in comparison to the results
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Figure 4.19: Probability distribution for experiment without GPS measurement filtering.
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Figure 4.20: Lane estimation result for two cars (car 1 to car 2 from top to bottom) on

highway without GPS measurement filtering.

shown in Fig. 4.19 and Fig. 4.20. This filtering resulted in more accurate and faster

estimates of lane position. This improvement indicates that, in practice, low-cost GPS

receivers can be effectively fused with a filter to obtain low-noise GPS measurements,

rather than resorting to the use of more expensive sensors. It is also interesting to point out

that the algorithm sometimes could anticipate the lane-changing action before the vehicles

completely moved to the other lanes, as indicated in Fig. 4.22, at around the twenty-second

second. This can be explained by the fact that when a vehicle starts making a lane change

maneuver, its lateral displacement used in the prediction step of the localization algorithm

anticipates the vehicle lane changing tendency before the lane changing is completed.

To demonstrate that the algorithm can work effectively at low speeds, a number of

experiments were conducted on Wilhelm St in Kitchener, ON, Canada with two people,

each holding a notebook computer. Each computer was a Compaq Evo N620c, and was

equipped with a Garmin-18 GPS receivers. The communication between the notebooks

was made through the IEEE 802.11a/11g standard D-Link DWL-AG660 Wireless Cardbus

Adapters. The experimental apparatus are shown in Fig. 4.23. The walking speeds for

both persons were estimated from GPS data to be approximately 5 km/hr.

The GPS measurements for both computers in the first experiment are plotted in
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Figure 4.21: Improved probability distribution for experiment with GPS measurement

filtering.
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Figure 4.22: Improved results with GPS measurement filtering.Garmin-18 GPSD-Link Wireless Adapter
Figure 4.23: Experiment apparatus.

Fig. 4.16. The strategy was as follows: Initially, both person 1 (computer 1) and person 2

(computer 2) were in lane 1. After 6 seconds, person 2 switched to lane 2. Person 2 moved

back to lane 1 after 44 seconds. Person 1 switched to lane 2 at the 63th second and stayed

in lane 2 until the end of the test. The resulting probability distributions and estimated

lane positions are shown in Fig. 4.24 and Fig. 4.25, respectively. The estimation appears to

be quite good with the estimated lane positions following the actually values very closely.
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Fig. 4.24 shows how confident the system was about its estimation.
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Figure 4.24: Probability distributions for experiment 1.

In the second experiment (see Fig. 4.26 for GPS plots) person 1 (computer 1) was

initially in lane 1 and person 2 (computer 2) was in lane 2. After 12 seconds, person 1

switched to lane 2. Person 1 moved back to lane 1 after 28 seconds and finally moved

to lane 2 after 63 seconds. Person 2 switched to lane 1 at the 45th second and stayed in

lane 1 until the end of the test. Fig. 4.27 and Fig. 4.28 show the resulting probability

distributions and estimated lane positions, respectively. It is interesting to note that the

system sometimes could anticipate the lane changing action before the vehicles completely

moved to the other lanes as indicated in Fig. 4.28 at around the 28th second. This can be

explained by the fact that when a vehicle/person starts making a lane change maneuver,

its lateral displacement used in the prediction step anticipates the vehicle lane changing

tendency before the lane changing is completed. In this case, this happened when person

1 made a sharp turn at the 28th second as can be seen in Fig. 4.26.

The third experiment dealt with a three-lane situation on the same road section. The

lane estimation results are given in Fig. 4.29 and Fig. 4.30. It can be seen from Fig. 4.30
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Figure 4.25: Estimated vs. actual lane positions for computer 1 (top) and computer 2

(bottom).
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Figure 4.26: GPS measurements for experiment 2.
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Figure 4.27: Probability distributions for experiment 2.

that both computers started off with the wrong estimation as the computers initially had

no knowledge about the lanes they occupied and the initial lane positions were assumed

to be the lowest lane, i.e., lane 1. Fig. 4.29 shows that the system was not very confident

about the estimation in the first 7 seconds of the experiment. However, as soon as person 1

started moving to lane 1 at around the 10th second, the estimated lane positions for both

computers quickly converge to the actual values. This experiment indicates that Markov

localization algorithm can work well without prior knowledge about the vehicle’s initial

lane position. It is, therefore, possible to localize the vehicle from scratch and to recover

from localization failures or GPS outage in which the positions of the vehicle are lost.

The percentage of time with correct lane estimation for the simulations are summarized in

Table 4.2.
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Figure 4.28: Estimated vs. actual lane positions for computer 1 (top) and computer 2

(bottom).

4.8 Conclusions

A new lane position estimation algorithm that uses a Markovian approach based on coop-

erative driving models has been proposed in this chapter.

In comparison to conventional lane positioning methods which usually deal with com-

plicated image processing techniques and/or expensive equipment, the proposed method

only requires low cost GPS receivers, IVC, and a simple localization algorithm. Simulation

and experimental results have shown the efficiency of the algorithm, even when the GPS

data are significantly degraded.

The limitation of the proposed strategy lies in the fact that it only uses GPS data to

estimate lane positions. This might be challenging where GPS data is not available or GPS

signal is blocked completely by large obstacles like in a long tunnel. One possible solution

to this problem is to fuse the GPS data with another type of sensor such as an Inertial

Measurement Unit (IMU) until GPS data is again available.

Future research will continue with more complicated situations such as determining

lane position on highways with intersections. Issues to be addressed include derivation of

per-lane conditional probability models that are required at intersections. For example,
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Table 4.2: Percentage of time with correct lane estimation for experiments.

Test Correct lane estimation (%)

Two cars, Car 1: 92.0%

no position filters Car 2: 83.0%

Two cars, Car 1: 93.0%

with position filters Car 2: 95.0%

Walking 1 Computer 1: 95.0%

Computer 2: 95.8%

Walking 2 Computer 1: 93.9%

Computer 2: 100.0%

Walking 3 Computer 1: 94.3%

Computer 2: 78.1%
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Figure 4.29: Probability distributions for experiment 3.
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Figure 4.30: Estimated vs. actual lane positions for computer 1 (top) and computer 2

(bottom).

the positioning system may indicate that 100% of drivers in the left lane at a particular

intersection turn left, 50% of drivers in the right lane go straight, and 50% turn right.



Chapter 5

Lane Assignment Optimization

5.1 Introduction

Lane assignment is seen as one of the primary means of increasing traffic throughput on

urban highways characterized by: (1) relatively small distances between adjacent entry and

exit points from the highway, (2) a significant incidence of lane maneuvers undertaken by

drivers attempting to reach their destinations quicker by utilizing the faster lanes, and (3)

trip lengths which on the average span a significant number of sections between entry and

exit points. It is on these highways that congestion is the most acute and lost resources

including time, fuel, human lives, and negative effects on the environment are the greatest.

In this chapter, a direction for lane assignment is proposed with the aims of enhancing

traffic system operation, enhancing safety, reducing travel time and improving traffic qual-

ity. The lane optimization problem is formulated here as a linear programming problem

[69, 70] with the minimization of a cost function. The lane assignment strategy considered

here assigns a fixed lane to a vehicle for the duration of a road segment starting from an

entry point to the next nearest exit.

To implement lane assignment, a strategy based on inter-vehicle communication and

collaborative driving model will be developed. This system will use GPS as the only

available sensor and form an ad-hoc network as the vehicles travel within communication

range of each other.

5.2 Related Work

Currently, almost all traffic management systems regulate traffic flows by controlling traffic

signals or highway ramp meters. In these systems, the traffic is treated as a single mass and

58
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the behaviors of individual cars are normally ignored [71][72][73]. Most recently, Goolsby

et al. [74] even used changeable lane assignment signs at frontage road intersections to

adapt to traffic conditions that change based on the time of day. When these interchanges

experience high turning movement demands, permitted double turns are often used to

increase traffic throughput (see Fig. 5.2). These previous approaches, however, miss an

important component of traffic management: coordination of cars themselves.

One of the first works on collaborative lane assignment was conducted by Hall [75] who

considered the lane-change maneuvers in deriving a min-max optimization problem. Hall

adopted the total workload model combining lateral and longitudinal movements, so the

form of the cost function to be optimized is the sum of the longitudinal requirements and

adjustment factor representing the incremental workload for lane-change maneuver. Then,

the objective is to equalize the workload and congestion across lanes. However, this work

assumes that the vehicles flow into or out of highway at any point as in fluid flow (flux)

systems and exact entrance and exit locations are not modeled. In other words, access and

egress are assumed to occur continuously over the entire length of the highway. This work

also does not account for variations in traffic flow. Optimization of such a problem would

specify the locations where lane changes occur.

Medanic et al. [5] and Ramaswamy et al. [76][77] defined the lane assignment problem

using an itinerary matrix, with the objective of reducing unnecessary crossings on the

highway because it was assumed that maneuvers lead to path intercepts and are the main

reason for delays and capacity reduction. Their simulation results show effects of maneuvers

on costs, but a distributed control strategy for individual car was not presented.

Hall et al. [78] presented another approach to modeling highway systems (Fig. 5.2).

They used network representation from network theory and represented a highway with

arcs and nodes. Their paper does not deal explicitly with the lane change effect on the

highway capacity. However, the network representation of a highway shows potential for

providing a framework to which other methods can be applied.

Kim et al. [79] used the same approach by partitioning the highway systems. In their

work, the lane assignment problem was formulated as an optimization problem to find

proper positions of partitions on an itinerary matrix. Then the optimization problem

was solved using genetic algorithms. The validation of the algorithm was conducted by

comparing it with a random strategy in a realistic situation.

Lee et al. [80] handled the problem by using discrete event modeling. The model for the

overall traffic system corresponding to a particular highway is decomposed into sub-models

which may be recursively decomposed into smaller sub-models. As in [79], Lee et al. used

roadside computers to receive information from vehicles, and assign them the lanes that
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                           (a)                                                                                           (b) 

Figure 5.1: Changeable lane assignment signs.

Figure 5.2: Highway system discretization in [78]: highway segments are indexed by loca-

tion and defined by segment type (on-ramp, off-ramp, or neither), length of the segment,

number of lanes, and ramp capacity. Nodes are assigned to the end of each lane in each

segment, as well as to the start of each on-ramp and end of each off-ramp.

they should occupy for most of the trip. They also assumed that all cars move along the

assigned lanes with the specified velocity of the lane. With this assumption, they neglected

the fact that vehicle speeds are affected by traffic density in each lane. Therefore, their

system was not really practical for current highway systems.
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With that in mind, we approach the problem by taking the coordination and commu-

nication of vehicles into account. In our system, vehicles collaboratively select lanes with

an effort to increase traffic throughput. Control is distributed such that each vehicle has a

controller that allows it to coordinate with other vehicles to minimize the number of lane

changes and avoid unpredictable situations based on inter-vehicle communication.

5.3 Problem Statement

Our aim is to coordinate maneuvers by sharing information between vehicles to schedule

vehicle paths. The scheduling should try to maximize throughput by taking into account

the origins and destinations (specified by drivers when entering a highway) of all vehicles,

as well as the effects of maneuvers dictated by the proposed path scheduling strategy on

time of travel. Our fundamental assumption is that the vehicles are equipped with micro-

processors, GPS receivers, and wireless communication devices. A following assumption is

that any two vehicles within a certain radius of each other can communicate. A vehicle

should select lanes not only to improve its own travel time, but the travel time of other

vehicles and the overall traffic flow of the highway system.

We can state the lane assignment problem to be: Determine, for each origin-destination

pair, the number of vehicles that should travel in each lane of the highway in order to

minimize a performance index that is a function of total travel time.

Several topics regarding inter-vehicle communication, lane finding and lane assignment

are explored in this chapter: First, a brief introduction of linear programming is given in

Section 5.4. The system architecture and the proposed steps to the solution are discussed

in Section 5.5. Section 5.6 demonstrates a method for flow rate estimation in each lane

using inter-vehicle communication. Section 5.7.1 discusses a distributed control strategy

for routing vehicles to appropriate lanes while satisfying some constraint conditions. A

proposed cost function to optimize is also discussed in Section 5.7.2. To accurately model

traffic flow, a car-following model is proposed in Section 5.7.3. Currently, by solving a

minimization problem, the algorithm is able to send vehicles to appropriate lanes in an

effort to balance lane traffic flows and decrease the total vehicle travel time. Simulations

to evaluate the algorithm are provided in Section 5.8, followed by some discussion about

‘selfish lane selection’ in which a portion or all of the vehicles do not comply with the

suggested lane assignment strategy in Section 5.9. Finally, some concluding remarks are

provided in Section 5.10.
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5.4 Linear Programming

Linear programming problems are optimization problems in which the objective function

and the constraints are all linear. The standard form of a linear programming problem

consists of the following three parts:

• A linear cost function to be maximized or minimized:

c1x1 + c2x2 + ... + cnxn,

• Problem constraints:

a11x1 + a12x2 + ... + a1nxn ≤ b1,

a21x1 + a22x2 + ... + a2nxn ≤ b2,

...

am1x1 + am2x2 + ... + amnxn ≤ bm,

• Non-negative variables:

x1 ≥ 0, x2 ≥ 0, ..., xn ≥ 0.

The problem can be expressed in matrix form as follows:

Optimize

cTx,

subject to

Ax ≤ b, and x ≥ 0,

where the variables x ∈ <n are called decision variables. These are the variables we need

to determine so that the problem is optimized.

Linear programming problems can be solved by numerous methods, some of which

are the Ellipsoid method [81] and the Simplex method (Appendix A). The next Sections

will show how the lane optimization problem can be organized as a linear programming

problem.

5.5 System Architecture

There are two architectures for implementing lane selecting schemes: centralized and de-

centralized. The key advantage of a decentralized over a centralized approach is scalability.

It is easier to grow a decentralized system and to add new elements to it.
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Two recent approaches taken for lane assignment are: lane assignment for single vehicles

(i.e., free-agent lane assignment), and lane assignment for groups of vehicles by organizing

vehicles into platoons [82]. The idea of ‘platooning’ is to expand the limitation of capacity

and safety that can be achieved by road vehicles.

In the framework of this chapter, the problem of lane assignment for single vehicles will

be considered and investigated. The proposed implementation of the overall system can

be presented as a closed-loop system and is broken into three main steps (see Fig. 5.3):

(1) lane positioning (lane occupancy estimation), (2) lane flow estimation, and (3) lane

assignment. Note that each of these three individual steps is accomplished through the

collaboration of multiple vehicles communicating within ad-hoc networks. Lane positioning

is necessary for vehicles to know where they are on the highway. In an automated highway

system, vehicles are expected to know the lanes they occupy. This serves as a basis for

the rest of the lane assignment algorithm. Lane positions of vehicles can be determined

using Markov localization based on the exchange of GPS fixes between vehicles through a

wireless ad-hoc network as discussed in Chapter 4. In order to determine if a lane capacity

has been exceeded, the traffic flow rate in each lane must be estimated. A method for lane

flow rate estimation will be discussed in Section 5.6. The lane assignment algorithm is

implemented by individual vehicles with the objective of minimizing the total travel time

of themselves and other neighboring vehicles.

In this system, let us consider a highway with ne entry (on-ramp) and nd exit (off-ramp)

points. Each lane is characterized by a different nominal driving speed. The highway

system used in this work is discretized into segments. For every on-ramp, a new segment,

which contains one or more lanes, is created. The number of lanes can vary from segment

to segment but must be constant along each segment. Lanes are numbered from right to

left when facing in the direction of traffic flow, with the right-most lane numbered 1. On-

ramps and off-ramps are designated as lane 0. Lane exits and lane entrances are assumed

to occur on the right side of the highway. It is assumed that a typical vehicle would enter

the segment in lane 0 and proceed gradually to the lane assigned to it.

As illustrated in Fig. 5.4, the highway is represented by a network. Nodes are placed

at the start of each entry point. The objective is to maximize the flow across the highway.

Mathematically speaking, the constraints of the problem are:

1. Non-negativity: the number of vehicles cannot be negative,

2. Lane capacity: the maximum rate at which vehicles can enter a lane cannot be

exceeded.
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Figure 5.4: Highway system.

5.6 Traffic Flow Estimation

5.6.1 Formulation

The traffic flow rate in each lane must be estimated to determine if a lane capacity has

been exceeded. This can be accomplished by counting the number of cars passing through



Lane Assignment Optimization 65

a certain point within a certain amount of time. Our approach is to use inter-vehicle

communication. The strategy for flow rate estimation is illustrated in Fig. 5.5. t1 and t2

are the time instances that car 1 and car 2 hit point P , respectively. The instantaneous

flow rate can be calculated as car 2 passes point P as: fP,n = 1
t2−t1

. The denominator

t2 − t1 is called the time headway for vehicle 2. Since this calculation only considers 2

cars, it will not reflect the flow rate of all cars passing point P . This can be calculated

recursively by fusing fP,n with the flow from the last vehicle

FP,n =
fP,n + (n− 1)FP,n−1

n
= λfP,n + µFP,n−1, (5.1)

where n is the number of cars passing through point P ; the factors λ = 1
n

and µ = n−1
n

are

considered as weight factors.

Unfortunately, as the number of vehicles grows large, i.e., n →∞, Eq. 5.1 will no longer

reflect the current flow rate, but a long term average of the cumulative flow in previous

time steps. To avoid this, a sliding window that defines an amount of cars stored in the

counting buffer can be used. As the application counts the cars, buffer space is freed up

to accept more inputs.

P 12
1t2t

Figure 5.5: Flow rate estimation.

5.6.2 Simulation

To evaluate the algorithm, an application running on top of VISSIM was written in C

to estimate the traffic flow rate in each lane, and hence the total flow rate. A map of a

four-lane highway was also created. A screen shot of the application is shown in Fig. 5.6.

In this figure, the flows of the four-lane highway are computed using Eq. (5.1) at three

points: S1, S2 and S3; all are assumed to be the starts of of the highway segments.

Figure 5.7 shows the time history of the estimated total flow of the highway at point S1.

The input traffic volume is 4000 veh/hr and the cars are randomly generated by VISSIM.

One can see that the estimated flow approaches the true value in approximately 50 seconds.
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Figure 5.6: A screen shot of lane estimation application.

After that the estimated flow fluctuates around the actual value due to the randomness of

the actual input flow.
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Figure 5.7: Estimated total flow.

5.7 Lane Assignment Optimization

5.7.1 Problem Formulation

Due to the limitation of communication, i.e., it is not possible for vehicles to commu-

nicate with all other vehicles on the highway through an ad-hoc wireless network, and
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the scalability in planning, it is necessary to pick out a subset of vehicles that are able

to talk to one another for cooperative planning. The current approach is to define local

clusters of vehicles near the vicinity of road segment boundaries. Here, each local cluster

will use inter-vehicle communication to create a plan for optimizing traffic throughput in

the upcoming road segment (segment i). The vehicle must be made aware of its entire

path either when it enters the highway or must be told which lane to be in every time it

moves to a new segment. Now, every time a vehicle enters the highway or hits the next

segment, it forms a local area network (LAN) with its immediate neighbors in order to

perform a coordinated maneuver. A cluster of vehicles is formed every time a vehicle hits

a road segment (illustrated by a circle in Fig. 5.8). This vehicle communicates with all

upstream vehicles within its communication range. For illustration, let us denote this local

cluster clusterA, the vehicles inside this cluster vehicles A (shown in a bright color) and

the trailing vehicles that are not in the cluster vehicles B (shown in a dark color). The

lane assignment algorithm can then be implemented either by individual vehicles in cluster

A or the leading vehicle in cluster A.

i 1i +

A

A

A

B

B

A

R

Figure 5.8: Lane assignment strategy.

The lane optimization problem in our work is formulated as follows: Let us consider

an nl-lane highway system as shown in Fig. 5.4 where i, i + 1, i + 2, ..., indicate the road

segment numbers starting at the entry point positions. Let the distance between entry

i and exit j be di,j and the nominal velocity on lane l be vl. The estimated time that

takes one vehicle currently in lane lc to switch to lane l, then travel from i to exit j is
di,j

vl
+ T lc,l

Σ where T lc,l
Σ is the maneuver cost caused by lane changes. Detailed analysis of

the maneuver cost will be discussed in Section 5.7.2. The total travel time for all vehicles

in lane lc starting at segment i is
∑nd

j=i+1 N lc,l
i,j (

di,j

vl
+ T lc,l

Σ ), where N lc,l
i,j is the number of

vehicles currently in lane lc that will be traveling from the start of segment i to exit j in
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lane l, and nd is the number of exit points. Thus a candidate for the cost function to be

minimized is the total travel time,
∑nl

lc=0

∑nl

l=1

∑nd

j=i+1 N lc,l
i,j (

di,j

vl
+ T lc,l

Σ ).

The problem is to assign lanes to all vehicles within a local cluster A at the start of

each segment. Let αlc,l
i,j be the percentage of vehicles (within cluster A) traveling from i to

j that will be sent from lane lc to lane l. The factor αlc,l
i,j relates the number of vehicles

N lc,l
i,j as N lc,l

i,j = N lc
i,jα

lc,l
i,j . The cost function for segment i becomes

Φi =

nl∑

lc=0

nl∑

l=1

nd∑
j=i+1

N lc
i,j(

di,j

vl

+ T lc,l
Σ )αlc,l

i,j . (5.2)

The minimization problem can be cast as a linear programming problem to solve for

αlc,l
i,j ’s with the cost function in Eq. (5.2) subject to the following constraints:

1. Non-negativity: αlc,l
i,j ≥ 0,

2. Lane capacities should not be exceeded: λl
if(

∑nl

lc=0

∑nd

j=i+1 N lc
i,jα

lc,l
i,j ) + µl

iF̂
l
i ≤ C l

max,

where f(.) = (
∑nl

lc=0

∑nd

j=i+1 N lc
i,jα

lc,l
i,j )/t̂li is the instantaneous estimated flow which

would be caused by the vehicles routed to lane l, t̂li is the estimated time taking the

last vehicle in the group to travel from its current position to segment i, F̂ l
i is the

estimated flow in lane l, λl
i and µl

i are the weight factors (see Section 5.6), and C l
max

is the capacity of lane l,

3. Percentages sum to 1:
∑nl

l=1 αlc,l
i,j = 1.

One should keep in mind that in all constraint conditions, the superscript lc takes on

values from 0 to nl, i.e., 0 ≤ lc ≤ nl; 1 ≤ l ≤ nl; and i + 1 ≤ j ≤ nd. Therefore, there exist

nl(nl+1)(nd−i) equations for constraint 1, nl equations for constraint 2, and (nl+1)(nd−i)

equations for constraint 3.

To summarize, the constrained minimization problem is of the form

min cTx,

subject to

Ax ≤ b, Aeqx = beq, and x ≥ 0.

The vector c ∈ <nl(nl+1)(nd−i) has the form
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c = [N0
i,i+1(

di,i+1

v1

+ T0,1) ... N0
i,i+1(

di,i+1

vnl

+ T0,nl
)

︸ ︷︷ ︸
nl components

...

... Nnl
i,nd

(
di,nd

v1

+ Tnl,1) ... Nnl
i,nd

(
di,nd

vnl

+ Tnl,nl
)

︸ ︷︷ ︸
nl components

]T ,

vector x ∈ <nl(nl+1)(nd−i) is

x = [α0,1
i,i+1 ... α0,nl

i,i+1︸ ︷︷ ︸
nl

... αnl,1
i,nd

... αnl,nl
i,nd︸ ︷︷ ︸

nl

]T ,

matrix A ∈ <nl×[nl(nl+1)(nd−i)] has the form

A = [A0
i,i+1| ... |A0

i,nd︸ ︷︷ ︸
nd−i

| ... |Anl
i,i+1| ... |Anl

i,nd︸ ︷︷ ︸
nd−i

],

where Alc
i,j ∈ <nl×nl is

Alc
i,j =




N lc
i,j

. . .

N lc
i,j


 ,

and Aeq ∈ <[(nl+1)(nd−i)]×[nl(nl+1)(nd−i)] is a band matrix

Aeq =




nl︷ ︸︸ ︷
1 · · · 1

. . .
nl︷ ︸︸ ︷

1 · · · 1




.

Matrices A and Aeq correspond to constraints 2 and 3 respectively.

Vectors b ∈ <nl and beq ∈ <nl(nl+1)(nd−i) are

b =




(C1
max−µ1

i F̂ 1
i )t̂1i

λ1
i
...

(C
nl
max−µ

nl
i F̂

nl
i )t̂

nl
i

λ
nl
i


 ,

and

beq =




1
...

1


 .
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This control strategy can be implemented using the Simplex algorithm with the flow

rate for each lane being estimated using the strategy given in the Section 5.6. The numbers

of vehicles, which are integers, are obtained by rounding N lc
i,jα

lc,l
i,j to the nearest integers

after solving the optimization problem. For the greater reduction of the travel time, the

system tends to assign a faster lane to vehicles which travel longer distances. That is to

say, if two vehicles a and b enter the highway at the same node, the vehicle traveling further

will travel in a faster lane or the same lane as the one assigned to the vehicle traveling a

shorter distance. To put this in an equation, if the lane assigned to vehicle a is la = g(ia, ja)

and that assigned to vehicle b is lb = g(ia, jb), then

jb > ja =⇒ lb ≥ la. (5.3)

where l(p) > l(q) if vp > vq, g is the assigned lane as a function of a vehicle’s entry node

i and exit node j. The utility of the above result can be seen from Fig. 5.9. This reduces

the number of interaction between longitudinal and lateral traffic flows when vehicles exit

the highway. This result is similar to the ‘destination monotone policy’ described in [83].

(a) (b)intersectionLane 3Lane 2Lane 1
Figure 5.9: Vehicles traveling further tend to travel in a faster lane to reduce maneuver

cost and vehicle travel time.

5.7.2 Analysis of Maneuver Cost

It is necessary to specify the maneuver cost T lc,l
Σ considering the effect of lane changes

between vehicles. Clearly, if lane changes and merges do not affect the longitudinal flow

at all, then the maneuver cost is simply the time for the vehicle itself to change to the

destination lanes. In fact, the difficulty of the problem comes mainly from the interaction

between lane changes and longitudinal flow. A key attribute of any such interaction is

whether the speed of traffic is affected. At one extreme, no speed change is necessary to

accommodate lane changes, and successfully exiting at the desired exit is made possible

primarily by starting the lane change attempts early enough, and merging of a vehicle

into the existing traffic stream at on-ramps is performed by having the vehicle wait for a

sufficiently large gap. On the other extreme is the policy that, to ensure a 100% exiting



Lane Assignment Optimization 71

success rate even though the lane-changing vehicles started the lane-changing attempt

late, the lane-changing vehicles as well as the traffic on the destination lane must slow

down, safety permitting, to accommodate the lane changes. This work deals with the

latter extreme. We will identify the equations to represent the microscopic lane-change

behaviors as well as the interaction between the lane changers and the longitudinal flow.

One of the possible candidates for T lc,l
Σ is to consider the time delay during which a

vehicle slows down to free space for a vehicle changing into its lane as shown in Fig. 5.10.

During this cooperative maneuver, the velocity profile of vehicle 2 is assumed to be as

shown in Fig. 5.11.

h∆h∆h∆

Figure 5.10: Inserting vehicle A into traffic flow with uniform average separation distance

∆h between vehicles.

t∆

v

0
t

Figure 5.11: Velocity profile for a trailing vehicle in target lane.

To develop an expression for the maneuver cost T lc,l
Σ , let us start with a two-lane lane

changing scenario. To simplify the modeling, the following assumptions are made:

1. The vehicles are uniformly distributed along the highway. This is the case for con-

gested highway conditions. The separation distance between the vehicles ∆h can be
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calculated from traffic density. The distance ∆hmin, which can be calculated from

traffic density at lane capacity, defines the minimum acceptance gap for lane changes.

That is, if ∆h = ∆hmin, then the lane change is not allowed since the lane capacity

would be exceeded.

2. Let s be the average length of the vehicles in both lanes. If ∆h ≥ 2∆hmin+s (i.e., the

average gap between vehicles in the target lane is large enough to accommodate a lane

change without having to force the trailing vehicles to slow down), then no upstream

vehicles in the target lane are influenced, i.e., they don’t slow down, and vehicle A

will be inserted in the middle between vehicle 1 and vehicle 2. If ∆h < 2∆hmin + s,

then the trailing vehicles in the target lane will have to slow down to create a gap

large enough (∆hmin) for the lane changer A. The scenario is to have vehicle 2

decrease its speed so that the gap between it and vehicle A would be ∆hmin, then

vehicle 3, vehicle 4 and so on until vehicle n + 1 upstream.

When a vehicle changes lanes, it causes a speed disturbance to the other vehicles in the

lane it moves into. The total time cost ∆t needed for the trailing vehicles in the target

lane to adjust can be calculated from cΣ, the total relative distance that all the influenced

vehicles in lane 2 have to slow down to create a gap for the lane changer A using ∆t = cΣ
v2

.

To calculate cΣ, we need to quantify how many vehicles are affected by the lane change.

Fig. 5.12 shows lane 2 before and after the lane-change. In the bottom figure, the lane

changer A has been inserted into the sequence. Assume that n trailing vehicles in the

target lane are affected by the lane change (note that vehicles 1 and 2 are not affected).

The distance from the front bumper of vehicle 1 to the front bumper of vehicle n + 2 is

(n + 1)(∆h + s) = (n + 1)(∆hmin + s) + ∆h̄ + s, (5.4)

which gives

n =
∆hmin + s

∆h−∆hmin

− ∆h−∆h̄

∆h−∆hmin

. (5.5)

Note that since ∆hmin ≤ ∆h̄ < ∆h, we have ∆hmin+s
∆h−∆hmin

− 1 ≤ n < ∆hmin+s
∆h−∆hmin

. Considering

that n is an integer, we can always determine n from the above equation, which has a

single solution.

To determine cΣ, we need to calculate the distance each vehicle has to create to accom-

modate a lane change. Let c1, c2, ..., cn be the distances vehicle 2, 3, ..., n + 1 have to slow

down, respectively. Referring to Fig. 5.13, c1 through cn can be determined as

c1 = 2∆hmin −∆h + s
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h∆h∆

sss s

minh∆h∆ minh∆

Figure 5.12: Lane 2 before and after lane-change.

c2 = 3∆hmin − 2∆h + s

...

and in general

cn = (n + 1)∆hmin − n∆h + s. (5.6)

cΣ is the sum of c1 through cn, which is

cΣ =
n∑

i=1

[(i + 1)∆hmin − i∆h + s]. (5.7)

h∆h∆

minh∆minh∆minh∆

1c2c

Figure 5.13: Determine adjustment spacing.

The total maneuver cost will be the sum of ∆t and the time for vehicle A to move from

lane 1 to lane 2

T 1,2
Σ = ∆t + τ, (5.8)
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where τ is the lane change time constant, i.e., time that takes the lane changer to complete

its lane change.

Given an average vehicle length s = 4.5 m and lane capacity Cmax = 2200 veh/hr,

the numbers of affected vehicles and total time cost ∆t due to a lane change for different

average speeds are plotted in Fig. 5.14 and Fig. 5.15, respectively.
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Figure 5.14: Number of affected vehicles.

Equation 5.9 can be generalized for the case of a vehicle A moving from lane lc to lane

l. Note that vehicle A, in order to reach its target lane, causes the delay ∆ten in all the

intermediate lanes between lc and l when it enters lane l and ∆text in all the intermediate

lanes between l and the off-ramp (lane 0) when it exits the highway. Therefore the total

maneuver cost is

T lc,l
Σ = ∆ten + ∆text + |l − lc|τ + lτ. (5.9)

5.7.3 Van Aerde’s Car-Following Model

The total travel time can be better estimated by taking the speed-flow-density relationship

into account. To formulate Eq. (5.2), the vehicle speeds are assumed to be some nominal
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Figure 5.15: Time cost versus average separation distance.

lane velocities. However, on an actual highway, the vehicle speed is dependent on the traffic

density (and hence the flow rate).

In this work, Van Aerde’s model [84] is adopted and implemented in the traffic simulator

to model the speed-flow-density relationship. This integration model uses a steady-state

car-following model proposed by Van Aerde and Rakha, which combines the Pipes and

Greenshields models [85] into a single-regime model. The model, which requires three input

parameters, can be calibrated using field loop detector data. The efforts for calibrating

Van Aerde’s model were described in [84]. The Van Aerde single-regime model overcomes

the shortcomings of the Greenshields and Pipes models which are often inconsistent with

field data from a variety of highways [85].

Van Aerde’s model can be described by a series of expressions as follows:

δ =
1

c1 + c2
vf−v

+ c3v
, (5.10a)

m =
2vc − vf

(vf − vc)2
, (5.10b)

c2 =
1

δj(m + 1
vf

)
, (5.10c)
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c1 = mc2, (5.10d)

c3 =
−c1 + vc

Cmax
− c2

vf−vc

vc

, (5.10e)

where:

δ = traffic density (veh/km) or the inverse of the vehicle headway (km/veh),

v = vehicle speed (km/hr),

vf = free-speed (km/hr),

vc = speed at capacity (km/hr),

δj = jam density (veh/km),

c1 = fixed distance headway constant (km),

c2 = first variable headway constant (km2/hr),

c3 = second variable headway constant (hr−1).

In practice, the calibration of the car-following model requires the estimation of three

parameters: vf , vc, and δj. The vehicle speed can be inferred from traffic density δ and

flow rate F using the fundamental speed-flow-density relationship

v =
F

δ
. (5.11)

From Eq. (5.10a), the traffic density δ can be expressed as a function of flow by replacing

v with Eq. (5.11). This gives the quadratic equation

δ2(c1vf + c2) + δ(−c1F + c3Fvf − vf ) + (F − c3F
2) = 0. (5.12)

The estimated vehicle speed vl in Eq. (5.2) (represented by v in Eqs. (5.10)-(5.11)) is a

function of flow and can be obtained by solving Eq. (5.12) and substituting the resulting

δ into Eq. (5.11). In summary, the procedure is to measure the flow rate F for each lane,

then solve for v and use it in the cost function in Eq. (5.2) instead of the nominal lane

velocities.

5.8 Simulation

The VISSIM [6] software package was used to simulate the proposed strategy. The lane

routing simulator module works in parallel with the VISSIM simulator engine by creating
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multiple threads for handling various tasks such as inter-vehicle communication, vehicle

localization and GPS coordinate reading. In all simulations, the GPS data are modeled

by adding a random walk bias of maximum amplitude 3 m and Gaussian noise having a

standard deviation of 0.5 m to the position of each vehicle. The communication range used

in simulations is 300 m which is consistent with the IEEE 802.11p standard for inter-vehicle

communication [7, 8]. A description of the software architecture used in this research is

provided in Section 2.3.

Based on the lane flows estimation strategy in Section 5.6 and the minimization of the

cost function in Eq. (5.2), it is possible to assign appropriate lanes to vehicles. Up to this

point, the system assigns lanes to vehicles once they come within the vicinity of a road

segment. The average travel time of all the vehicles on the highway is also calculated to

evaluate the effectiveness of the algorithm.

The four-lane highway used in the simulation has five entry and five exit points. The

length of the highway is 10 km. The capacity for each of the four lanes is 2200 veh/hr.

The highway starts with zero traffic and the vehicles are generated randomly by VISSIM.

The speed-flow relationships for the four lanes of the highway are shown in Fig. 5.16,

which are similar to the calibration results from a real freeway described in [84, 85, 86].

The free-speeds for lane 1 through lane 4 are 80 km/hr, 90 km/hr, 100 km/hr and 120

km/hr, respectively. The speeds at capacity vc in the four lanes are 81% of the free-

speeds [84, 85, 86]. To ensure the consistency between simulations with and without lane

assignment, the simulation parameters such as the parameters of the car-following models

(calibrated parameters from [85, 86]), vehicle parameters, lane speeds, etc., are similar

for all simulations. The main difference between the two strategies is that vehicles’ lane

changing behavior is set to ‘free lane selection’ (vehicles can overtake any lanes) mode

in simulations without lane assignment (VISSIM-controlled simulations). In this case,

vehicles change lanes whenever they need more room or higher speed. The comparison

between VISSIM-controlled simulations and lane assignment simulations is summarized in

Table 5.1. Other VISSIM parameters are listed in Appendix B.

When a vehicle enters a road segment, it communicates with other vehicles to plan for

optimizing traffic throughput in the current road segment. The proposed strategy appears

to be effective in simulations as shown in Fig. 5.17. These figures show the average travel

time for 1000 vehicles on the highway with different total input flows and the lane change

time constant τ of 5 s. The total flows at the inputs in the three simulations are 2000

veh/hr, 4000 veh/hr and 6000 veh/hr, respectively. The simulation starts with no vehicles

on the highway and approaches steady-state after approximately 5 minutes of simulated

time (once the first cars have covered the 10-km stretch of highway and exit the model).
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Figure 5.16: Speed-flow relationships for simulations.

The first simulation (Fig. 5.17 (top)) shows a large gap (and hence a big improvement)

between the average traveling times with and without the implementation of the lane

assignment, while the gaps are smaller in the next two simulations (Fig. 5.17 (middle and

bottom)). This can be explained by the fact that when the traffic density increases, it is

harder to find empty slots in the fast lanes which are filled up very quickly. The trend of

increased average travel time as the input flow grows from 1000 veh/hr to 6500 veh/hr is

shown in Fig. 5.18. It can be seen from Fig. 5.18 that the increasing rate of the average

travel time is slow when the input volume is smaller than 2200 veh/hr since the fastest

lane (lane 4) can assimilate most of the flow. The travel time in this case is only influenced

by the traffic density in lane 4. As the input flow increases over 2200 veh/hr, the average

travel time rises steadily as the system starts routing vehicles to slower lanes.

The probability distributions of lane-change maneuver cost are calculated and plotted

in Fig. 5.19. The mean value and the standard deviation of lane-change penalty times are

plotted against 21 input traffic flows in Fig. 5.20. As shown in Fig. 5.20, the average lane-

change maneuver cost and the standard deviation increase with the input flow. At high

flow rates, the average grows at a faster rate than the flow. This demonstrates the trade-off

between the longitudinal flow and the lateral flow. From Fig. 5.19 and Fig. 5.20, it can

be seen that at high longitudinal flows, both the average and the standard deviation are
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Table 5.1: Comparison between VISSIM-controlled simulations and lane assignment sim-

ulations.

Type VISSIM-controlled Lane assignment

Vehicle speed Vehicles are assigned a desired Vehicles are forced to travel

lane speed when they enter a at lane speeds.

lane but speed distributions are

controlled by VISSIM.

Lane changing Vehicles change lanes when they Controlled from external model.

behavior need more room or higher speed.

Car-following Van Aerde’s model. Wiedemann’s model.
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Figure 5.17: Improvement over average travel time for 1000 cars with the input flow being

2000 veh/hr (top), 4000 veh/hr (middle), and 6000 veh/hr (bottom).
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Figure 5.18: Trend of increased average travel time as input flow increases from 1000 veh/hr

to 6500 veh/hr.

large due to high density in all four lanes. The standard deviation, however, is very small

at low traffic conditions since the high-speed lane can accommodate all the longitudinal

flow making the variance in gap sizes much smaller than at high traffic conditions where

the vehicles spread all over the four lanes having very different traffic densities.

5.9 Selfish Lane Selection Versus System Optimality

In this chapter, the problem of lane routing to optimize the performance of a congested

highway is considered. Given a network with associated traffic rates between each origin-

destination pair, the objective is to route traffic such that the sum of all travel times is

minimized.

However, in many situations, it may be difficult or impossible to regulate network traffic

so as to implement an optimal assignment of lanes. In the absence of regulation by some

central authority, some vehicles might route their traffic on the minimum cost available to
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them. In general such a ‘selfishly motivated’ assignment of traffic will not minimize the

total cost.

Detailed analysis of such a system can be modeled using Nash equilibrium in classical

game theory as proposed in [87] and will be considered in future work. Within the frame

work of this work, VISSIM was used to implement the simulations and show the effect of

selfish lane selection. Vehicles that do not comply with the suggested lane routing decision

are set to ”free lane selection” mode in VISSIM, i.e., a vehicle switches lanes to satisfy

its own benefit. Fig. 5.21 shows the simulation results where the percentage of vehicles

that do not comply with the suggested optimal lane assignment varies from 0% to 100%

under different input traffic flows. Fig. 5.22 plots the steady-state average travel time

versus percentage of non-participating vehicles under different input flow rates. The three

dotted lines in Fig. 5.22 are cubic-spline smoothed fits for the three data groups. As could

be expected, these figures show a steady rise in the average travel time as the number of

non-participating vehicles increases.

5.10 Conclusions

We have proposed a system for optimization of lane assignment with the objective of

increasing traffic throughput. This system is unique in that it uses GPS as the only form

of sensing, which makes the system simpler in terms of hardware management and thus

less costly. We have developed a linear model for lane assignment and presented results

on the use of a linear programming algorithm in the solution of the problem. Simulation

results demonstrate that intelligent lane selection can improve highway capacity.

The potential future direction for this work will be on the effect of selfish lane selection

where a portion of the drivers do not comply with the suggested lane assignment strategy

to help understand the underlying structure of such decision making situations. Such a

system can be modeled using a non-cooperative game theory.
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Figure 5.21: Percentage of vehicles not complying to suggested lane assignment strategy

with the input flow being (a) 2000 veh/hr, (b) 4000 veh/hr, and (c) 6000 veh/hr.
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Chapter 6

Intelligent Platoon Formation

6.1 Introduction

This chapter targets the problem of traffic management using a ‘platoon’ concept with the

objective of developing scheduling and control techniques to support autonomous driving

on urban multi-lane highways with multiple entry (on-ramp) and exit (off-ramp) points.

The concept behind platooning is to have vehicles in groups traveling in tight vehicle-string

formations where the inter-vehicle spaces are on the order of 1-5 m (see Fig. 6.1). The group

is controlled by a leader and multiple platoons would be separated by larger distances for a

greater degree of safety [88, 89, 90]. A prototype of this concept was demonstrated during

Demo’97 in San Diego on a reserved 7-mile highway lane guided by magnets embedded in

the roadway [91, 103].

The idea of ‘platooning’ is to abbreviate the limitation of capacity and safety that

can be achieved by road vehicles. The effect of platooning on capacity, which relates the

capacity Cmax in veh/lane/hr to the steady state speed v in km/hr, the separation time

between platoons th in seconds, the intra-platoon distance headway h in m, the average

vehicle length s in m, and the maximum platoon size Υ is described by (see Appendix C):

Cmax =
3600Υv

3.6[(Υ− 1)h + s] + thv
. (6.1)

For example, the lane capacity can be increased up to 7,600 vehicles per lane per hour

when the maximum platoon size of 25 vehicles is used given that other parameters are:

h = 10 m, s = 4.5 m, v = 100 km/hr, th = 3 seconds. With platooning, several-fold

increase in roadway capacity can be achieved with minimal upgrades to infrastructure and

relatively little public expense.

85
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Under current highway driving conditions (without platooning), it is apparent that as

the speed and density of vehicles increase, the likelihood and likely severity of the crashes

will increase. The limitations of drivers are the primary causes. Driver errors are respon-

sible for 90% of crashes that occur today, and the limited ability of drivers to follow other

vehicles produces the limitation on lane capacity [93]. The limitation of drivers’ ability

to perceive changes in vehicle spacing, relative motion, and acceleration and their limited

speed and precision of response ensure that lane capacity cannot generally exceed 2,200

vehicles per hour under manual control [93] or 2,400 vehicles per hour for a freeway with

high-quality geometry [94]. In order to increase lane capacity, it is necessary to organize

vehicles in platoons where vehicles are at closer average spacing (for the same speed).

The platoon mode of operation was conceived as a way of abbreviating the limitation of

capacity and safety that can be achieved by road vehicles.

Another reason for platooning is to reduce fuel consumption. It was shown in [95, 96]

that platooning operation can save fuel consumption by reducing aerodynamic drag exerted

on the trailing vehicles. In this work, the efforts to measure aerodynamic drag and fuel

consumption on each vehicle in the platoon were conducted by Browand and Michaelian

in both laboratory and real road tests as shown in Fig. 6.1. It was shown in this study

that at 4-meter spacing and a travel speed of 96 km/hr, platooning can save between 5%

and 12% in fuel, depending on whether the vehicle is a platoon leader, trailing or interior

vehicle. The interior vehicles have the least fuel consumption and thus benefit the most

from close-following. Trailing vehicles are intermediate in benefit, and leading vehicles

benefit least.

       

(a)                       (b) 

 
Figure 6.1: (a) Three-Lumina platoon in the Dryden wind tunnel at USC, and (b) platoon

operation at 4-meter spacing to measure aerodynamic drag and fuel consumption [95].



Intelligent Platoon Formation 87

The benefits of platooning can be achieved by forming platoons at reasonably large

sizes (five or more vehicles). It is also desirable to ensure that platoons remain intact for

considerable distances [4].

6.2 Platoon Control Diagram

The control diagram for platooning used in this work is shown in Fig. 6.2. Each vehicle

is assumed to be equipped with a GPS receiver and a processor to implement the lane-

positioning algorithm and to communicate GPS data as well as other platoon information

with other vehicles across an ad-hoc network.

GPS satellites

h GPS receiverGPS measurements from other vehiclesIn-Car Computer FiltersLane positioningLongitudinal control Platoon informationLateral controlControl output
Talk to other vehicles h h

Figure 6.2: Control diagram for platoon assignment.

The most crucial capability for a vehicle to operate in any collaborative driving system

is to be able to guarantee the following of a vehicle ahead both longitudinally and laterally.

Once this basic skill is achieved, higher order commands with the aid of inter-vehicle com-

munication can be issued to the vehicle to space the vehicles in a single lane formation, or
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to enter/exit other platoons in other lanes. The lane positioning system in Chapter 4 works

as a low-level input for platoon assignment. The GPS is again used for determining vehicle

position in a global coordinate system. The error of filtered relative GPS measurements is

in the order of 0.1 - 0.3 m and is good enough for platooning operation.

The lateral controller is necessary for each vehicle in platoon for lane following and

a longitudinal controller gives a vehicle in a platoon the capability of maintaining an

intra-platoon distance h between the vehicle in front of it if it is a follower or a distance

between the front platoon if the vehicle is a leader. This topic has been extensively studied

and demonstrated in the literature through the use of conventional control strategies to

effectively achieve lateral control [97, 98, 99], longitudinal control [100, 101], and combined

lateral and longitudinal control [102, 103].

Other platoon information a follower receives from other members includes: index

numbers of platoon members, platoon split and platoon merge commands from the leader,

platoon disband command from the leader, etc., while for a platoon leader, the information

includes: index numbers of platoon members, platoon merger and split requests from other

members and free-agent vehicles, destinations of platoon members, etc. A platoon leader

must also broadcast commands such as merge, split, and disband to the following members.

6.3 Strategy for Platoon Formation at Entrances

In this section, a direction for forming platoons at highway entrances is proposed with an

aim of increasing lane capacity and therefore enhancing traffic throughput. The platoon

assignment will be formulated here as linear programming problems that can be solved

using the Simplex algorithm.

The system works as follows: (1) When a vehicle hits an entry point as it enters the high-

way, it communicates with all the existing platoons (coming from highway upstream) and

incoming free-agent vehicles (vehicles, in the entrance ramp, not assigned to any platoon

yet) within its communication range R. A platoon is considered to be within communi-

cation range if its leader is in the communication range. (2) The platoon assignment is

executed and decides which incoming vehicles go to which platoons based on the sharing

information among the platoons and vehicles in the communication group. (3) Vehicles,

now no longer are free-agent, are maneuvered to assigned platoons leaving the entrance

ramp for the next group of incoming free-agent vehicles. A vehicle, which has been as-

signed to a platoon, will not call its planner again even if it hits the entrance point. Fig. 6.3

depicts the concept of this communication group in which vehicles and platoons within R

are shown in a dark color.
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i 1i +
R

Figure 6.3: Platoon assignment strategy.

For assigning the incoming vehicles to appropriate platoons, the following policies are

made to ensure the intactness of platoons [4]:

1. Once a vehicle has been assigned a platoon, it stays with the hosted platoon for its

entire trip until it exits the highway,

2. Platoons are constrained to have the maximum platoon size Υ,

3. The difference in index between the nearest and the furthest destinations of vehicles

in a platoon cannot exceed a maximum number r, called the ‘range of destinations’

of a platoon,

4. Vehicles in platoons are sorted front to back in the order non-increasing destination

so that the rest of platoon members remain intact after some vehicles split off. The

meaning of this policy is that in a platoon the leader has the furthest destination and

the last vehicle in the group has the nearest destination. This allows the same vehicle

to remain as platoon leader through the platoon’s lifetime, while the platoon ‘drops

off’ vehicles that have closer destinations. This also gives a platoon the flexibility of

having a greater range of destinations, as long as the range does not exceed r,

5. If an incoming vehicle cannot find a feasible platoon to join (i.e., satisfying the range

r and the maximum platoon size Υ), it initiates a new platoon.
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6.4 Problem Formulation

This section develops a strategy for organizing vehicles arriving at entrance ramps into pla-

toons, with the objective of maximizing the distance that platoons stay intact. Essentially,

this entails grouping vehicles according to their destination.

Vehicles are appended to existing platoons at the beginning of each road segment i on

the basis of their destinations. A vehicle enters the highway, is adjoined to an existing

platoon coming from highway upstream and remains intact until it reaches its destination.

At this point, the vehicle separates from the host platoon and travels to its exit.

Similar to lane assignment in Chapter 5, denote the distance traveled by a vehicle from

entrance i to exit j as di,j. Let the distance that the last vehicle of platoon p travels

from entry i to its destination be δl
i,p, respectively. To satisfy policy 4 and to maximize

the distance a vehicle at an entrance stays intact with platoon p, the goal is to determine

platoon p so that δl
i,p − di,j ≥ 0 is minimized. Let χp

i,j be the number of vehicles at the

entrance ramp traveling from i to j that will be sent to platoon p, and np be the number

of platoons within the range R. A candidate for the cost function to be minimized is:

Θi =

np∑
p=1

nd∑
j=i+1

(δl
i,p − di,j)χ

p
i,j. (6.2)

Denote βp
i,j as the percentage of vehicles entering the highway and traveling from i to j.

The factor βp
i,j relates the number of vehicles χp

i,j as χp
i,j = χi,jβ

p
i,j where χi,j is the number

of vehicles within R traveling from i to j. Equation (6.2) therefore can be rewritten as

Θi =

np∑
p=1

nd∑
j=i+1

χi,j(δ
l
i,p − di,j)β

p
i,j. (6.3)

The minimization problem can again be cast as a linear programming problem to solve

for βp
i,j’s with the cost function in Eq. (6.3) subject to the following constraints:

1. Non-negativity: βp
i,j ≥ 0,

2. Maximum platoon size: εp +
∑nd

j=i+1 χi,jβ
p
i,j ≤ Υ, where εp is the current size of

platoon p, and Υ is the maximum platoon size (the number of vehicles a platoon can

accommodate),

3. Percentages sum to 1:
∑np

p=1 βp
i,j = 1.
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To satisfy policies 3 and 4, it is also required that βp
i,j = 0 (constraint 4) if either

desf
p − j > r or δl

i,p − di,j < 0 where desf
p is the destination index of the leader of platoon

p.

To summarize, the constrained minimization problem is of the form

min cTx,

subject to

Ax ≤ b, Aeqx = beq, and x ≥ 0.

The vector c ∈ <np(nd−i) has the form

c = [χi,i+1(δ
l
i,1 − di,i+1) ... χi,i+1(δ

l
i,np

− di,i+1)︸ ︷︷ ︸
np components

...

... χi,nd
(δl

i,1 − di,nd
) ... χi,nd

(δl
i,np

− di,nd
)︸ ︷︷ ︸

np components

]T ,

vector x ∈ <np(nd−i) is

x = [β1
i,i+1 ... β

np

i,i+1︸ ︷︷ ︸
np

... β1
i,nd

... β
np

i,nd︸ ︷︷ ︸
np

]T ,

matrix A ∈ <np×np(nd−i) has the form

A = [Ai,i+1|Ai,i+2| ... |Ai,nd
],

where matrix Ai,j ∈ <np×np is

Ai,j =




χi,j

. . .

χi,j


 ,

and Aeq ∈ <(nd−i)×np(nd−i) is a band matrix

Aeq =




np︷ ︸︸ ︷
1 · · · 1

. . .
np︷ ︸︸ ︷

1 · · · 1




.
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Vector b ∈ <np is

b =




Υ− ε1

...

Υ− εnp


 ,

and vector beq ∈ <np(nd−i) is

beq =




1
...

1


 .

The idea is to assign a vehicle to a platoon that has the closest destinations to that of

the vehicle. To illustrate this concept, suppose that one platoon currently has destinations

{4,3}, another currently has {6} and destinations are equally spaced. Also, suppose that

r = 3. If the newly arriving vehicle has destination 3, it is assigned to the first platoon,

even though it would be feasible to assign it to the second.

6.5 Simulation

VISSIM was used to simulate the proposed platoon assignment strategy. The four-lane

highway used in the simulation has ten entrances from e1 to e10 and ten exits from x1

to x10 as shown in Fig. 6.4. The distance from one entry to the next exit is 2 km. The

highway starts with zero traffic and the vehicles are generated randomly by VISSIM. A

screenshot of platooning operation in VISSIM is shown in Fig. 6.5.

1e

2e 10e1x
8x

10x

9x3e2x

Figure 6.4: Highway used in simulations.

Let the platoon ratio be the ratio of vehicle distances traveled to platoon distances

traveled. To evaluate the proposed strategy, platoon sizes and platoon ratios at the road

segment immediately after the third entrance are collected under different total input

flows from the first three entrances and different destination ranges r. Eq. (6.1) was used
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Figure 6.5: Screenshot of VISSIM simulation of platooning operation.

to calculate the lane capacity based on the average platoon size. The parameters used in

this equation are: th = 3 sec, v = 100 km/h, h = 10 m, s = 4.5 m, and Υ = 10 veh.

The probability distributions of platoon sizes versus destination range and total input

flow are plotted in Fig. 6.6 and the associated means and standard deviations are plotted

in Fig. 6.7. Fig. 6.8 shows the relationship between mean/standard deviation of platoon

size, destination range and total input flow in three dimensional space. It can be seen that

for each destination range, the average platoon size is small at low longitudinal input flow

and grows as the volumes of vehicles at entries get higher. We can also see that no platoon

exceeds the maximum platoon size of 10 vehicles when the input flow is 1000 veh/hr even

at r = 5. The average platoon size is also larger when the destination range is large which

increases lane capacity as shown in Fig. 6.9. This is reasonable since at high longitudinal

flow, the chance of getting a feasible vehicle/platoon to join is higher.

Fig. 6.9 shows the lane capacities at 100 km/hr calculated from Eq. (6.1) based on the

average platoon sizes. It is possible to draw several conclusions from this plot. Over the

ranges of destinations tested, a larger range has greater benefit on lane capacity, but at

the cost of reducing platoon ratio as shown in Fig. 6.10. The values for lane capacity are

significant, at r = 5, the lane capacities range from 2360 veh/hr to 4880 veh/hr depending

upon the total input flow. A higher longitudinal input flow results in a larger capacity.

On the other hand, there is no big improvement in terms of lane capacity for small
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destination range at low input flows. For example, the lane capacity is only 1610 veh/hr

when the input flow is 1000 veh/hr and r = 1. A small destination range, however, means

that most of the vehicles in a platoon have same destination and they can therefore exit

the highway at the same time. Fig. 6.10 shows that at r = 1 the vehicles stay intact

with the platoons up to 88% of the highway on average while this number drops to 66%,

69% and 70% for the longitudinal flow of 1000 veh/hr, 5000 veh/hr and 10,000 veh/hr,

respectively.

6.6 Conclusions

To maximize highway throughput and reduce fuel consumption, it is desirable to create

platoons that are large in size, and that remain intact over long distances. Sorting vehicles

by destination at the entrance is one way to accomplish this objective. Toward this end,

this work evaluated a proposed strategy which assigns vehicles to platoons by solving an

optimization problem.

A linear model for effectively assigning vehicles to appropriate platoons when they enter

the highway was formulated. The simplex algorithm was used to solved this optimization

problem and simulation results in VISSIM were presented.

Simulation results demonstrated that lane capacity can be increased to between 2360

veh/hr and 4880 veh/hr when the destination range, representing the difference in index

between the closest and the furthest exits for vehicles in the platoon, of 5 exits was used,

depending on the total input traffic volume. Simulation results also suggested that while

a smaller range of destination can lead to a lesser increase in lane capacity, it ensures that

vehicles stay intact with the platoons for longer distances. For example, at the total input

traffic volume is 5000 veh/hr, vehicles remain with their host platoons up to 88% when

the destination range is 1 and only 69% when the destination range is 5. This results can

be used to balance the tradeoff between highway capacity and distances platoons remain

intact.

The negative side of the proposed platoon assignment strategy is that it increases the

frequency of lane changes and therefore might reduce the level of highway safety. However,

this issue can be overcome with automatic control and is far outweighed by many other

advantages of platooning.

A potential future direction for this work will be on quantifying the effect of platoon

assignment on the reduction of fuel consumption. This can be done by using the field test

results from the study of Browand and Michaelian [95, 96].
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Figure 6.6: Platoon size probability distribution versus destination range r and input flow.
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Figure 6.7: (a) Average and (b) standard deviation of platoon size versus destination range

r and input flow.
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r and input flow.
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Chapter 7

Conclusions and Recommendations

7.1 Summary of the Thesis

The work presented in this thesis addresses several issues in ITS by way of a dynamic

collaborative driving approach. The problems of lane positioning, lane assignment opti-

mization, and platoon formation have been addressed and appropriate strategies to solve

these problems have been developed and tested in both real experiments and simulations.

The main scientific achievements can be summarized as follows:

In Chapter 4 a novel lane position estimation system using a Markovian approach based

on cooperative driving was developed. The robustness and effectiveness of the system was

shown in both real road-tests and VISSIM simulations. For hardware implementation, an

experimental setup consisting of notebook PC’s, equipped with standard GPS units for

vehicle locations and a wireless ad-hoc network for communication capability was designed

and tested in real-time in outdoor conditions.

In comparison to conventional lane positioning methods which usually deal with com-

plicated image processing techniques and/or expensive equipment, the proposed method

only requires low cost GPS receivers, a peer to peer communication system and a simple

localization algorithm. Simulation and experimental results have shown the efficiency of

the algorithm, even when the GPS data were significantly degraded. This lane positioning

system also serves as a basis for all subsequent strategies such as traffic flow estimation,

lane assignment, and platoon assignment.

Chapter 5 presents a strategy for optimization of lane assignment with the objective of

increasing traffic throughput on highway systems. To solve the problem, a linear model for

lane assignment was proposed and results on the use of a linear programming algorithm in
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the solution of the problem were presented. This system is unique in that it used GPS as

the only form of sensing, which made the system simpler in terms of hardware management

and thus less costly. Simulation results demonstrated that intelligent lane selection can

improve highway capacity.

Also in Chapter 5, a method for flow rate estimation was proposed with a formula being

given in Eq. 5.1. The simulation results showed that the strategy was reliable to estimate

the flows under different traffic conditions and can be used together with lane positioning

scheme for the subsequent lane optimization algorithm.

Chapter 6 presents an approach to increasing highway capacity and reducing fuel con-

sumption by organizing vehicles into platoons with the objective of maximizing the travel

distance that platoons stay intact. To quantify the effectiveness of platoon assignment,

platoon sizes and ratios were collected under different longitudinal input flows and desti-

nation ranges. Simulation results showed that lane capacity can be increased effectively

when platooning operation is used.

7.2 Known Limitations

For the lane positioning system, the limitation of the proposed strategy lies in the fact

that it only uses GPS data to estimate lane positions. This might be challenging where

GPS data is not available or the GPS signal is blocked completely by large obstacles such

as in a long tunnel. One possible solution to this problem is to fuse the GPS data with

another type of sensor such as an Inertial Measurement Unit (IMU) until GPS data is

again available.

In the formulation of the lane assignment problem, it was assumed that the capacities

of lanes are fixed and are not affected by lateral flows due to lane changes. This is a

shortcoming of the system since in practice, the actual lane capacities depend on the

number of lane changing maneuvers that occur and hence on the lane assignment. For

a better assessment of the system, lane capacities need to be estimated by taking into

account lane change maneuvers.

For platooning, the negative side of the proposed platoon assignment strategy is that

it increases the frequency of lane changes and therefore might reduce the level of highway

safety. Additional work is required to ensure that lane changes are safe either by using

autonomous control of vehicles, or by including a term in the cost function that increases

the cost based on lane changes required.
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Another limitation in platoon assignment is that the complex interaction between pla-

toons and free-agent vehicles when vehicles approach their assigned platoons was not con-

sidered in the objective function. This leaves room for further investigation in future

research.

7.3 Future Research

The future direction of this work has four logical aspects: (1) modeling dynamic capacity

as a function of lane change maneuvers, (2) quantifying the effect of selfish lane selection on

lane assignment, (3) formulating the effect of lane assignment and platooning operations

on the reduction of fuel consumption, and (4) developing a lane assignment algorithm for

vehicle platoons.

7.3.1 Dynamic Capacity

One of the shortcomings in the formulation of the lane assignment problem is that the

capacities of lanes are assumed to be fixed. For better assessment of the system, the lane

changing maneuvers need to be taken into account to estimate realistic lane capacities. In

order to do so, the lateral flow caused by lane changes when the vehicle move to target

lanes as well as when they exit the highway must be formulated.

7.3.2 Selfish Lane Selection

Another potential future direction for lane assignment will to study the effect of selfish lane

selection, where a portion of the drivers do not comply with the suggested lane assignment

strategy. This will increase our understanding the underlying structure of such decision

making situations. Such a system can be modeled using a non-cooperative game theory.

7.3.3 Fuel Consumption Estimation for Platooning

A potential future direction for platoon assignment can be on quantifying the effect of

platoon assignment on the reduction of fuel consumption. It was recognized that close-

following would likely decrease the average vehicle drag and therefore also decrease the

average fuel consumption shown in the field test results from the study by Browand and

Michaelian [95, 96]. However, we are aware of no information in the open literature quanti-

fying the fuel savings for vehicle platoons as a function of vehicle spacing and platoon size
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and determining the effect of platoon assignment on fuel savings. A study on this issue

will be beneficial for future research on platooning.

7.3.4 Lane Assignment for Vehicle Platoons

Vehicle platooning is of interest to a number of researchers for increasing traffic throughput

by packing vehicles together. Algorithms for handling lane changing, lane assignment for

platoons of vehicles and other associated problems within vehicle platoons will also be

considered in future research.



Appendix A

Simplex Algorithm

In mathematical optimization theory, the simplex algorithm of George Dantzig is a popular

technique for numerical solution of the linear programming problem defined by maximizing

cTx,

subject to

Ax ≤ b,x ≥ 0.

Figure A.1: Feasible region: a series of linear constraints on two variables produces a region

of possible values for those variables. Solvable problems will have a feasible region in the

shape of a simple polygon [69].

Geometrically, the linear constraints define a convex polyhedron, which is called the

feasible region (see Fig. A.1). Since the objective function is also linear, all local optima

are automatically global optima. The linearity of the objective function also implies that

an optimal solution can only occur at a boundary point of the feasible region, unless the

objective function is constant, when any point is a global minimum.
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Let H be the halfspaces defined by the constraints. If the constraints contradict each

other (
⋂

H = ∅) then the feasible region is empty and there is no optimal solution, since

there are no solutions at all. In this case, the linear programming problem is said to

be infeasible. The polyhedron can also be unbounded in the direction of the objective

function. In this case, there is also no optimal solution.

Linear programming problems must be converted into augmented form before being

solved by the simplex algorithm. This form introduces non-negative slack variables to

replace non-equalities with equalities in the constraints. The problem can then be written

in the following form
[

1 −cT 0

0 A I

] 


Z

x

xs


 =

[
0

b

]
,

where Z is the variable to be maximized and xs are the newly introduced slack variables.

Algorithm 3 Simplex(H)

Require: set of halfspaces H

Ensure: the lowest vertex in the intersection of H

1: if
⋂

H = ∅ then

2: return INFEASIBLE

3: end if

4: x ⇐ any feasible vertex

5: while x is not locally optimal do {pivot downward, maintaining feasibility}
6: x ⇐ any feasible neighbor of x that is lower than x

7: if x = ∞ then

8: return UNBOUNDED

9: end if

10: end while

11: return x

The simplex algorithm solves linear programming problems by constructing an admissi-

ble solution at a vertex of the polyhedron, and then walking along edges of the polyhedron

to vertices with successively higher values of the objective function until the optimum is

reached. The pseudo-code of the algorithm is given in Algorithm 3 [70].



Appendix B

VISSIM Simulation Setting

Highway parameters used in the simulations are listed in Table B.1. The main difference in

VISSIM-controlled simulations and lane assignment simulations is the way vehicle speeds

and lane change behavior were controlled.

In VISSIM-controlled simulations, a vehicle will travel at its desired speed (with a

small stochastic oscillation) if it is not hindered by other vehicles. A vehicle with a higher

desired speed than its current speed will check for the opportunity to pass. The desired

speed in each lane was set using Desired Speed Decisions. The s-shaped distribution of the

desired speed distribution is concentrated around the median value, which is the nominal

driving speed assigned for a lane. Vehicle following and lane change parameters in VISSIM-

controlled simulations are listed in Table B.2 and Table B.3, respectively.

In lane assignment simulations, vehicles were assigned a driving speed plus a small

speed oscillation once they enter a lane. The driving speed for each lane was obtained

using Van Aerde’s model based on the traffic density and calibrated parameters (see the

source code below). The parameters of Van Aerde’s model used in this work are similar to

VISSIM’s Wiedemann’s car-following model as calibrated in [85, 86].

// Member func t i on name : van aerde speed

// Purpose : determine lane speed us ing Van Aerde ’ s model

// Input : f = t r a f f i c f l ow ra te ; v f = f r e e speed ; C = capac i t y

// Output : doub le va lue o f v e h i c l e speed [km/hr ]

double van aerde speed (double f , double vf , double C) {
i f ( f > C) f = C;

double Alpha = 0 . 8 1 ;

double vc = Alpha∗ vf ; // speed at capac i t y

double dj = 5∗vc/ vf ; //jam dens i t y

double m = (2∗ vc − vf ) / ( ( v f − vc )∗ ( v f − vc ) ) ;

double c2 = 1/( dj ∗(m + 1/ vf ) ) ;
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Table B.1: Highway parameters.

Type Parameters

Number of entrances and exits 5

Number of lanes 4

Highway length 10 km

Lane free speeds 80, 90, 100, 120 km

Lane capacity 2,200 veh/hr

Highway type Freeway

Vehicle length 4.5 m

Table B.2: Vehicle following behavior parameters in VISSIM-controlled simulations (VIS-

SIM default setting).

Type Parameters

Car-following model Wiedemann’s model

Look ahead distance min: 0.00 m, max: 250 m

Temporary lack of attention duration: 0.00 s, probability: 0.00%

Speed distribution s-shaped distribution

Table B.3: Lane change parameters in VISSIM-controlled simulations (VISSIM default

setting).

Type Parameters

General behavior Free lane selection

Lateral behavior Observe vehicles in next lane(s)

Waiting time before diffusion 60 s

Min. headway 0.5 m

Max. deceleration Own: -4.00 m/s2, Trailing vehicle: -3.00 m/s2

-1 m/s2 per distance Own: 100 m, Trailing vehicle: 200 m

Accepted deceleration -1.00 m/s2, Trailing vehicle: -0.50 m/s2
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double c1 = m∗ c2 ;

double c3 = (−c1 + vc/C − c2 /( v f − vc ) )/ vc ;

double a = c1∗ vf + c2 ;

double b = −c1∗ f + c3∗ f ∗ vf − vf ;

double c = f − c3∗ f ∗ f ;

double de l t a = b∗b − 4∗a∗c ;

double d = (−b + sq r t ( d e l t a ) )/ (2∗ a ) ; // dens i t y

return f /d ;

}

// Member func t i on name : g i v e da

// Purpose : Gives v e h i c l e de s i r ed a c c e l e r a t i on to VISSIM

// Input : Nul l

// Output : doub le va lue o f de s i r ed a c c e l e r a t i on [m/s ˆ2]

double CVehicle : : g ive da ( ) const {
const double speedOsc i l = 0 . 1 ; // v e l o c i t y o s c i l l a t i o n [m/s ]

const double accStep = 2 ;

long l ane = this−>g i v e l a n e ( ) ; // ge t lane po s i t i on from VISSIM

double v = this−>g iv e v ( ) ; // ge t speed from VISSIM

// c a l c u l a t e lane speed us ing Van Aerde ’ s model

// from est imated f l ow rate , lane free−speed , and lane capac i t y

double v1 = van aerde speed ( estimatedFlow [ 0 ] , SPEED LANE1, CAPACITY LANE1) / 3 . 6 ;

double v2 = van aerde speed ( estimatedFlow [ 1 ] , SPEED LANE2, CAPACITY LANE2) / 3 . 6 ;

double v3 = van aerde speed ( estimatedFlow [ 2 ] , SPEED LANE3, CAPACITY LANE3) / 3 . 6 ;

double v4 = van aerde speed ( estimatedFlow [ 3 ] , SPEED LANE4, CAPACITY LANE4) / 3 . 6 ;

switch ( lane )

{
case 1 : // lane 1

i f ( v > ( v1 + speedOsc i l ) )

return −accStep ;

else i f ( v < ( v1 − speedOsc i l ) )

return +accStep ;

else

return 0 ;

case 2 : // lane 2

i f ( v > ( v2 + speedOsc i l ) )

return −accStep ;

else i f ( v < ( ( v2 − speedOsc i l ) )

return +accStep ;

else

return 0 ;

case 3 : // lane 3

i f ( v > ( v3 + speedOsc i l ) )

return −accStep ;

else i f ( v < ( v3 − speedOsc i l ) )

return +accStep ;

else

return 0 ;

case 4 : // lane 4

i f ( v > ( v4 + speedOsc i l ) )
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return −accStep ;

else i f ( v < ( v4 − speedOsc i l ) )

return +accStep ;

else

return 0 ;

default :

return 0 ;

}

return 0 ;

}



Appendix C

Lane Capacity

Let v be the steady state speed of the vehicles [km/hr], th be the separation time between

platoons [seconds], s be the average length of vehicles [m], h be the intra-platoon distance

headway [m], and Υ be the maximum platoon size (see Fig. C.1). The total distance from

the front bumper of a platoon leader to the rear bumper of the last vehicle in the following

platoon is (Υ− 1)h + s + thv
3.6

[m]. The total time in hr taking all the Υ vehicles to pass a

given point is

3.6[(Υ− 1)h + s] + thv

3600v
. (C.1)

Therefore the maximum capacity is

Cmax =
3600Υv

3.6[(Υ− 1)h + s] + thv
. (C.2)

h
3.6

ht v

( )1 h sϒ − +

s

Figure C.1: Lane capacity calculation.
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