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A Complete and Scalable Strategy for Coordinating
Multiple Robots Within Roadmaps
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Abstract—This paper addresses the challenging problem of find-
ing collision-free trajectories for many robots moving toward in-
dividual goals within a common environment. Most popular al-
gorithms for multirobot planning manage the complexity of the
problem by planning trajectories for robots individually; such de-
coupled methods are not guaranteed to find a solution if one exists.
In contrast, this paper describes a multiphase approach to the plan-
ning problem that uses a graph and spanning tree representation to
create and maintain obstacle-free paths through the environment
for each robot to reach its goal. The resulting algorithm guaran-
tees a solution for a well-defined number of robots in a common
environment. The computational cost is shown to be scalable with
complexity linear in the number of the robots, and demonstrated
by solving the planning problem for 100 robots, simulated in an
underground mine environment, in less than 1.5 s with a 1.5 GHz
processor. The practicality of the algorithm is demonstrated in a
real-world application requiring coordinated motion planning of
multiple physical robots.

Index Terms—Complexity, mobile robots, path planning,
trajectory planning.

I. INTRODUCTION

THE USE of multiple mobile robots in a common environ-
ment is valuable for the automation of many operations,

such as underground mining and warehouse management. In
such applications, multiple vehicles are required to drive au-
tonomously between different locations, preferably taking the
shortest possible route while avoiding collisions with static ob-
jects and other vehicles. This paper presents an algorithm for
efficiently determining collision-free paths for many vehicles in
environments composed of tunnels or corridors, as may be found
in these applications. The problem addressed by this research
is demonstrated by the multirobot planning task pictured in
Fig. 1(a).

In this scenario, the environment is constructed of corridors
or tunnels that are wide enough for only a single robot to travel,
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Fig. 1. Multirobot planning problem requiring coordination of three robots,
and a graph-based representation of the environment. (a) Planning problem.
(b) Graph-based map.

and we assume differential drive robots that can rotate in place.
The objective in this example is to shift the positions of each
robot, such that robot R1 moves to the initial position of R3 , R3
to the position of R2 , and R2 to the position of R1 . Our goal is
to find an algorithm that is scalable to a large number of robots
(>100) densely situated in a large environment, and can solve
problems such as that shown in Fig. 1(a) that require specific
coordinated planning.

Many methods have been proposed for planning the motion
of one or more robots; refer to [15] and [16] for broad reviews
of the subject. Planning algorithms can be evaluated in terms of
completeness (whether they are guaranteed to find a solution if
one exists), complexity, and optimality.

Most multirobot planning algorithms fall into one of two cate-
gories, coupled or decoupled. Coupled algorithms, such as [22],
plan the trajectories of all robots in the environment concur-
rently. By combining the states (poses) of the individual robots
together into a system state representation, a sequence of state
transitions can be found that will move all robots to their respec-
tive goals. Using complete search methods, such as A* [11],
coupled algorithms can achieve completeness and optimality,
and can solve the problem shown in Fig. 1(a). Coupled algo-
rithms depend on a centralized architecture, where all of the
state information is available to a single processor. Their limi-
tation is in searching the large configuration space that grows
in dimension as each additional robot is added to the environ-
ment. A direct application of the A* search would guarantee
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a resolution-complete solution. However, since the size of
the configuration space (the number of possible states of the
system) grows exponentially with the number of robots [O(kr )
for r robots], the computational complexity of the A* search
also increases exponentially and quickly becomes intractable.
Hopcroft et al. have shown the general motion planning prob-
lem for multiple moving objects to be PSPACE-hard [12]. One
approach to reduce the size of the search space is to create
probabilistic roadmaps (PRMs) through the environment; this
method was shown in [22] to be probabilistically complete and
demonstrated in simulation for up to five robots. Another ap-
proach is to decompose a large map into subgraphs, and plan
paths between subgraph segments before coordinating motion
within each subgraph [20].

Decoupled methods plan for the motion of individual robots,
rather than planning the motion of all robots simultaneously.
One approach is to decouple path planning from mutual col-
lision avoidance, by first finding obstacle-free paths, and then,
adjusting velocities of individual robots to avoid collisions [10],
[13], [19]. Alternatively, a coordination-diagram [18] approach
can be used to independently combine generated paths of many
robots while avoiding collisions [21].

Decoupled methods may use a decentralized architecture,
allowing independent planning-based methods such as maze
searching [17] or potential fields [3], [8], or they may use a
centralized architecture planning for all robots with a single
processor. Centralized decoupled planners typically determine
individual trajectories sequentially and combine the plans of all
robots to avoid collisions. Plans may be combined by iteratively
adding new plans as obstacles into the configuration space–
time [7]; however, this inherently involves assigning priorities
to robots to determine the order in which plans are added, which
affects the quality of the resulting plan. This can be addressed
by considering all different combinations of priorities (for up
to three robots, demonstrated in [2]), or running an optimiza-
tion process on the priority assignment [4]. In a more dynamic
paradigm, the plans of individual robots can be merged into the
global coordination plan as new goals are assigned [1].

By planning the motion of robots sequentially, decoupled
methods have lower complexity and greater scalability than a
coupled planner; however, this comes at the cost of completeness
and optimality. The problem in Fig. 1(a), for example, cannot be
solved by a sequential planner. By selecting the optimal plan for
any robot independently, an obstacle is created in the space–time
map that cannot be avoided by the other two robots.

This paper presents an alternative multiphase planning
method that can solve these coordinated planning problems,
and is scalable to a large number of robots in a large environ-
ment. A graph representation of the environment is first created,
and a spanning tree through the graph is selected. A multiphase
planning approach then takes advantage of the properties of the
graph and spanning tree to create and maintain obstacle-free
paths while robots move to their respective goals.

A topological graph of the environment (a roadmap) is a pre-
requisite for this planning algorithm, in which the current and
goal positions of robots are identified by nodes in the graph.
For the derivation and simulation of the method in this paper,

Fig. 2. Spanning tree T ∗ for the graph representation of the environment
rooted at node C , and a subtree TB rooted at node B .

a graph is generated for two-dimensional environments, assum-
ing circular robots capable of translation and in-place rotation.
For more general problems, the method presented here can be
applied directly once a suitable roadmap has been constructed.

II. MAP REPRESENTATION AND TREE SELECTION

Map representation is a significant factor in the efficiency
of motion planning algorithms. By abstracting the structure of
the environment to a set of open spaces (nodes) connected by
corridors or tunnels (edges), a graph representation of the envi-
ronment reduces the number of possible states of the system, and
therefore, reduces the complexity of the search for collision-free
paths.

Several methods of generating roadmaps have been developed
for different applications, such as PRMs [14] and Voronoi graph
planners [5]. The planning algorithm presented in this paper
requires such a roadmap, but is independent of the particular
method used to generate it.

For the example of Fig. 1(a), assuming circular robots that
have omnidirectional or differential drive kinematics (so that
they can turn in place), a graph G can be constructed by hand as
shown in Fig. 1(b), consisting of N = 6 nodes and E = 6 edges.
We assume that the initial and goal positions of all robots lie on
the nodes of the graph; in this representation, the goal positions
of robots R1 , R2 , and R3 are nodes A,C, and B, respectively.

Given the graph representation, we can also select a spanning
tree T ∗ in the graph, that is, a subset of edges connecting all
nodes without forming any loops. A given spanning tree has
L leaf nodes (nodes with only one incident edge) and N − L
interior nodes. A suitable spanning tree for the example is shown
in Fig. 2 where node C, closest to the geographic center of the
map, is selected as the root. Selecting all edges except for E − F
into the spanning tree as shown gives L = 4 leaf nodes, A, D,
E, and F , and two interior nodes, B and C.

In general, the spanning tree is not unique, and a heuristic
approach for tree selection is used that tends to maximize the
number of leaves and minimize the distance between leaves.
We have found that an effective approach is to iteratively add
edges to the tree that lead to the nodes with the maximum
number of incident edges, starting from the root node. Again,
the planning algorithm requires the selection of a spanning tree,
but is independent of the tree selection method used.

III. MULTIPHASE PLANNING ALGORITHM

The multiphase algorithm finds a feasible solution to the mul-
tirobot trajectory planning problem by breaking the problem into
a sequence of four subproblems. Each phase can be solved in
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Fig. 3. Each path segment Pi indicates the motion of one robot. In Phases
1–3, individual collision-free segments are planned and concatenated in time.

time proportional to the number of robots by taking advantage
of the graph and spanning tree structures developed earlier.

A plan is first found that moves the robots to the leaves of
the spanning tree (Phase 1 of the algorithm). We then use the
following observations to plan a sequence of paths to drive each
robot to its goal. For a system with r < L robots, we have the
following.

Lemma 1: When all robots occupy leaf nodes, any robot can
move to any interior node in the graph G.

Lemma 2: When all robots occupy leaf nodes, any two robots
can swap positions.

Lemma 1 is clear since an obstacle-free path can be found
between any two nodes through the spanning tree T ∗, and no
robots remain as obstacles on the interior nodes of the tree.
Lemma 2 follows, since with r < L robots, there is always one
unoccupied leaf Ntmp in the spanning tree. Robots Ri and Rj

at nodes Ni and Nj can swap positions by moving Ri to Ntmp ,
Rj to Ni , and Ri to Nj .

Note that these lemmas guarantee that there exists at least one
path through the spanning tree. However, a shorter path may
exist using graph edges that are not in the tree [e.g., moving
from E to F in Fig. 1(b)]. Where an A* search is used in the
following steps, the entire graph is searched, and the shortest
paths will be selected.

As described in detail later, a plan is constructed by first
building a sequence of individual paths, or segments, in which
one robot moves between two nodes (as shown in Fig. 3). Once
all robots have been moved to the leaves of the tree in Phase
1, the aforementioned lemmas guarantee that the robots can
be arranged in the graph such that every robot will have an
obstacle-free path to its goal. This is accomplished in Phase 2
by moving each robot to a node within a subtree of its goal. In
Phase 3, we can then move each robot in sequence to its goal.
Finally, in Phase 4, the time and distance required to complete
the sequence of individual robot movements can be reduced by
removing redundant motions and moving robots concurrently
whenever possible.

The pseudocode given next assumes the following functions
are available.

current Node (robot): returns the node occupied by robot at
the current time step of the plan.

freeLeaf Node(): returns an unoccupied leaf node of the span-
ning tree. The freeLeaf InSubtree(node) and freeLeaf NotInSub-
tree(node) functions perform the same search, restricted to the
subtree of node, or the subset of the graph not in the subtree of
node, respectively.

astarPath(start, end): returns the shortest connected sequence
of nodes between nodes start and end, assuming no obstacles in
the graph.

Fig. 4. Pseudocode for Phase 1.

freeAstarPath(start, end): returns the shortest connected se-
quence of nodes between nodes start and end, avoiding any
already occupied nodes.

findObstacleRobot(path): searches for an occupied node in
the path sequence, in reverse order from the end to start. A
reference to the first robot found occupying a node (if any) is
returned.

addPath(path, robot): adds the sequence of nodes in path as
a new sequence for robot in the plan, and updates the current
position of robot to the last node in path.

planRobotToNode(robot, goal): uses freeAstarPath to find the
shortest obstacle-free path from the robot’s current position to
the goal, and adds this new trajectory segment using addPath.

subTreeContains(root, node): returns true if node is in the
subtree of root within the spanning tree.

getBlockedRobot(node): searches for robots currently within
the subtree of node, whose goal is outside of the subtree of node.

sortRobotsByDepthOfGoal(): orders the robots according to
the depth of their goal nodes, from deepest to shallowest, in the
spanning tree. This order is applied in the for each robot . . .
loop of Fig. 4.

A. Phase 1: Reaching Leaf Nodes

In Phase 1, we develop a plan that will move all robots to leaf
nodes of the spanning tree. This is accomplished by repeatedly
selecting a candidate robot Ri that is not currently on a leaf node
(lines 2–6 of the pseudocode shown in Fig. 4), and selecting an
unoccupied leaf node Li (line 7). This is guaranteed to succeed,
since there are L leaf nodes and r < L robots to occupy them.
A heuristic may be used to select a leaf node close to the robot
or its goal. In the example in Fig. 1(a), node D may be selected
as the leaf node for robot R1 .

An A* search is then used to find a path (sequence of nodes)
Pi , from the initial position of robot Ri to the target leaf node
Li , ignoring all other robots in the system (line 8). The path Pi

is then examined for robots occupying any nodes of the path
(line 9). If the path is clear, the path moving Ri to the leaf node
is added to the plan (line 11), and the iteration is complete.
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Fig. 5. Multiphase solution to the planning problem of Fig. 1(a). Refer to text
for details of each step. (a) Phase 1. (b) Phase 2-a. (c) Phase 2-b. (d) Phase 3.

Otherwise, other robots are obstacles along the path—
consider them Rj , Rk , . . . , Rn , in that order. In that case, Rn

is the final robot on the path, and has a collision-free path to
the leaf node Li . In this case, we plan for Rn to move to Li

instead, using the obstacle-free subpath of Pi that connects Rn

to Li (lines 13–15). In either case, one robot is moved to a leaf
node at every iteration, as required.

In Fig. 5(a), since robot R2 is an obstacle between the selected
robot R1 and leaf node D, a path P1 moving R2 from node B
to D is added instead. Continuing the process, R1 remains to be
moved to a leaf node, and either node E or F may be selected,
indicated by path P2 .

B. Phase 2: Sorting Robots by Depth of Goals

In Phase 2, we move all robots into positions where they
can reach their goals without creating an obstruction for another
robot. The need for this arrangement step can be seen in Fig. 5(a):
robots R2 and R3 have goals on the interior nodes C and B,
respectively, and if either moves directly to its goal, it will create

Fig. 6. Pseudocode for Phase 2.

an obstacle for the other. For a general algorithm to resolve
this potential deadlock, we consider the problem in terms of
robot positions relative to their goals within the spanning tree
structure.

Let TGi
be a subtree of the spanning tree with root at the goal

node Gi of robot Ri . A deadlock condition occurs only if:
1) when Gi is occupied, another robot Rj is inside the subtree

of TGi
and is blocked from reaching its goal outside the

subtree; or
2) when Gi is occupied, another robot Rj is outside the

subtree of TGi
, and is blocked from reaching its goal

inside the subtree.
We can prevent these conditions by:

1) moving robots to nodes within the subtree of their goal
nodes;

2) ordering the depth of the robots within the subtree based
on the depth of their goals.

To accomplish this task, we process robots in the order of the
depth of their goals, that is, the distance from the goal node to
the root of the spanning tree (refer to Fig. 2 and lines 20 and 21
of the pseudocode in Fig. 6). For each robot Ri , we determine
whether it is already in TGi

, in which case the requirements
are already satisfied (lines 24 and 25). If not, we test whether
filling the goal Gi will create an obstacle for any robots in the
subtree TGi

, and if so, select the deepest positioned robot Rj

(line 27). The blocked robot Rj can be moved out of the subtree
if an unoccupied leaf is available outside of the subtree (lines
30–33). Otherwise, the free leaf must be within the subtree;
the depth ordering condition can be achieved by moving Ri

to the available leaf within subtree TGi
, and moving Rj to the

original goal node Gi (lines 34–38). This phase achieves the two
conditions required earlier to avoid deadlock conditions when
filling interior node goals.
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Fig. 7. Pseudocode for Phase 3.

The total path length can be reduced by only partially com-
pleting the swap in some cases.

1) If the temporary unoccupied leaf used for swapping is
not in TGi

, robot Rj may remain at that leaf rather than
completing the swap to the previous position of Ri .

2) If Rj is the only robot that would be blocked into the
subtree, robot Ri can fill its goal node immediately after
robot Rj has been moved.

In the example, R1 has the deepest goal node A, so is pro-
cessed first. The subtree of the goal consists of only the node
A, and contains the robot R3 , which must be moved to avoid
the deadlock condition (line 27). Robot R3 is therefore moved
to the unoccupied leaf node F (line 32), before moving R1
to its goal node A (line 33), shown by paths P3 and P4 in
Fig. 5(b).

The goals of robots R2 and R3 are interior nodes C and B
with C being the root of the spanning tree T ∗. Robot R3 has
the deeper goal node B, so is processed first. Its goal node B
is the root of the subtree containing nodes A and D, as shown
in Fig. 2, so we must check for robots that would be blocked
into the subtree (line 27). Referring to Fig. 5(b), R2 at node D
is such a robot. We therefore move R2 to an unoccupied leaf
node E (line 32), then plan robot R3 to its goal node (line 33),
indicated by paths P5 and P6 in Fig. 5(c). This leaves R2 and
R3 in subtrees of their goal nodes, and in the same depth order
as their goals, as required.

C. Phase 3: Filling Remaining Goals

In Phase 3, we move any robots to the remaining unfilled
goals (Fig. 7). If we plan for robots with goals closest to the top
of the tree first (line 47), an obstacle-free path for each robot
is guaranteed by the arrangement determined in Phase 2, where
the robots are sorted in order of the depth of their goals. For
the example scenario, this requires planning robot R2 to its goal
at node C (line 51), resulting in the desired goal configuration
shown in Fig. 5(d).

D. Phase 4: Building a Concurrent Plan

The plan determined in Phases 1–3 consists of a sequence
of segments or paths Pi , in which only one robot moves at any
time, as shown in Fig. 3 for the example problem. The sequence
of paths guarantees that all robots reach their goal positions
without collisions with other robots. However, the sequence of
paths is generally very suboptimal in terms of time and total
distance required to reach the goal positions, compared to a

Fig. 8. Individual path segments are overlapped in time whenever possible
while avoiding collisions.

decoupled planning solution (if one is possible). Since travel
time and distance are often significant evaluation criteria in
practical applications, a number of methods may be applied to
generate a more optimal solution from the sequence of segments.
This stage introduces a tradeoff between solution optimality and
computational complexity; the ideal method will depend on the
scale of the application (number of robots and size of the map),
the computational resources available, the requirements for real-
time performance, and the relative importance of optimality in
the trajectory solution.

Because the algorithm first moves robots to leaf nodes of the
spanning tree (a process that is required to guarantee complete-
ness, but is often unnecessary in the final solution), a significant
reduction in total distance traveled can typically be gained by
finding and removing any redundant motion. This can be found
for each robot by checking all cases where the robot returns to
a node it previously visited. If the node was not occupied in the
intervening time, the robot may simply remain at that node for
the duration.

The result of this first optimization is that there may be steps
of the trajectory where no robots are moving; these can be simply
removed to reduce the total trajectory execution time.

1) Concurrency by Overlapping Segments: An additional
step is then to allow multiple robots to move concurrently by
overlapping the individual segments in time as much as pos-
sible without introducing any collisions, as shown in Fig. 8.
Each successive segment of the original plan is added to a con-
current plan by first considering it appended to the end of the
plan. The start position of the segment is then moved earlier in
time until the motion in the new segment would create a colli-
sion between robots in the concurrent plan. The motion of the
robot in the new segment is then incorporated into the concur-
rent plan. This approach was used in generating the simulation
results of Section IV, involving up to 40 robots operating in
a map of several hundred nodes, with subsecond computation
times.

2) Concurrency by a Space–Time Search: An alternative ap-
proach in generating a concurrent plan is to generate a concur-
rent plan for all robots using a sequential A* search in time and
space, based on the method described for general multibody
motion planning by Erdmann and Lozano-Perez [7].

1) For each segment of the plan, considerer the initial and
final positions of the moving robot in each segment.
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2) Perform an A* search, in a space–time map. This map is
based on the topological-node-based map used in Phases
1–3, but extended in the time dimension with resolution
corresponding to the movement of a robot between two
adjacent nodes. The initial and final states for the A*
search are the initial and final states of the robots in the
trajectory segment.

3) Add the A* solution trajectory for the moving robot to
the space–time map as an obstacle to be avoided in future
searches.

Note that each A* search is guaranteed to find a solution,
due to the conditions and ordering of the sequences established
in Phases 1–3. In the worst case, for each segment, the initial
state will correspond to the final state of the space–time map
generated so far, and the A* search will append the same motion
as found in the original trajectory segment. Typically, however,
the space–time search will find a solution where the motion of
one moving robot can be at least partially concurrent with the
motion of previously added segments.

This approach of a full space–time search for each trajec-
tory segment is very effective, as the shortest possible paths
are found for each required robot motion, and the maximum
concurrency of motion is obtained. However, this comes at
a substantial computational cost, since the space–time map
adds an additional dimension to the A* search space, and
the length of the time dimension grows with the number and
length of individual segments of the original plan. The method
was found to be practical for up to 20 robots in simulation,
and was used in the real-world implementation described in
Section V.

E. Complexity Analysis

The plan completed at the end of Phase 3 will move all robots
to their respective goals, as required for a complete planner.
In each of the three phases, we iterate once over the set of
r robots, and require at most three (in the case of swapping)
A* plans for each. Each A* search has a fixed complexity C
that depends on the size of the graph and the heuristic used, but
remains independent of the number of robots in the environment.
The total computational complexity of the first three phases is
therefore O(r · C) for r robots.

As discussed earlier, the complexity of Phase 4 depends on
the method used and the degree of optimization required. In the
method of overlapping segments, for example, as each segment
overlaps the concurrent plan by one additional step in time, a
“collision check” is required for the moving robot at each state
in the segment. The worst case complexity of the operation,
given a trajectory of s states, is O(s2).

F. Hybrid Planning

The multiphase planner is fast and complete; it will quickly
generate a solution to the planning problem for a large number
of robots in a complex graph. However, the resulting plans
are typically suboptimal, in terms of path length for each
robot.

Fig. 9. Simulation environment maps. (a) Tunnel map. (b) Open map.

A decoupled planning approach, such as that proposed by
Bennewitz [4], can use priority scheduling to consider many
different possible plans. Unfortunately, the generation of many
plans using different sequences of priorities is CPU intensive,
and may fail to find a solution for complex planning problems.
When successful, the resulting plans from the decoupled ap-
proach are typically shorter than those found by the multiphase
planner.

To take advantage of the properties of each approach, a hybrid
planner was implemented and evaluated. One valid plan is first
quickly generated using the multiphase planner. The decoupled
planner is then invoked in an attempt to find a shorter path
solution. The decoupled planner may then be terminated at any
time, and the most optimal plan selected.

IV. SIMULATION RESULTS

The four-phase planner described earlier was implemented
and evaluated in Monte Carlo simulations in the underground
(“tunnel”) mine map shown in Fig. 9(a), using between 3 and
40 robots. The planner was also evaluated on a map with more
open space, shown in Fig. 9(b), using between 3 and 150 robots.

For each map, a topological representation was generated
from an occupancy grid by finding adjacent circular regions of
open space (nodes) and connecting all adjacent nodes by edges.
The spanning tree selected for the tunnel map contains 43 leaf
nodes, allowing for motion planning of up to 42 robots in the
environment. Random initial and goal positions are selected for
each robot. For the environment with open spaces, a mesh-like
topological structure results, allowing robots to pass each other
in the open areas. The resulting spanning tree has 142 leaves,
allowing for planning of up to 141 robots.

As expected from the analysis earlier, the multiphase planner
finds a collision-free plan for every configuration in both maps.

For comparison, a decoupled planner using a sequential A*
planning approach for each robot was also implemented, which
randomly selects a priority sequence of robots. This sequen-
tial planner finds the shortest collision-free path for each robot
through the space–time map, avoiding obstacles including the
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trajectories of all previously planned robots. The results of such
a planner are dependent on the priority sequence used, so up to
100 randomly selected priority sequences were applied for each
case in an attempt to find a sequence for which a plan could be
found. Finally, the hybrid planner approach described in Section
III-F was used to evaluate the benefit of using a combination of
multiphase and decoupled planning.

The plots in the following sections show the results of apply-
ing the algorithms to the same randomly-generated problems in
the two different environments.

A. Planning Success Rate

The first measure of the algorithm performance is the success
rate of finding a feasible solution. As expected for a complete
algorithm, the success rate of the multiphase planner is 100% for
up to 42 robots given a spanning tree in the tunnel map with 43
leaves. However, the sequential planner failed to find solutions
for some randomly generated problems with 14 or more robots,
and failed to find solutions for all problems with 25 or more
robots.

In the open-space map, the spanning tree with 142 leaves
guarantees a solution for up to 141 robots using the multiphase
planner. The decoupled planner began to fail for some problems
with 25 robots, and failed to find a solution for any problems
with 75 or more robots.

The success rate of the sequential planner will increase if
more randomly selected priority sequences are tried; however,
the planning cost also increases with each additional priority se-
quence. One hundred different sequences was a practical max-
imum value considering the time required for each attempted
plan.

B. Average Robot Path Length

The average distance required for each robot to travel to reach
its goal is plotted in Fig. 10. The results indicate that in the tunnel
map, the multiphase planner typically generates longer paths for
each robot, particularly as the number of robots increases. This is
not unexpected, since the planner first directs robots to positions
other than their goals in order to create an obstacle-free path for
the final phases of the process.

In the open map, the average path lengths are very similar.
This is due to the increased density of leaf nodes in the map;
when the multiphase planner moves robots to leaf nodes, the
average additional distance is much less than for the tunnel
map.

When the sequential planner begins to fail for some of the
randomly generated problems (>14 robots in the tunnel map
and >25 robots in the open map), the average path length is
computed only for those scenarios where a solution was found.

C. Average Total Execution Time

The average execution time (the number of time steps re-
quired for all robots to execute their plans) is plotted in Fig. 11.
The plans generated by the decoupled planner can typically be
executed in less time than the multiphase planner solutions.

Fig. 10. Average robot path length generated by each planner. (a) Tunnel map.
(b) Open map.

Fig. 11. Average execution time for paths generated by each planner in the
open map.

This is due to the serialized nature of the multiphase planner
path generation, where the plan is constructed of a sequence
of individual robot movements. The execution time is reduced
in Phase 4 by executing multiple segments concurrently; how-
ever, improving the concurrency involves greater computational
complexity.

In contrast, the decoupled planner attempts to immediately
move all robots toward their goals from the first time step. This
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Fig. 12. Average CPU time used by each planner in the open map.

results in greater concurrency and a shorter execution time.
However, this gain comes at a cost of complexity and loss of
completeness. In the open-space map, the decoupled planner
failed to find solutions for some random scenarios of 25 robots.
In the tunnel environment, it failed to find solutions for any trials
with 25 or more robots.

D. Search Cost

The search cost is a measure of the complexity of the plan-
ning algorithm, or the time required to complete the search for
a feasible solution. Fig. 12 shows the CPU time required by
each algorithm; the processing time has been normalized by the
number of robots in the plan, and shows the exponential growth
in complexity of the decoupled planning method. The values
indicate the time required to find a feasible solution given the
graph representation, and not the (one-time) cost of generating
the map.

These results demonstrate that while a decoupled approach
can find shorter paths for simpler planning problems, the multi-
phase planner involves much less computational cost. The cost
of the sequential planner grows exponentially, since it requires
many attempts with different random priority sequences to find
a solution. The cost of the multiphase planning algorithm, how-
ever, increases close to linearly with the increase in number of
robots. For 100 robots in the open-space map, feasible plans
were computed by the multiphase planner in less than 1.5 s
using a 1.5 GHz Pentium M processor.

E. Hybrid Planner

The graph of the algorithm selection in the hybrid scheme,
shown in Fig. 13, indicates the algorithm behavior as the number
of robots in the system increases. The plots show the percentage
of time the results of each planner are selected, indicating how
often the multiphase planner generates a more optimal result (a
shorter total travel distance) than the decoupled planner. For very
small numbers of robots, the multiphase planner results are often
better than the decoupled planner results. The randomly selected
order used by the decoupled planner is typically suboptimal,
required longer paths to be generated for some robots. As the

Fig. 13. Hybrid planner selection in the tunnel map.

Fig. 14. Graph representation of hallway environment.

number of robots increases, the decoupled planner can often
find shorter path solutions. However, beyond a threshold, the
decoupled planner fails to find any solutions, and the multiphase
planner results are required.

V. REAL-WORLD IMPLEMENTATION

To validate the algorithm in a real-world application, the plan-
ner was implemented on a system of three WBR-914 PCBot
robots, provided by FrontLine Robotics, shown in Fig. 15(b).

The task selected for the robots was to cooperatively navi-
gate in a long, narrow corridor, repeatedly traveling between an
elevator and randomly selected locations, as would be required
for autonomous delivery robots. We assume that robots may
not pass each other within the hallway due to size and safety
constraints. As a practical application, note that the trajectory
planning problem in this scenario is similar to that for several
autonomous mining vehicles operating in the same area of an
underground mine.

The floor plan and graph representations of the environment
are shown in Fig. 14. By selecting a node near the center of the
map as the root of the spanning tree (node 3 for example), the
tree has L = 4 leaves, and the planner is guaranteed to find a
solution for up to r = 3 robots.

A. Planning and Control Implementation

Each robot runs the Player [9] robot server, and is equipped
with a scanning laser rangefinder for localization. A trajectory
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tracking function was added to Player as a plug-in module. This
module drives the robot through a trajectory as generated by the
multiphase planner; that is, a list of waypoints and the desired
arrival and departure time at each waypoint.

A centralized host PC coordinates the system, communicating
with the Player server on each robot via wireless ethernet. The
host PC monitors the positions of the robots, and assigns a new
goal position for each robot as the goals are achieved. Whenever
a new goal is assigned, a new multirobot plan is generated for
all of the robots, and the individual trajectories are transmitted
to the trajectory followers of each robot.

The addition of a time-dependent trajectory following mod-
ule to the Player robot server allows for scalable simultaneous
motion control of many robots from a centralized server. A new
multirobot plan is generated whenever the goals change, and the
communication to each robot involves only a list of waypoints
with arrival and departure times. In the real-world implemen-
tation, robots typically diverge from the planned trajectories to
some degree, due to reactive avoidance of obstacles in the envi-
ronment, errors in localization, wheel slip, etc. The individual
robots correct for small deviations in trajectory following (due to
wheel slip, for example) by accelerating or decelerating between
waypoints. The server also detects deviations from the plan by
monitoring the localization and status information transmitted
from each robot. If a robot diverges significantly from the spec-
ified trajectory, (pausing in a corridor to avoid colliding with
a person walking past, for example), the plan is invalidated. A
new plan is generated from the current positions of all robots, all
trajectories are updated, and the robots resume moving toward
their goals.

B. Sample Problem and Results

Fig. 15(a) shows an example problem requiring a coordinated
solution to demonstrate the implementation. The required tran-
sitions are indicated by dotted arrows, moving robots to the goal
locations indicated by squares. Robots 1 and 2 are required to
swap positions, and robot 0 is required to move from the top to
the bottom of the map, crossing the direct paths of robots 1 and
2. Fig. 15(b) shows the robots in the hallway environment.

For this problem, a typical decoupled planning approach will
fail; if any robot takes the most direct path to its goal, it creates an
unavoidable obstacle for another robot. However, the multiphase
algorithm finds a solution by first moving robot 1 to the leaf node
8, then robot 2 to node 7. From this arrangement, all robots reach
their goal nodes: first robot 1 to G1; then robot 0 to G0; and
finally, robot 2 to G2.

The planning algorithm and the trajectory follower have been
validated in the corridor environment by randomly allocating
new goals as each robot completes its current trajectory. The
system runs continuously, limited only by the battery life of the
robots.

VI. DISCUSSION

In this paper, maps of tunnels and corridors were consid-
ered specifically, since they have a relatively simple topological

Fig. 15. Graphical and real-world views of the sample problem. (a) User
interface view. (b) WBR-914 robots.

representation and present a challenging environment for the
coordination of a large number of robots. For more general
cases, including arbitrary obstacles and nonholonomic motion
constraints, the generation of a suitable roadmap or graph rep-
resentation can be a challenging problem in itself. However,
once a suitable graph is created, the multiphase algorithm can
be applied directly.

Considering the performance comparison between the se-
quential planner and the multiphase planner, it may be advan-
tageous to consider a hybrid approach, taking advantage of the
features of both algorithms. By first generating a plan using the
multiphase planner, a feasible solution can be generated very
efficiently. To search for a more optimal plan, a sequential plan-
ner can then be applied to the same problem, and permitted to
run within the time bounds of the application.

The algorithm as presented here assumes a centralized plan-
ning architecture, where all information and resources are avail-
able at a single processing point. Incorporating this centralized
planner into a distributed planning architecture, as proposed
in [6], will be another subject of future work.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 26, 2008 at 02:58 from IEEE Xplore.  Restrictions apply.



292 IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 2, APRIL 2008

VII. CONCLUSION

This paper presented a multirobot planning algorithm that is
based on a topological graph and spanning tree representation.
By breaking the planning process into several phases, it was
shown that the algorithm guarantees a solution to the planning
problem, and is scalable with linear increase in complexity for up
to r < L robots given a spanning tree with L leaves. For practical
systems, the number of leaves L is a reasonable upper bound
on the number of robots that would be used in a shared space.
In comparison to a decoupled sequential planning algorithm,
the multiphase planner typically produces longer paths, but at a
much lower computational cost when planning for many robots.
Finally, an implementation on physical robots demonstrated the
practicality of the multiphase planner in real-world applications.
In future work, the multiphase planner will be incorporated into
a higher level task allocation system for robots operating in
corridor and tunnel environments.
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