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Abstract 

 A solution to the vehicle state estimation problem is given using the Kalman filtering and the 

Particle filtering theories. Vehicle states are necessary for an active or a semi-active suspension 

control system, which is intended to enhance ride comfort, road handling and stability of the 

vehicle. Due to a lack of information on road disturbances, conventional estimation techniques 

fail to provide accurate estimates of all the required states. The proposed estimation algorithm, 

named Supervisory Kalman Filter (SKF), consists of a Kalman filter with an extra update step 

which is inspired by the particle filtering technique. The extra step, called a supervisory layer, 

operates on the portion of the state vector that cannot be estimated by the Kalman filter. First, it 

produces N  randomly generated state vectors, the particles, which are distributed based on the 

Kalman filter’s last updated estimate. Then, a resampling stage is implemented to collect the 

particles with higher probability. The effectiveness of the SKF is demonstrated by comparing 

its estimation results with that of the Kalman filter and the particle filter when a test vehicle is 

passing over a bump. The estimation results confirm that the SKF precisely estimates those 

states of the vehicle that cannot be estimated by either the Kalman filter or the particle filter, 

without any direct measurement of the road disturbance inputs. 

 Once the vehicle states are provided, a suspension control law, the Skyhook strategy, 

processes the current states and adjusts the damping forces accordingly to provide a better and 

safer ride for the vehicle passengers. This thesis presents a novel systematic and practical 

methodology for the design and implementation of the Skyhook control strategy for vehicle’s 

semi-active suspension systems. Typically, the semi-active control strategies (including the 

Skyhook strategy) have switching natures. This makes the design process difficult and highly 

dependent on extensive trial and error. The proposed methodology maps the discontinuous 

control system model to a continuous linear region, where all the time/frequency design 

techniques, established in the conventional control system theory, can be applied. If the semi-

active control law is designed to satisfy ride and stability requirements, an inverse mapping 

offers the ultimate control law. The effectiveness of the proposed methodology in the design of 

a semi-active suspension control system for a Cadillac SRX 2005 is demonstrated by real-time 

road tests. The road tests results verify that the use of the newly developed systematic design 

methodology reduces the required time and effort in real industrial problems. 
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1 Introduction and Background 

 In the previous generations of vehicles, the suspension systems were designed and 

manufactured from materials with fixed properties. Such systems, however, do not provide an 

optimal comfort ride or an acceptable stability under all circumstances. 

 For several decades, active and semi-active suspension systems have been developed to 

improve the ride comfort, road handling and stability1 of terrain vehicles. Ride comfort is 

proportional to the absolute acceleration of the vehicle body or the acceleration of the vehicle’s 

Centre of Gravity (CG). A measure of the ride comfort is given by the ratio of the maximum 

value of the transmitted acceleration to the CG to the maximum value of the excitation 

acceleration from the road. This ratio, which describes the acceleration level felt by the 

passengers, is known as the acceleration transmissibility (or the transmissibility ratio) of the 

vehicle’s suspension system. The mathematical formulations, regarding 1 and 2 Degrees Of 

Freedom (DOF) car models, are given in Appendix A. Road handling is related to the traction 

between the vehicle’s wheels and the road surface, and hence is related to the tires’ deflection. 

Also, the stability of a vehicle is related to the tires’ ground contact. 

 Active suspension systems include powered actuators – in most cases, hydraulic actuators – 

that are designed to actively control the acceleration and relative motion of vehicle’s body. 

Different control schemes have been proposed by researchers for active suspension 

mechanisms. In [1] to [4], the active suspension system design is studied from an optimal 

control theory point-of-view. The Linear-Quadratic Regulator (LQR) approach is applied and it 

is shown that the ride comfort and road handling of a vehicle are concurrently improved. Yu 

and Crolla [5] have developed the Linear-Quadratic-Gaussian (LQG) technique that controls an 

active suspension system by tuning the weighting parameters of the LQG cost function, based 

on different road conditions. In addition, Fuzzy logic control has also been adopted by Son and 

Isik [7] and adaptive control technique has been developed by Esmailzadeh and Bateni [8]. 

Although active systems exhibit many advantages, vehicle manufacturers are distancing 

themselves from such technologies due to the high costs, the complexity level, and failure mode 

safety. Active suspension systems are still popular for off-road, high-duty terrain vehicles and 

fast heavy trains [9].  

                                                 
1 These factors are referred to as the vehicle’s Suspension system Performance Index, or SPI.  
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 Secondly, semi-active suspension systems are also referred to as adaptive-passive systems in 

some contexts where the characteristics of the system damper or spring can be controlled by 

supplying a command signal. The command signal can either vary the oil flow rate between the 

compression chamber and the reverse chamber (i.e., dampers with solenoid valves), or change 

the properties of the material inside the shock (i.e., dampers with Magneto-Rheological (MR) 

fluid, known as MR dampers) to provide various levels of resisting forces. One of the key 

advantages of semi-active suspension systems is their low energy consumption and their 

vibration control performance that is similar to that of the active systems. Another advantage of 

semi-active suspension systems is that they are fail-safe; that is, if the system fails for any 

reason, there is still a functional passive damper. These characteristics make semi-active 

devices attractive for a wide range of applications, including terrain vehicle suspensions. 

Specifically, MR dampers are noted for their fairly quick response, longer life, and low energy 

consumption (compare to their active counterparts). 

 Due to these features, many techniques have been adopted for the design and control of 

semi-active suspension systems. Karnopp et al. ([10], [11]) have proposed the Skyhook control 

strategy to suppress excessive motions of the sprung mass of a simplified vehicle model. They 

inserted a fictitious damper, called a Skyhook damper, between the sprung mass and the 

stationary sky to reduce the vehicle’s body motions. However, the wheel-hub vibration is 

neglected. As a result, the technique cannot significantly attenuate the resonant peak that 

corresponds to the unsprung mass, offering less improvement in the handling performance of 

the vehicle [12]. To overcome the disadvantage of the original Skyhook concept, Novak et al. 

[13] added another fictitious damper between the unsprung mass and the ground to increase the 

traction between the vehicle tire and the pavement to enhance the handling characteristics of the 

vehicle. Both the original Skyhook strategy and its modified version, the Skyhook-Groundhook 

control, are effective in terms of the simplicity of the control algorithm [14]. Their other 

advantage is that they do not require any a priori knowledge of the vehicle’s dynamics; that is, 

they are not model-based.  

 Cheok et al. [15] used the LQR method to control the semi-active suspensions. The cost 

function, to be minimized, was a function of the difference between the control damping force 

and the ideal Skyhook damping force. The sliding mode control has also been capable of 

controlling the MR semi-active suspension [16], [17] and [18]. Liao et al. [19] and Kim et al. 
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[20] have employed the LQG method to reduce the excessive vibration of a vehicle and a train 

body, respectively. The application of the RMS technique in semi-active suspension control has 

been demonstrated in [21]. Rakheja et al. [22] have utilized the relative semi-active suspension 

deflection and velocity to adjust the damper force. In [23], Manus et al. have successfully 

implemented the proposed control law in [22] to attenuate the vibration of a suspension seat. 

The Fuzzy logic theory has been also adopted to control the vibration of semi-active suspension 

systems in [24] and [25]. Among the recent research on semi-active suspensions, the works 

conducted by Ahmadian et al. [26] and Savaresi et al. [27] are notable. In a conventional 

Skyhook controller, when the relative velocity is zero, a sharp increase in the damping force is 

created, resulting in a jump in the sprung mass acceleration. In the first paper [26], a method to 

reduce the jerk is presented. In the second paper, a new simple technique, the Acceleration-

Driven-Damper (ADD), is presented to minimize the vertical acceleration of the vehicle body 

[27]. 

 Although active and semi-active damper technologies offer new opportunities to improve 

ride comfort, road handling and stability for terrain vehicles, the primary challenge of providing 

required control system feedback remains. The control techniques require suspension 

system/vehicle states to determine the control signal. Frequently-used state variables include the 

absolute vertical velocity and acceleration of the vehicle body (sprung mass) at each corner 

(shock ends), the absolute velocity and acceleration of the wheel-hubs (unsprung masses), 

shock deflection, its rate, and the vehicle’s center of gravity kinematics, vehicle body attitude 

angles and the rate of change of the angles, and tire deflections. 

 Of these, the accelerations, angular velocities, and suspension deflections are measured by 

mounting the appropriate sensors – namely, an accelerometer, a gyroscope and a displacement 

sensor, respectively, in the correct locations. The absolute velocity cannot be measured directly 

because the velocity sensors must have a stationary reference space, which is not applicable in 

automotive applications. A common technique to obtain the velocity information is to integrate 

signals from accelerometers attached to the ends of each shock. However, the performance of 

low-cost automotive grade accelerometers is limited by a high noise level (typically, 50-

1000 Hzg /μ ), especially a high rate drift, which makes this extremely challenging in the real 

world.  Furthermore, for some of these states, such as tire deflection or the height of the vehicle 

CG, no straight-forward measurement tool can be found.    
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  Even if the measurement of all the states, required by a particular controller (i.e., the 

Skyhook or the modified Skyhook methods) is practical and possible, a high number of fairly 

accurate sensors equipped with a sophisticated signal processing and conditioning circuitry 

needs to be deployed. The result is increased costs and decreased integration activities. To 

reduce these effects, an estimator can be used to produce an accurate estimation of the required 

states. 

 To estimate the states of a semi-active suspension system model, a modified Luenberger 

observer was adopted in [29] and [30]. In [31] and [32], the LQG and LQR techniques, 

respectively, have been implemented to simultaneously observe and control the states of the 

active suspension system of a half car model. Despite the proven efficiency of the designed 

estimators by computer simulations, the authors have employed an incomplete vehicle model, 

where the estimators cannot capture the full motion dynamics of a real vehicle. Moreover, the 

estimator requires the LQG/LQR controller, which is not necessarily the most appropriate 

control technique in the vibration suppression field; applying this method results in a fairly high 

order controller law, which is seen as a practical drawback. A linear state observer has been 

adopted to implement the state feedback control law and a ∞HH /2  performance-based control 

command, respectively, for the active suspension system of a full car model (7 DOF) [3], [33]. 

The designed unbiased observer has been proven to be asymptotically stable but is not 

guaranteed to have an acceptable estimation quality in real life in the presence of significant 

road disturbances such as bumps. Donahue et al. [34] have employed a Kalman Filter (KF) to 

estimate the active suspension system parameters of a military vehicle, equipped with 22 

sensors, including two preview sensors to detect the road significant inputs. The optical preview 

sensors are mounted in front of the vehicle. The sensor measurements are converted to the road 

height by trigonometric equations and then fed back to the KF. Despite the acceptable 

estimation performance, the required preliminary computations of the preview signals need 

high processing power and time. Furthermore, the preview sensor signal is not accessible in any 

environment, and its performance is affected by dirt or rain, preventing a continual viewing of 

the ground and the sensor lenses. 

 Although previous research has been successful in the estimator design, many practical issues 

have been missed. The estimators have been developed assuming that there is no restriction on 

the sensor configuration. In contrast, there usually exist firm constraints on the type and number 
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of vehicle sensors due to the computational power limitations of the processors, the sensor 

deficiency (i.e., the preview sensor case), or cost. Often, not enough room can be found for 

another sensor to be installed. Therefore, the estimator must rely on information from only a few 

feasible sensors, and must still be capable of estimating the vehicle states. The proposed research 

aims to address this issue and to find an appropriate solution.   
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2 Problem Definition 

 Since the quantity and type of sensors mounted on the vehicle are limited, the estimation 

system needs to be designed such that the reduced information, the sensor data, does not reduce 

the estimation performance. The ultimate goal of this research project is to develop an 

estimation mechanism which can tolerate the paucity of vehicle sensors. When incorporating 

the available sensor signals, the estimator should produce the states required by a vehicle Ride, 

Handling, and Stability Controller (RHSC). After the controller processes the vehicle states, it 

sends command signals to the controllable semi-active dampers. Eventually, the desired force, 

created by the vehicle suspension system, can provide a better and safer ride for vehicle 

passengers. Figure 1 provides an overview of the system.    

 

 

Figure 1: Example of the integrated sensor configuration, estimator and vehicle semi-active suspension controller. 

  

 It is expected that the RHSC can minimize the semi-active suspension system acceleration 

transmissibility at frequencies, where the road input has its maximum power (between 7 to 40 

Hz [35], [36] and [37]). It is also recognized that the human body has a minimum tolerance to 
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vertical accelerations close to 5Hz (4-8Hz according to the ISO 2631) due to the resonance of 

the abdominal cavity [35]. As a result, the controller technique must pay more attention to the 

effects of the road’s roughness acceleration around the frequency of 5Hz. Furthermore, the 

resonant peaks, close to the natural frequencies of the sprung and unsprung masses, should be 

decreased.   

 Since the development of a novel control technique is beyond the scope of this research, 

referring to the superiorities of the Skyhook control strategy, this method is adopted to work in 

series with the estimator to improve the ride comfort and road handling of the vehicle. In 

general, improved handling implies improved ground force distribution to maximize traction. 

This results in a reduction of the propensity of the vehicle to either roll over or skid, and hence 

an enhancement of the vehicle’s stability. To better improve road handling qualities, a modified 

version of the Skyhook strategy, such as the Skyhook-Groundhook method, can also be 

implemented. It is expected that the structure of the estimator, developed in this research, 

remains unchanged for modified versions of the Skyhook control strategy (see Appendix A). 

 The states required by the Skyhook controller are the relative velocity of each suspension as 

well as absolute velocity of the corresponding wheel-hub1. In turn, the Skyhook policy assigns 

an upper or lower damping level to the semi-active shocks. However, more challenges arise 

here. First, the damping upper and lower levels are usually set by trial-and-error, and there is no 

systematic method to determine them. This would make the semi-active suspension system 

development process time-consuming and sometimes too difficult. Therefore, it would be 

desirable to establish a systematic methodology to determine the Skyhook damping levels. 

Second, combining two separately designed sub-systems does not guarantee that the good 

behaviours embedded in each sub-system are inherited by the final integrated system. This 

means that although the Skyhook control technique satisfies the frequency domain requirements 

[11], [12], [13] and [14], incorporating the dynamics of the estimator might deteriorate some of 

                                                 
1 More precisely, the absolute velocity of the sprung mass (vehicle body at the shock end) can be extracted from 
the known relative velocity of the shock and the absolute velocity of the corresponding wheel-hub. Concepts and 
mathematical formulations of the Skyhook control strategy and its modified versions are given in Section 5.3. 
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these desired behaviours. As a result, the estimator and controller should be designed 

simultaneously to assure that the required performance is achieved by the integrated system1.  

 

 In order to achieve these goals, the following specific research objectives are planned: 

   

    • Research Objective 1: Design a feasible reduced number of sensors measurement system 

which has been distributed strategically throughout the vehicle, thereby producing adequate 

measurements that can be filtered to provide the vehicle states necessary for RHSC.  The 

ultimate sensor configuration should consist of as few sensors as possible. 

 

    • Research Objective 2: Development of an estimation mechanism to produce the required 

states of the RHSC by using the proposed measurement system. The estimator should guarantee 

that the estimation error remains unbiased and has as small a covariance matrix as possible, 

specifically at the presence of significant road disturbances (such as bumps). Furthermore, the 

estimator should be robust enough to withstand uncertainties that arise from varying the weight 

of the vehicle due to a change in the pay load or in the number of passengers, or varying the tire 

stiffness due to inflation pressure changes, for real-time applications. Also, the rate of decay of 

the estimation error should be sufficiently fast compared to the controller bandwidth. 

 

    • Research Objective 3: Development of a systematic methodology to design and implement 

semi-active suspension control laws, specifically the Skyhook strategy. The new design 

methodology must assure that the combined estimator and controller system meets some 

desired performance requirements defined for a particular RHSC application.  

 

 

                                                 
1 Separation theorem guarantees stability of a system consisting of two stable linear subsystems. However, there is 
still no guarantee that the desired performance of each individual subsystem would be transferred to the ultimate 
integrated system. 



 9

3 Sensing System 

 Sensors are essential components of the vehicle RHSC. They provide the integrated 

estimation and control system with the necessary measurements of the vehicle motion. In the 

study of the ride and handling quality, the pitch, roll, vertical and lateral motions of a terrain 

vehicle are focused on. The sensors which can be used include accelerometers, gyroscopes, and 

displacement sensors to measure the acceleration, angular velocity, and the relative displacement 

of the moving parts, respectively. Table 1 lists the automobile industry standard sensor 

configurations.  

 It is evident that the accelerometers and displacement sensors are the most popular for vehicle 

RHSC applications. Because of the evolution of Micro Electro-Mechanical Sensors (MEMS), the 

combination of two or even three direction accelerometers in a simple low-cost sensor is now 

possible. By utilizing a multi-direction sensor chip with embedded signal-conditioning and 

temperature compensation, the component count and cost are mitigated. Furthermore, the 

implementation of a single multi-axes accelerometer facilitates a wide range of automotive 

auxiliary systems, including the RHSC, air bags, side and rollover crash-sensing, and the 

Antilock Brake Systems (ABS). The displacement sensors have the third greatest unit sales of all 

automotive sensors [38]. A displacement sensor can measure the stroke of an active or a semi-

active damper. By one-time differentiation of the sensor output, the relative velocity across the 

damper is obtained, which is a required feedback by almost all suspension control strategies. 

However, the installation of the displacement sensors is not readily achieved in real practice. 
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Table 1: Overview of the sensor types and the arrangements in the industry for RHSC applications [38] 

Company Trade Name 
Ride and Handling 

Controller Sensors 

Stability 

Sensors 
Applications 

ZF Sachs 

Continuous 

Damping 

Control (CDC) 

2 accelerometers per damper, 

one in the vicinity of tire, the 

other at the body side of the 

damper 

- 

2002 BMW 7 series, 

Maserati 3200 Coupe, 

Ferrari Modena, Audi 

A8, Porshe Cayenne, and 

Opel Astra 

 

Lord Corp. 

 

Lord damper 

 

4 displacement sensors and 4 

vertical accelerometers at the 

body side of each shock 

 

Lateral 

acceleration 

 

? 

Tenneco-

Automotive 

Continuously-

Controlled 

Electronic 

Suspension 

(CES) 

3 body accelerometers – 2 

front and 1 rear – and 2-to-4 

displacement sensors  

Lateral 

acceleration  

Audi A2, A3, A4, also 

Volvo platforms S60R, 

V70R, S60, V70 and S80 

Delphi MagneRide  4 displacement sensors 
Lateral 

acceleration 

Several GM platforms 

(i.e., Cadillac STS, SRX 

XLR and Escalade) 

Continental 

Teves 

Electronic 

Suspension 

System 

4 displacement sensor and 3 

body accelerometers in the 

vicinity of the shocks 

- ? 

Firestone IntelliRide 

Unknown number of 

displacement sensors and 

accelerometers 

- Many of SUVs 

 

 In the absence of an estimator, the sensor selection is dictated by a vehicle’s type of 

suspension control strategy. The measurement system should be capable of providing enough 

information regarding the vertical motion of each wheel and the vehicle body movements. 

Consequently, a preliminary sensor configuration can include an accelerometer for each vehicle 
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corner and a sensor cluster at the vehicle body’s centre of mass. The accelerometers are 

connected to one end of each shock in the vicinity of the wheels to measure the vertical 

acceleration of the wheel-hubs. The desired motion of the body is captured by a vertical direction 

accelerometer along with two perpendicular gyroscopes in the roll and pitch directions, merged 

in the sensor cluster. The sensor package can also include a lateral accelerometer to provide 

feedback for the stability controller.  

 Of importance are a family of sensor packages, called Inertial Measurement Units (IMU), that 

consist of triad orthogonal accelerometers and gyroscopes. They are often applied to Inertial 

Navigation Systems (INS). Since a vertical and lateral accelerometer with two gyros in the roll 

and pitch axes of the vehicle are required, an IMU mounted at the vehicle CG is proposed. An 

additional accelerometer1, positioned along the longitudinal axis, or a gyroscope measuring the 

yaw rate, can be also employed for the vehicle level control systems and anti-skid systems (i.e., 

yaw stability applications), respectively. A similar sensor configuration keeps the wheels’ 

accelerometers but replaces the IMU with four accelerometers – one at each corner (shock ends) 

– in order to measure the vehicle body movements2.  

 

                                                 
1 The x-axis accelerometer is the main feedback of vehicle body level systems during accelerating and braking. 
During a sharp acceleration, the damping of the rear wheels should be increased to counteract the vehicle to 
“squatting” [40]. In a hard brake, the front wheel damping should be boosted to prevent the vehicle from “nose-
diving”. 
2 It can be shown that with four accelerometers, all the motion variables of the body can be extracted. 
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Figure 2: The full sensor configuration consisting of eight accelerometers, displacement sensors, and the IMU 
mounted on the first test vehicle: a Toyota Tercel 1993. The red arrows locate the vehicle shocks.   
 

 Another sensing architecture is composed of an accelerometer and displacement sensor pair, 

placed at each vehicle corner, totalling eight sensors. The accelerometers capture the vehicle 

body movements, whereas the displacement sensors measure the relative motion of the body and 

the wheels. Sometimes, a priori knowledge of only the relative motion between the wheels and 

the body is adequate. As a result, a configuration including four displacement sensors located at 

each shock are considered as another possible sensor suite.  

 

 : Accelerometers Location

: String Potentiometer Location

IMU

z

y 

x
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Figure 3: The accelerometer mounted on the bottom of the Toyota Tercel left front damper to measure the 
acceleration of the wheel-hub. 
 

 Therefore, the following preliminary sensor configurations are investigated: 

a)   one IMU and four accelerometers: the IMU in the vicinity of the vehicle body’s 

CG and one accelerometer on each wheel-hub. 

b) nine accelerometers: one accelerometer per each body corner (at the damper end), 

one accelerometer per each wheel-hub, and the last accelerometer at the CG. 

c) four displacement sensors and one accelerometer: one displacement sensor for 

each shock and the accelerometer at the CG. 

d) four displacement sensors and five accelerometers: one displacement sensor for 

each shock, one accelerometer per each body corner (at the damper end), and the 

last accelerometer at the CG. 
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Figure 4: The displacement sensor measures the relative motion across the semi-active shock of a Cadillac SRX.  
 

 By using the preliminary sensor configurations, several objectives are pursued. First, to 

investigate whether fusing the sensors data through the proposed estimator can enrich the 

data/information package and provide the required states for the RHSC. In this way, the 

advantages and disadvantages of the particular estimator are extracted, leading to an improved 

structure.  

 The second goal is to explore the effects of the individual sensors on the performance of the 

estimation system and to discover which sensors at which locations have the most positive 

impact on the estimator’s efficiency. Based on that experience, a sensor suite, which consists of 

as few sensors as possible, is proposed.  

 

 

Upper 
Control Arm 

MR Damper 

Displacement 
Sensor 
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4 Estimation 

 In this chapter, the development of the estimation system is described. The estimator is meant 

to fuse signals from the sensors, distributed throughout the vehicle, and to provide the RHSC 

with the required information.  In Section 4.1, the optimal estimation problem is defined and its 

mathematically equivalent form is established. In Section 4.2 to Section 4.4, the structure of a 

particular estimation algorithm, which is adopted to incorporate available information sources in 

the current problem, is expanded. Finally, the computer simulations and real-time test results are 

provided in Chapter 7. 

4.1 Optimal Estimation Problem 

 Consider a linear discrete-time system with the state-space description, 

1 1,k k k k k k kx x G u w+ += Φ + + , (4.1) 

where n
kw R∈  is a zero mean white sequence of power kQ : 

      T
k j k k jE w w Q δ −= , (4.2) 

and jk−δ  is the Kronecker delta. The power of the model white noise indicates the confidence 

level of the theoretical model of the system. m
ku R∈  is the known deterministic input sequence 

which is related to the system state vector, n
kx R∈ , by the input matrix kG . Further, 1,k k+Φ  is 

the state transition matrix between times kt  and 1kt + . The transition matrix allows the 

computation of the state vector at time  kt , given the complete knowledge of the state vector at 

k it −  for 0i >  and the input.  

Measurements that capture the dynamical system behaviour are modelled as a linear combination 

of the system states, corrupted by the zero mean uncorrelated noise, p
kv R∈  ,with strength kR , 

such that 

 kkkk vxHz += , 

and 

jkk
T
jk RvvE −= δ ,                (4.3) 
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where p
kz R∈  is the set of p  measurements at time kt . kH  is the measurement matrix that 

describes how the states and the measurements relate to each other in the absence of the noise. 

 The goal is to find an estimate of the state vector, denoted by kx̂  ,based on prior knowledge of 

the system dynamics and the measurements such that the following optimality criteria is satisfied 

at each time-step: 

   ]ˆ[]ˆ[ kk
T

kk xxxxEMin −− ,     (4.4) 

or alternatively, 

( )k kJ trace P= + ,     (4.5) 

where ( )kP +  is the covariance matrix of the estimation error ˆk kx x− . Furthermore, the estimation 

error should be unbiased: 

   0ˆ =− kk xxE .     (4.6) 

 The following results are proven [41], [42], 

• If the system noise sequence, kw , and the measurement noise sequence, kv  , are 

Gaussian zero-mean, uncorrelated, and white, then the KF, [43] and [44], provides the 

desired solution, satisfying the criterion. 

• If kw  and kv  are zero-mean, uncorrelated, and white, then the KF is the best linear 

solution for the optimal estimation problem. There might be a non-linear estimator 

that offers a more optimal solution, but the KF is the optimal linear estimator. 

• Otherwise, for nonlinear systems, or when the system and measurement noise are 

either correlated or coloured, the KF is no longer optimal but can be modified to 

approximate the best solution. In this case, KF is a sub-optimal solution for the 

estimation problem.        

 For the current estimation problem, it is assumed that the system and measurement noises are 

zero-mean, uncorrelated, and white. It is also assumed that the vehicle nature is linear in the 

region of the interest (that is, the vehicle dynamics can be expressed as the form of Equation 

(4.1))1. As a result, wherever the measurement system dynamics is linear, the KF is used for the 

first trial to tackle the estimation problem. Otherwise, when the optimality condition of the KF is 
                                                 
1 Note that during the estimator design, it is assumed that the controller is in-line. Also, during the controller 
design, the estimator is in-line (all the states are provided, accurately). Finally, the nonlinear separation theorem is 
utilized to design the integrated estimation and control system. 
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not satisfied due to a non-linearity in the measurement system, modified versions of the KF, 

called the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF), are adopted 

[41], [42], [45], [53], [54]. Implementing the well-known filter with proven performance in 

several linear and non-linear practical applications [41], [46], [47], [48], [49], [50], [54] helps to 

determine the level of complexity of the problem, and highlights the issues of the particular 

estimation problem.  

 In the next section, the structure of the KF is briefly introduced and the underlying concepts 

are expanded. The structure of the EKF is simply come out from that of the KF by replacing the 

linear matrices by the corresponding linearized state and measurement matrices (Jacobians). 

More details are given in Section 4.3. Section 4.4 introduces the structure of the UKF, which 

fundamentally differs from the EKF. The designated estimator is then applied for state estimation 

of a simplified vehicle model, known as the quarter car, in Chapter 5 and extended to a full-car 

state estimation problem in Chapter 6. Each chapter includes modeling of the vehicles and the 

measurement systems followed by real-time estimation results and conclusions. 

4.2 Kalman Filter (KF) Structure  

 Consider the n -state linear dynamical system:  

 1 1,k k k k k k kx x G u w+ += Φ + + .                                                (4.7) 

with the measurements modelled by linear combinations of the states: 

 k k k kz H x v= + ,                                                         (4.8) 

where (0, )k kw N Q∼ and (0, )k kv N R∼ . Assume that the following initial conditions are given: 

                                                              0 0ˆ [ ]x E x− = ,                     

 0 0 0ˆ ˆ[( )( ) ]TP E x x x x− − −= − − .                                                 (4.9) 

It is desired to find an unbiased and optimal, in the covariance sense, estimate of the state vector 

kx .  

 The KF works on a prediction-correction basis. First, a prediction is determined based on the 

system analytical model and the current state vector. In the next step, the predicted state is 

updated by incorporating the measurements. In this way, the information from the analytical 
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models and the actual measurements, weighted by their confidence/correctness level, are 

combined to acquire more reliable and accurate states.  

 The updated estimate is given by a linear combination of the predicted state and the 

measurements, that is, [41] 

                                        ˆ ˆ ˆ( ) ( ) [ ]k k k k kx x K z z+ = − + − ,                (4.10) 

where ˆkz  is the KF estimated measurement computed as: 

ˆˆ ( )k k kz H x= − .                                                         (4.11) 

Also, kK  is the Kalman gain and is determined by:  

1])([)( −+−−= k
T
kkk

T
kkk RHPHHPK .    (4.12) 

In Equation (4.12), kH  is the measurement matrix and kR  is the covariance of the discrete noise 

sequence. For an analog sensor with a noise characteristic of R , the equivalent discrete noise 

power can be simply obtained by [49]: 

      
t

RRk Δ
= .      (4.13) 

The estimation error covariance matrix is corrected by a modified formula which reduces the 

probability that the covariance matrix can become negative definite, expressed as 

( ) ( ) ( )( )T T
k k k k k k k k kP I K H P I K H K R K+ = − − − + .   (4.14) 

 Between measurements, the discrete model of the dynamic system, Equation (4.7), without 

the noise term, is used to propagate the estimated states. Also, the error covariance matrix is 

propagated between the measurements by applying the following equality: 

1( ) ( 1, ) ( ) ( 1, )T
k k kP k k P k k Q+ − = Φ + + Φ + + ,                 (4.15) 

where kQ  is the power of the discrete process noise kw  ,and ( 1, )k kΦ +  is the state transition 

matrix between the two consecutive time-steps. For a continuous system with a state matrix A , 

the state transition matrix between the two time-steps is given by the following exponential 

series [50], [51]: 

      ( 1, ) A Tk k e ΔΦ + = .                                                    (4.16)

Also, the equivalent descretized (quantized) noise covariance of an additive continuous white 

noise ( )w t  is computed, at each time-step, by: 

1 ( , ) ( ) ( , )k
k

t T
k tQ k Q t k dρ ρ ρ+∫= Φ Φ , 
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where, 

      ( ) ( ) ( ) ( )TE w t w Q t tτ δ τ′ ′ = − .                               (4.17) 

                                     

4.2.1 The Kalman Filter (KF) Characteristics 

 Lemma 1: Consider the discrete-time system (4.7) with the measurements (4.8). Suppose 

that the matrix pair 1/2( , )k kQΦ  is Controllable (Stabilizable) and the pair ( , )k kH Φ  is 

Observable (Detectable). Then, the estimation error covariance matrix, Equations (4.14) and 

(4.15), converge to a steady-state matrix value P ,  

       lim ( ) lim ( )k k
k k

P P P
→∞ →∞

= + = −  .    (4.18)

P  is the unique positive semidefinite solution of the Discrete Algebraic Riccati Equation 

(DARE) and is given by Equation (4.19) [42], [45], 

         1( )T T T T
k k k k k k k k kP P PH H PH R H P Q−= Φ Φ −Φ + Φ + .    (4.19)

Also, the Kalman gain (Equation (4.12)) converges to a steady-state value K , which is computed 

by the following equation, 
1( ) .T T

k k k kK PH H PH R −= +                                                (4.20) 

In this case, the estimation error dynamics is expressed by 

              1 ( )k k k ke KH e+ = Φ −Φ ,    (4.21) 

and the steady state Kalman gain guarantees the asymptotic stability of ( )k k KHΦ −Φ , that is, 

              ( ) 1i k k KHλ Φ −Φ < . (4.22) 

4.3 Extended Kalman Filter (EKF) Structure 

 This section extends the discussion of optimal estimation for linear systems to the more 

general case described by the non-linear stochastic difference equation (4.23):  

 1 ( , , )k k k k kx f x u t w+ = + ,                                              (4.23) 

where kw  is a zero mean Gaussian noise having the spectral density matrix kQ . The problem is 

to estimate the state vector kx  from sampled nonlinear measurements of the form: 



 20

                                                        ( , )k k k kz h x t v= + ,                     (4.24) 

where kv  is the measurements’ white random sequence with covariance kR . Also assume that 

the initial conditions (4.9) are given. 

 Like the original KF, the EKF works on a prediction-correction basis. The only difference 

occurs because the original KF has been derived for linear systems, but the EKF is developed 

for non-linear dynamics. However, the EKF linearizes the nonlinear system about the most 

recent estimate of the state vector, and then benefits from the original linear filter concepts1.  

 Motivated by the linear estimation problem, the updated estimate is given by a linear function 

of measurements and the predicted state, i.e., [41] 

ˆ ˆ ˆ( ) ( ) [ ]k k k k kx x K z z+ = − + − ,                                               (4.25) 

where kK  is the Kalman gain and is computed by Equation (4.12). For the EKF, matrix kH  in 

Equation (4.12) is the Jacobian matrix of the nonlinear measurement function, h  , resulting from 

the Taylor series expansion, evaluated at the prior estimate (before measurements are 

incorporated) of the system state at kt = , 

                
ˆ[ ] ( )

( [ ], )
[ ]

k
k

x k x

h x k kH x k = −

∂=
∂

.                        (4.26) 

Also, the estimation error covariance matrix is updated by Equation (4.14).  

 Between the measurements, the estimated states are propagated by the use of Equation (4.23), 

the analytical model of the system, without the noise term. Also, the error covariance matrix is 

propagated by Equation (4.15). However, for the nonlinear system (4.23), the state transition 

matrix between the two consecutive time-steps is given by: 

      ( 1, ) kA Tk k e ΔΦ + = ,                                                      (4.27) 

where kA  is the linearized system matrix about the updated estimate:  

                
ˆ[ ] ( )

( [ ], )
[ ]

k
k

x k x

f x k kA x k = +

∂=
∂

. (4.28)

                                                 
1 Although the EKF algorithm is derived independently from the original linear filter, the relation between the two 
filters can be verified by the above-mentioned description. 
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4.4 Unscented Kalman Filter (UKF) Structure 

 As explained in Section 4.3, the EKF relies on linearization to update and propagate the 

mean and covariance of the state vector. This might often lead to unreliable estimates if the 

system nonlinearities are severe [42], [53], [54]. To eliminate the linearization error, the UKF, 

an extension of the KF, is developed which propagates mean and covariance information 

through a nonlinear transformation called Unscented Transformation (UT) [53].  The structure 

of the UKF is introduced in this section. The next sub-section, 4.4.1, demonstrates how the 

UKF reduces the linearization errors of the EKF.  

 Consider the nonlinear system and measurements of Equations (4.23) and (4.24), with the 

initial conditions given by Equation (4.9). The UKF also consists of two steps: update, followed 

by prediction. In the first stage, the filter incorporates the received sensors’ signal to update the 

predicted states. In order to do that, 2n  sigma points ( )ˆ i
kx  are specified as the following [42], 

[53]  

 ( ) ( )ˆ ˆ , 1,..., 2i i
kkx x x i n−= + =� ,  

 ( )( ) , 1,...,
Ti

k i
x i nnP−= =� ,  

 ( )( ) , 1,...,
Tn i

k i
x i nnP+ −= − =� , (4.29) 

where kP−
 is the matrix square root of the error covariance matrix kP−

 (i.e., 
T

k k kP P P− − −= ). 

Then, the sigma points in Equation (4.29) are transformed by the nonlinear mapping 

( , )k k kz h x t=  to get 2n  predicted measurement vectors as shown in (4.30)  

                                                      
( ) ( )ˆˆ ( , )i i

kk kz h x t= .                                                (4.30) 

In the next step, the ( )ˆ i
kz  vectors are combined to obtain the predicted measurement vector at the 

time t k= : 

 
2 ( )

1

1ˆ ˆ
2

n i
k k

i
z z

n
−

=
= ∑ .

                                                     
(4.31) 

In the same fashion, covariance of the predicted measurement is computed by 

 
2 ( ) ( )

1

1 ˆ ˆ ˆ ˆ( )( )
2

n i i T
z k k kk k

i
P z z z z R

n
− −

=
= − − +∑ ,                                   (4.32) 



 22

which also takes into account the effect of the measurement noise power. After computation, 

the cross covariance between ˆkx−  and ˆkz−  

 
2 ( ) ( )

1

1 ˆ ˆ ˆ ˆ( )( )
2

n i i T
xz k kk k

i
P x x z z

n
− −

=
= − −∑ ,                 (4.33) 

the Kalman gain matrix is given by (4.34) 

 1
k xz zK P P−= ,                                                      (4.34) 

and the update stage is performed through the following equations  

 ˆ ˆ ˆ( )k k k k kx x K z z+ − −= + − ,  

 .T
k k k z kP P K P K+ −= −  (4.35) 

 The time propagation stage is initiated by choosing new 2n sigma points of the form: 

 ( ) ( )ˆ ˆ , 1,..., 2i i
kkx x x i n+ + += + =�   

 ( )( ) , 1,...,
Ti

k i
x i nnP+ += =�   

 ( )( ) , 1,...,
Tn i

k i
x i nnP+ + += − =�  (4.36) 

This time, the nonlinear system equation is used to propagate the sigma points into ( )
1ˆ i

kx + vectors, 

as illustrated by (4.37), 

 ( ) ( )
1ˆ ˆ( , , )i i

k kk kx f x u t+
+ = .                                               (4.37) 

The average of the transformed sigma points yields the a priori state estimate at time 1t k= + , 

 
2 ( )

1 1
1

1ˆ ˆ
2

n i
k k

i
x x

n
−
+ +

=
= ∑ ,                                                   (4.38) 

and an a priori error covariance matrix is given by Equation (4.39) 

 
2 ( ) ( )

1 1 11 1
1

1 ˆ ˆ ˆ ˆ( )( )
2

n i i T
k k k kk k

i
P x x x x Q

n
− − −
+ + ++ +

=
= − − +∑ , (4.39) 

where also considers the effect of the system white noise covariance kQ . 

4.4.1 Means and Covariance of Nonlinear Transformation 

 This section illustrates how linearization approximation (which is implemented in the EKF 

algorithm) can cause errors in the mean and covariance of nonlinear functions of random 

variables (RV). Mean and covariance of the same nonlinear function is also evaluated by 
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employing the UT.  The results of the two approaches are then compared. Consider the 

nonlinear transformation 

 ( )y h x= ,                                                           (4.40) 

where x  is a RV with mean x  and covariance xP . By using the Taylor series expansion 

formula, ( )h x  can be expanded as follows, 

                                                                 ( )y h x=                                                                                                  

                                                   ( ) ...
! !x x xh x D h D h D h= + + + +� � �

2 31 1
2 3

 ,                 (4.41) 

where x x x= −�  and k
xD h�  is given by, 

 ( ) ( )
nk k

x i x
i i

D h x h x
x=

∂
= ∑

∂� �
1

.                                           (4.42) 

The mean of y  can therefore be written as, 

                                          [ ( ) ...]
! !x x xy E h x D h D h D h= + + + +� � �

2 31 1
2 3

     

                                               ( ) [ ...]
! !x x xh x E D h D h D h= + + + +� � �

2 31 1
2 3

.                              (4.43) 

A linear mean approximation results in 

 ( ) [ ]xy h x E D h= + � ,                                                 (4.44) 

and since the odd moments of x�  is zero ( [ ]xE D h = 0� ), equation (4.45) gives the mean value of 

the nonlinear function. 

 ( )y h x= ,                                                          (4.45) 

Equation (4.45) is used to propagate the estimated state and the error covariance between 

measurement times in the EKF routine. It is obvious that the higher order nonlinear terms have 

been neglected, which can be significant in highly nonlinear dynamical systems [53]. 

 Alternatively, the mean of y  can be computed by taking the weighted sigma points of 

Equation (4.36) 

 
2 ( )

1

1
2

n i
u

i
y y

n =
= ∑ .                                                     (4.46) 

In the next step, the value of uy  is computed to see how efficient it matches the exact mean y . 

By expanding each ( )iy  in Equation (4.46) around x , the above equation can be rewritten as 
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( ) ( ) ( )

( ) ( ) ( )

( ( ) ...)
! !

( ) ( ...).
! !

i i i

i i i

n
u x x xi

n

x x xi

y h x D h D h D h
n

h x D h D h D h
n

=

=

= + + + +∑

= + + + +∑

� � �

� � �

2 2 3

1
2 2 3

1

1 1 1
2 2 3

1 1 1
2 2 3

                        (4.47) 

Now, notice that for any integer 0k ≥  

 ( )j

n k
xj

D h+

=
=∑

2 2 1

1
0� , (4.48) 

since ( ) ( ) , 1,...j n jx x j n+= − =� � . Therefore, all of the odd terms in Equation (4.47) evaluate to 

zero and then 

 ( ) ( )

2 2 4

1

1 1 1( ) ( ...)
2 2! 4!

i i

n
u x x

i
y h x D h D h

n =
= + + +∑ � � . (4.49) 

 Now, look at the second term on the right-hand side of the above equation 

 

( )

2 2 ( )2 2

1 1 1
22 ( ) ( )

1 , 1
2

( ) ( )

, 1 1

1 1 1 1 ( ) ( )
2 2! 2 2!

1 ( )
4
1 ( ) ,
2

i

n n n k
ix x xi k i i

n n k k
i j

k i j i j x x
n n k k

i j
i j k i j x x

D h x h x
n n x

x x h x
x xn

x x h x
x xn

=
= = =

= =
=

= = =

∂
=∑ ∑ ∑

∂
∂

= ∑ ∑
∂ ∂
∂

= ∑ ∑
∂ ∂

� �

� �

� �

 (4.50) 

Again, ( ) ( ) , 1,...j n jx x j n+= − =� �  has been used above to throw out the symmetric terms. 

Substitute for ( )k
ix� and ( )k

jx�  from Equation (4.29) in the above equation 

 

2 2
( ) ( )

, 1 1 , 1 1
2

, 1
2

, 1

( )1 1( ) ( ) ( )
2 2

( )1
2

( )1 .
2

n n n nk k
x ki x kji j

i j k i j ki j i jx x x x
n

ij
i j i j x x
n

ij
i j i j x x

h xx x h x nP nP
x x x xn n

h x
nP

x xn
h x

P
x x

= = = =
= =

=
=

= =

∂ ∂
=∑ ∑ ∑ ∑

∂ ∂ ∂ ∂
∂

= ∑
∂ ∂

∂
= ∑

∂ ∂

� �

 (4.51) 

Equation (4.49) can therefore be written as, 

 
( ) ( )

2

, 1
2 4 6

1

1( )
2

1 1 1( ...).
2 4! 6!

i i

n
u ij

i j i j x x
n

x xi

h
y h x P

x x

D h D h
n

=
=

=

∂
= + +∑

∂ ∂

+ +∑ � �

 (4.52) 

Now, consider the second term in the true mean equation (see Equation (4.43)) 
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2 2

1
2

, 1
2

, 1
2

, 1

1 1[ ] [( ) ]( )
2! 2!

1 [ ]
2!
1 ( )
2!
1
2!

n
x i x xi i

n
i j

i j i j x x
n

i j
i j i j x x

n
ij

i j i j x x

E D h E x h x
x

h
E x x

x x
h

E x x
x x

h
P

x x

=
=

=
=

=
=

=
=

∂
= ∑

∂
∂

= ∑
∂ ∂
∂

= ∑
∂ ∂

∂
= ∑

∂ ∂

� �

� �

� �
                                     (4.53) 

 

2

, 1

4 6

1( )
2!

1 1[ ] [ ] ....
4! 6!

n
ij

i j i j x x

x x

h
y h x P

x x

E D h E D h

=
=

∂
= + ∑

∂ ∂

+ +� �

 (4.54) 

Comparing this equation with the one of the uy (the approximated mean of y ), it appears that 

uy  matches the true mean correctly up to the third order, whereas linearization matches the true 

mean only up to the first order (see Equation (4.45)). That is one of the sources that degrade the 

estimation accuracy of the EKF. It also demonstrated that by implementing the UT, the mean of 

the nonlinear function is transformed precisely. 

 Exactly the same argument is valid for the covariance of the nonlinear function. The 

covariance of y is given by 

 [( )( ) ]T
yP E y y y y= − − , (4.55) 

by using Equation (4.43), ( )y y− can be written as 

 
[ ( ) ...]

! !
[ ( ) [ ] [ ] ...],

! !

x x x

x x

y y h x D h D h D h

h x E D h E D h

− = + + + + −

+ + +

� � �

� �

2 3

2 4

1 1
2 3

1 1
2 4

 (4.56) 

 Substituting Equation (4.56) into Equation (4.55) results in, 

 

[ ( ) ]
( ) ( ) ( )[ ]

! ! ! !
[ ] [ ] ...,

! !

T
y x x

T T T
x x x x x x

x x T

P E D h D h
D h D h D h D h D h D hE

D h D hE E

= +

+ + +

+

� �

� � � � � �

� �

3 2 2 3

2 2
3 2 2 3

2 2

 (4.57) 

where odd-powered terms have been neglected due to symmetry of the RV’s probability density 

function (pdf). The first term in the above equation can be written as 
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,

,

,

[ ( ) ] [( )( ) ]

[ ]

[ ]

.

n nT T
i ix x

i ii ix x x x
Tn

i j
i j i jx x x x

n T
i i j j

i j
n T

i ij j
i j

T

h hx xE D h D h E
x x

h hxE x
x x

H E x x H

H P H

HPH

= == =

= =

∂ ∂
= ∑ ∑

∂ ∂
∂ ∂

= ∑
∂ ∂

= ∑

= ∑

=

� � � �

� �

� �

1 1

 (4.58) 

rewriting Equation (4.57) after incorporating (4.58), covariance of a nonlinear transformation 

( )y h x=  is given by, 

 

( ) ( ) ( )[ ]
! ! ! !

[ ] [ ] ....
! !

T T T
x x x x x xT

y

x x T

D h D h D h D h D h D hP HPH E

D h D hE E

= + + + +

+

� � � � � �

� �

3 2 2 3

2 2
3 2 2 3

2 2

 (4.59) 

This is the complete Taylor series expansion for the covariance of a nonlinear transformation 

[42]. Consider the fact that all of the odd-powered terms in the expected value evaluate to zero. 

And hence, 
T

yP HPH= .                                                         (4.60) 

Again, due to linear approximation made in the EKF algorithm, only the first term of Equation 

(4.59) is used to obtain the covariance of the nonlinear function. This covariance approximation 

can result in significant errors if the underlying function, ( )h x , is highly nonlinear. By 

implementing the UT, it is shown by Equation (4.59), that the approximated covariance, yP , 

matches the true covariance up to the third order [53]. 
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5 States Estimation of a Simplified Vehicle Model – the Quarter 

Car  

 In this chapter, states estimation of a simple vehicle which has only one wheel is examined. 

A semi-active suspension attached to the wheel axle and car body frame protects the car from 

irregularities in the road. This system is usually referred to as a Quarter Car (QC) model. 

Acceleration of the body and the wheel is measured via accelerometers mounted on each mass. 

Also, a displacement sensor may be used to measure the relative displacement across the 

suspension. A KF is utilised to fuse the sensors’ data and to output relative displacement and 

velocity of the vehicle body and the wheel (sprung and unsprung masses), as well as the wheel 

deflection and the vertical velocity and displacement of the wheel mount (wheel-hub). Sections 

5.1 and 5.2 give approximate analytical models of the QC and the measurement system that is 

embedded within the KF. Section 5.3 explains how the semi-active suspension with the 

Skyhook control strategy minimizes the effects of road disturbances on the vehicle body. 

Computer simulation and real-time estimation results are given in Section 5.4 

5.1 The Quarter Car Analytical Model 

 Figure 5 shows a two Degrees of Freedom (DOF) quarter car model.  

 

Figure 5: Lumped mass, two degrees of freedom quarter car (2 DOF QC) model. 
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The equations of motion for this system are given by:  

( ) ( )b b s b w s b wm z k z z c z z= − − − −�� � �                                                     (5.1) 

( ) ( ) ( ).w w s b w s b w w w dm z k z z c z z k z z= − + − − −�� � �                                 (5.2) 

By choosing the following variables as the states of the system, 

1

2

3

4 ,

b w rQC

b b

w d w

w hQC

x z z z

x z v
x z z
x z v

δ

= − =

= =

= − =

= =

�

�

                                                         (5.3) 

the state space formulation of the QC system is derived to be as follows: 

1 1
2 2
3 3
4 4

0 1 0 1
00
0

0 0 0 1 1
0

s s s

b b b
d

s s w s

w w w w

k c cx x
m m mx x zx x
k c k cx x
m m m m

−⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥− −
⎢ ⎥⎣ ⎦

�
� ��
�

,                           (5.4) 

where sc  is the damping coefficient of the semi-active suspension; Moreover, dz�  is the 

disturbance input coming from the road, and hence,  

d du z= � ,                                                            (5.5) 

The state and input matrices are also given by the following equation 

0 1 0 1
00
0( ) ,0 0 0 1 1
0

s s s

b b b
s

s s w s

w w w w

k c c
m m mA c E
k c k c
m m m m

−⎡ ⎤
⎢ ⎥ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎢ ⎥= = ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥− −
⎢ ⎥⎣ ⎦

.                               (5.6) 

 There is another choice for the state vector of the 2 DOF QC. The alternative state vector 

contains absolute position and velocity of the sprung and unsprung masses: 

1 bx z=  
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2

3

4 .

b b

w

w hQC

x z v
x z
x z v

= =

=

= =

�

�
                                                        (5.7) 

The corresponding state-space realization is then written as: 

1 1
2 2
3 3
4 4

0 1 0 0
0
0
0

0 0 0 1

( )

s s s s

b b b b
d

w
s s s w s

w
w w w w w

k c k cx x
m m m mx x ux x k
k c k k cx x

m
m m m m m

⎡ ⎤
⎡ ⎤⎢ ⎥⎡ ⎤ ⎡ ⎤− − ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥− + − ⎣ ⎦⎢ ⎥⎣ ⎦

�
�
�
�

.                   (5.8)  

where the state and disturbance input matrices are: 

0 1 0 0
0
0
0( ) , .0 0 0 1

( )

s s s s

b b b b
s

w
s s s w s

w
w w w w w

k c k c
m m m mA c E

k
k c k k c

m
m m m m m

⎡ ⎤
⎡ ⎤⎢ ⎥

− − ⎢ ⎥⎢ ⎥
⎢ ⎥= ⎢ ⎥ =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥− + − ⎣ ⎦⎢ ⎥⎣ ⎦

                       (5.9) 

The disturbance input of the model, given by Equation (5.8), is the road displacement, that is, 

    d du z= ,                                                           (5.10)        

as opposed to the previous realization (see Equation (5.4)) in which the road velocity is the 

input. 

 When weight of the wheel is too small in comparison with the vehicle body, it may be 

simply overlooked from the QC system, resulting in a 1 DOF vehicle. A schematic of the 1DOF 

QC is shown in Figure 6. The corresponding equation of motion is given by: 
' ( ) ( )b b s b d s b dm z k z z c z z= − − − −�� � � .                                          (5.11) 

 

Figure 6: 1 DOF Quarter Car (1 DOF QC) model. 
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By choosing the following two variables as the vehicle states: 

1 b dx z z= −  

2 b dx z z= −� � .                                                         (5.12) 

The equation of motion in the state space form is written as 

( ) ( )dx A t x Eu t= +� ,                                               (5.13) 

where 

'

0 1
( )s s s

b b

A c k c
m m

⎡ ⎤
⎢ ⎥= ⎢ ⎥− −⎢ ⎥⎣ ⎦

,   
0
1

E
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
,                                     (5.14) 

and the input to the system, du ( t ) , is the road vertical acceleration, that is, 

( ) ( )d du t z t= �� .                                                   (5.15) 

 In either realization, (5.4), (5.8) or that of the 1 DOF QC, given by (5.13), an extra white 

noise term ( )w t  with a strength of Q  is added to account for inaccuracies existing in the 

analytical model. Therefore, the state-space equation of the QC is written as: 

( ) ( ) ( ) ; T
s dx t A c x Eu w t E w w Q= + + =� . (5.16)

The model base estimator, KF, then benefits from the Equation (5.16), without the noise term, 

though, to propagate the states estimate between the measurements. 

5.2 Measurement System Analytical Model 

 The measurement system for the 2 DOF QC may consist of two accelerometers measuring 

the specific forces exerted to each mass. Hence, the measurement system can be described by 

the following differential equations: 

( ) ( )

( ) ( ) ( ).

s s
b b w b w

b b
s s w

w b w b w w d
w w w

k cz z z z z
m m

k c kz z z z z z z
m m m

= − − − −

= − + − − −

�� � �

�� � �
                              (5.17) 

The measurement vector is: 
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b

w

z
z

z
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

��
��

.                                                             (5.18) 

By considering the states set of Equation (5.3), Equation (5.17) can be written in the following 

compact form 

( ) ( ) ( )z t H t x v t= + ,                                                     (5.19) 

where ( )v t  is the sensors noise vector assumed to be zero-mean Gaussian and white, with 

covariance R . The measurement matrix is also given by Equation (5.20): 

0s s s

b b b
s s w s

w w w w

k c c
m m mH k c k c

m m m m

⎡ ⎤− −⎢ ⎥
= ⎢ ⎥
⎢ ⎥− −
⎢ ⎥⎣ ⎦

.                                        (5.20) 

 For the 1 DOF case, analog output of the accelerometer mounted on the sprung mass is fed 

back to the estimator. Hence, the measurement model may be expressed as the following 

equation 

           ( ) ( ) ( )T Tz t h x t v t= + ,                                               (5.21) 

where 

  ( )T s s

b b

k ch t
m m

⎡ ⎤
= − −⎢ ⎥
⎣ ⎦

.                                             (5.22) 

 The next section introduces the Skyhook control strategy to properly adjust the semi-active 

suspension. 

5.3 The Semi-active Damper Control Strategy – The Skyhook Policy   

 Before defining the Skyhook control policy, it is worth describing the behaviour of a passive 

system. Considering the 1 DOF QC model in Figure 6 but with a constant damper coefficient, 

the displacement transmissibility of the passive system can be derived as follows: 
2

2 2 2 2 2 2( ) 4
r

d n s n

x
z

ω

ω ω ζ ω ω
=

− +
,                                       (5.23) 

where rx  is relative displacement across the damper, 

r b dx x z= − ,                                                        (5.24) 
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which dz  is the road displacement.ω , nω  and ξ  are frequency, natural frequency, and the 

damping ratio, respectively. The displacement transmissibility expresses how big the damper 

relative displacement would be per unit of the base excitation. There exists another ratio which 

describes the same relation but between acceleration of the mass and the base. This ratio is 

expressed as, 
2 2 2

2 2 2 2 2 2 2 2

(2 )

( ) 4
n nb

n d n n n

x
z

ω ω ζω ω
ω ω ω ω ζ ω ω

+
=

− +

��
.                                    (5.25) 

 The displacement transmissibility can be plotted as a function of the frequency ratio, nω ω , 

resulting in Figure 7 for various damping ratios. As one can see from the figure, at low passive 

damping ratios, the resonant transmissibility (around nω ω= ) is relatively large, while the 

transmissibility at frequencies above the resonant peak is quite low. The opposite is true for 

relatively high damping ratios. Figure 7 demonstrates the inherent trade-off of passive 

suspension systems. If the suspension system damping is adjusted to the low values, superior 

high frequency isolation is gained but poor resonant frequency control.  
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Figure 7: Transmissibility of passive configuration (amplitude and phase) for different damping coefficients. 
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 One method to eliminate the trade-off between resonance control and high frequency 

isolation in a passive system is to reconsider the configuration of the suspension system. One 

option is moving the damper from between the suspended mass and the base to the position 

shown in Figure 8. The damper is connected to an inertial reference in the sky (a ceiling that 

remains vertically fixed relative to a ground reference). For this to actually happen, the damper 

must be attached to a reference in the sky that remains fixed in the vertical direction, but is able 

to translate in the horizontal direction. The transmissibility of the system can be expressed as: 

2

2 2 2

1 ( ) 2( )

(1 ( ) ) (2 )

b n n

d

n

j
x
z

ω ω ξ
ω ω
ω ξ
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− −
=
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Therefore, the amplitude and the phase can be obtained as: 

2 2 2

1

(1 ( ) ) (2 )

b

d

n

x
z ω ξ

ω

=
− +

,                                           (5.27) 

22 ))(1

)(2
)tan(

n

n

ω
ω

ξ
ω
ω

ϕ
−

−
= .                                                  (5.28) 

where nω  and ξ  are natural frequency of the system and the Skyhook damping ratio, 

respectively. In order to observe the effect of Skyhook control on the system, transmissibility 

versus nω ω  are plotted, and shown in Figure 9 and Figure 10. 
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Figure 8: The Skyhook configuration. 

mb 



 34

  

 As the Skyhook damping ratio increases, the resonant transmissibility decreases. Increasing 

the Skyhook damping ratio, however, does not increase the transmissibility above the resonant 

frequency. For sufficiently large Skyhook damping ratios (i.e., above ξ >0.707), the resonance 

frequency can even be isolated. This is encouraging, since the trade-off associated with the 

passive systems design has been removed. 
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Figure 9: Transmissibility of the Skyhook configuration (amplitude). 

 

To realize the Skyhook control, the relationship between force and the Skyhook damping force 

is then studied.  
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Figure 10: Transmissibility of the Skyhook configuration (phase). 

  

 Let us assume that the sprung mass is moving upward (i.e., in a positive direction of the 

sprung mass movement) and the relative velocity across the damper is positive. At this instance, 

the Skyhook damper applies a force in the opposite direction of the sprung mass. The 

relationship between force and the Skyhook damping coefficient, skyc , is as follows [10]: 

                    sky bF c v= − ,                                                         (5.29)                         
where bv  ( bx= � ) is the absolute velocity of the sprung mass. The negative sign shows that the 

force is in the opposite direction of the sprung mass motion. The question is how one can relate 

the variable damping coefficient to the Skyhook damping. Considering Figure 8, the force, 

applied from the semi-active damper, is written as: 

                      s s rF c v= − .                                                         (5.30)                         

sF  is a variable force adjusted by the variable damping coefficient. Also, rv ( rx= � ) is the 

relative velocity across the semi-active shock. If the semi-active damper needs to provide the 

same Skyhook force, by equating equations (5.29) and (5.30), the variable damping should be 

           sky
s b

r

c
c v

v
= .                                                         (5.31)                         



 36

 As mentioned before, both bv  and rv  should be positive. Now, let us consider the case where 

rv  is positive and bv  is negative. This means that the spring is stretching while the mass is 

moving downward. In a similar fashion, the force applied from the Skyhook damper applies in 

the positive direction of bv . Referring back to the Figure 8, the equivalent semi-active damper 

can only apply a force in the negative direction of bx . Since the equivalent semi-active damper 

will not be able to produce a force in the direction of the Skyhook damper, the only way to 

make this possible is to decrease the damping force close to zero. Practically, this can not be 

achieved completely because there is always a damping force, however slight. This small force 

applies in the opposite direction of the Skyhook damper. Therefore, when bv  is negative and rv  

is positive, one should keep the damping force very close to zero. In another case, when bv  is 

positive and rv  is negative, the same logic is used. The result is called the Skyhook policy and 

can be summarized as follows [11]: 

                            
0

0 0
sky b b r

s
b r

c x v v
F

v v

≥⎧⎪= ⎨
<⎪⎩

�
.                                                 (5.32) 

sF  is the force applied by the semi-active damper. The Skyhook control implies that when the 

product of bv  and rv  is positive (either positive or negative), the damping force is proportional 

to bv . When the product of the two bv  and rv  is negative (one of them is positive while the 

other is negative), the damping force should be equal to zero.  

 For semi-active systems, the Skyhook control strategy, Equation (5.32), is modified to suit 

the damper capabilities. It adjusts the damping coefficient of the semi-active damper, i.e., an 

MR damper, by only two damping levels: the high-state damping, maxc , and the low-state 

damping, minc , (ideally zero). When the product of the relative velocity across the shock and the 

absolute velocity of the sprung mass is positive or zero, the damper is set to the higher level; 

otherwise, it is set to the lowest level. Mathematically, this is shown by Equation (5.33): 

0
0

max b r
s

min b r

c v v
c .

c v v
≥⎧

= ⎨ <⎩                  
                                  (5.33) 

The Skyhook control strategy, either Equation (5.32) or (5.33), is undoubtedly the most-used 

control strategy for vehicles’ controllable suspension systems. However, there exist some 
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drawbacks associated with the implementation of this strategy. As described in Chapter 1, 

measuring bv , the absolute velocity of the sprung mass, is not practical. Also, choosing the 

damping levels (more specifically the upper damping level, maxc ) should be accomplished by a 

trial-and-error process which can be difficult and time-consuming. Nevertheless, in the next 

sections up to Chapter 12, the above-mentioned shortcomings are overlooked, and it is assumed 

that the damping coefficients of the semi-active dampers are properly altered based on the 

Skyhook policy. The above-mentioned drawbacks are then addressed in Chapter 12, where a 

systematic methodology is developed to design and implement the Skyhook control strategy for 

vehicles’ semi-active suspension systems. 

5.4 Experimental Results 

 This section investigates the KF efficiency in estimating the states of the simplified vehicle 

models. Since the experimental setup on hand is a 1 DOF QC, real-time experiments are carried 

out on the 1 DOF model. Computer simulations (off-line tests) are accomplished instead on the 

2 DOF vehicle model. For the 1 DOF case, a sinusoidal road input stimulates the system, but 

the exciting function for the 2 DOF QC is a single bump1. The next sections present the 

estimation results.  

 

5.4.1 Off-line Estimation Results of the 2 DOF Vehicle Model  

 Figure 11 shows the cross section of the bump which excites the 2 DOF QC in the off-line 

computer simulations. The bump dimensions are selected to be close to that of real bumps on 

common paved roads (for instance, Ring Road at the University of Waterloo). The quarter car 

passes over the bump with a speed of 30 km/hr. The damping of the semi-active damper is 

adjusted following the Skyhook policy to isolate the disturbance input. The most recent 

damping coefficient is then fed back to the KF to update the embedded system and 

measurement models. Noisy measurements of the two accelerometers (sprung and unsprung 

masses), sampled at a rate of 500Hz, are injected into the KF, where the sensors data and the 

embedded models information are combined to estimate the vehicle states.   

                                                 
1 A bump input contains a wide range of exciting frequencies up to 40 Hz. 
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Figure 11: Bump dimensions used in the computer simulations 

  

 Figure 12 and Figure 13 display the estimation results by the KF. The top graph of Figure 12 

compares the actual and estimated relative displacement of the shock, i.e., rQCz . The bottom 

graph shows the actual and estimated wheel deflection, wδ , side by side. In both graphs, the 

estimated states are reasonably close to the actual quantities.  
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Figure 12: The top graph compares the actual relative displacement of the semi-active damper with the KF 
estimate. The bottom graph performs the comparison for the QC’s tire deflection.  
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Figure 13: The top graph puts the actual and estimated absolute velocity of the sprung mass side by side. The 
bottom graph compares the actual absolute velocity of the wheel-hub with the KF estimate. 

 

 Figure 13 (the top graph) gives a comparison between the actual and estimated absolute 

velocity of the sprung mass. The bottom window compares the absolute velocity of the wheel-

hub with the KF estimate. From the top graph, it can be seen that the velocity estimate of the 

sprung mass contains poor knowledge of the actual signal. It is obvious that the separation of the 

two signal occurs at the time t=1 when the QC hits the bump. Furthermore, the bottom window 

illustrates that the KF provides a fairly good estimate of the wheel-hub absolute velocity.  



 40

0 0.5 1 1.5 2 2.5
1500

2000

2500

3000

3500

4000

4500

5000

5500

 C
se

m
i ac

iv
e (N

.s
ec

/m
) 

Time (sec)
 

Figure 14: The Skyhook controller command signal 

  

 Figure 14 plots the damping coefficient variations made by the Skyhook controller; it is either 

the permissible lower level, minc , or the upper damping level, maxc . The instantaneous damping 

coefficient of the semi-active damper, minc  or maxc , may be fed back to the KF to update the 

embedded models at each time-step (2 milliseconds).  However, it can significantly increase the 

computational burden and the required processing time of the filter, which may not be suitable 

for real-time applications.  

 The sensitivity of the KF estimates to the damping coefficient update is studied in the next 

step. It is done by comparing the estimation results of two KFs; one with time-invariant models, 

in which a constant damping coefficient equal to the mean value of the entire damping range is 

set, and the other with time-varying models. For this particular semi-active suspension design, 

minc  and maxc  are equal to 2000 and 5000 N.sec/m, respectively, and therefore the mean value of 

the damping range would be 3500 N.sec/m.  

 It is illustrated by Figure 15, Figure 16, and Figure 18 that the estimation quality of the KF 

embedding the time-invariant models is comparable to that of the other KF, whose models are 

updated at each sampling time. Furthermore, both filters are not capable of providing a 
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reasonable estimate of the sprung mass absolute velocity (please see Figure 17). These results 

authenticate the use of the KF with time-invariant models whenever lessening the processor 

burden is vital.          
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Figure 15: The graph compares the suspension system’s actual deflection with its estimations: one is obtained by 
updating the damping coefficient variations in the KF models, and the other one leaves it as a constant.     
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Figure 16: The graph compares the actual deflection of the wheel with its estimations; one is obtained by updating 
the damping coefficient variations in the KF models, and the other one leaves it as a constant. The plot zoomed in 
on the bump to provide a better resolution. 
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Figure 17: The graph compares the actual sprung mass velocity with its estimations; one is obtained by updating 
the damping coefficient variations in the KF models, and the other one leaves it as a constant. 
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Figure 18: The graph compares the wheel-hub velocity with its estimations; one is obtained by updating the 
damping coefficient variations in the KF models, and the other one leaves it as a constant. The plot zoomed in on 
the bump to provide a better resolution. 

   

 As Figure 17 demonstrates, the KF is not able to estimate velocity of the sprung mass. Even 

de-weighting the system model to let the KF rely more on the measurements does not help. This 

is despite the fact that the Observability matrix of the system and measurement pair, 

( , ( 1, ))kH k kΦ + , has full rank1 (see Equations (5.20), (5.6) and (4.16) for definitions of kH  and 

( 1, )k kΦ + ), which means that the states must all be fully observable from the measurements. 

The discrepancy is attributed to the lack of information of the road input disturbance. The only 

allowable unknown input to the system in the Kalman filter theory is a zero-mean Gaussian 

white noise, kw  in Equation (4.7), whereas in the current estimation problem, the unknown input 

(road disturbance) is not necessarily zero-mean (for instance, consider the case of a bump).  

 Further simulations confirm that by providing the road input information for the KF, the 

estimation quality associated with all the states is enhanced significantly.  The estimation results 

are shown in Figure 19 and Figure 20. It is demonstrated in Figure 19 that the sprung mass 

                                                 
1 It means that the Observability matrix has linearly independent columns or rows. 
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velocity is estimated accurately in this case. As depicted in this figure, the sprung mass velocity 

estimate, given by the KF with updated models, exactly matches the real signal. The same thing 

can be seen for the estimate of the wheel-hub velocity in Figure 20 (compare it with Figure 18). 

This issue is discussed further in Chapter 7, and solutions are proposed.  
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Figure 19: The graph compares the sprung mass velocity estimates obtained by the two different KFs with the real 
signal. Road profile information is provided for the KF models.   
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Figure 20: The graph compares the unsprung mass velocity estimates obtained by the two different KFs with the real 
signal. Road profile information is provided for the KF models. The graph zoomed in on the bump to give a better 
resolution. 
 
 The controllability matrix of the pair 1/2( ( 1, ), )kk k QΦ +  also has full rank ( kQ  is given in 

Equation (4.21)). According to the Lemma 1 of Section 4.2.1 (note that this lemma is only 

applicable for time invariant estimation problems which, with the assumption of constant 

damping coefficient, can be applied here), since both Observability and Controllability 

conditions are satisfied, the estimation error covariance matrix, kP , and the Kalman gain, kK , 

converge to constant matrices P  and K , respectively. P  is the unique solution of the DARE 

and for this particular problem becomes: 

0.00005 0.0002 0.000003 0.00001
0.0002 0.002 0.00001 0.0009

0.000002 0.00001 0.000001 0.00002
0.00001 0.0009 0.00002 0.002

P

− −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
− −⎣ ⎦

 .                                  (5.34) 

The steady-state Kalman gain matrix would then be: 

0.0001 0.00001
0.0003 0.0005

0.00004 0.00009
0.0009 0.0013

K

−⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

−⎣ ⎦

.                                                  (5.35) 
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 Estimation errors associated with the 2 DOF QC states are depicted in Figure 21 and Figure 

22. Blue bounds of each plot are plus-minus square root (standard deviation) of the 

corresponding diagonal element of the error covariance matrix kP .     

0 0.5 1 1.5 2 2.5
-0.1

-0.05

0

0.05

0.1
 σ

zr
Q

C (m
)

0 0.5 1 1.5 2 2.5
-0.04

-0.02

0

0.02

0.04

0.06

 σ
δw

 (m
)

Time (sec)
 

Figure 21: The top graph shows the error in the estimate of the suspension system deflection. The bottom plot was 
obtained for the tire deflection estimation error. Blue bounds are the corresponding error covariance given by 
theory. 
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Figure 22: The top plot compares error in the estimate of the sprung mass velocity with the covariance bounds 
given by the theory.  Estimation error corresponding to unsprung mass velocity is shown in the bottom graph. 

  

 It is apparent that the error covariance bounds eventually come together and converge to 

constant quantities. These quantities match the steady state covariance matrix elements (see 

Equation (5.34)) given by the DARE. Moreover, estimation errors are in agreement with the 

theoretically expected covariance matrix, which are updated and propagated by Equations 

(4.14) and (4.15), respectively. These indicate that the KF has been designed and works 

properly, even though one state is not estimated precisely (see Figure 17).  

 Measurements residual (or innovation signal), which is the difference between the actual and 

the estimated measurements vector at each time-step, is also computed. The consistency between 

the residuals and their theoretically expected covariance bounds is interpreted as the best 

reliability indicator of the KF (or the EKF). If the Ergodic properties are assumed for the 

innovation, and the process and measurement noises are uncorrelated, then the covariance and 

the mean value of the innovation signal are determined by: 

ˆ( ) 0,

ˆ ˆ( )( ) ( )

k k

T T
k k k k k k k k

E z z

E z z z z H P H R

− =

− − = − + ,                                    
(5.36) 
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where ˆkz  is the estimate of the measurement vector. Figure 23 plots the residuals associated 

with the sprung and unsprung mass accelerations. The residual of the sprung mass acceleration 

is given in the top figure and the residual of the unsprung mass measurement in the bottom 

figure. Covariance bounds corresponding to each residual are also plotted. It can be seen that 

the measurement residuals are unbiased and there is indeed a consistency between the residuals 

and the theoretically expected covariance bounds given by Equation (5.36). The existence of 

this consistency is a firm justification of the KF reliability. 

0 0.5 1 1.5 2 2.5
-30

-20

-10

0

10

20

30

 i ac
cb

 (m
/s

2 )

0 0.5 1 1.5 2 2.5

-100

-50

0

50

100

 i ac
cW

h (m
/s

2 )

Time (sec)
 

Figure 23: The graph illustrates the innovation signal associated with each accelerometer measurement [red]. Blue 
curves are expected variances of the residuals. 

  

5.4.2 Real-time Estimation Results of the 1 DOF Quarter Car Model 

 Figure 24 shows the single DOF QC experimental setup. It consists of four parallel springs 

and an MR damper which isolate a mass from base excitations. The sprung mass weighs 

approximately bm =52 N. The stiffness of each spring is 2346.7 N/m, resulting in a total 

stiffness of '
sk =9386.798 N/m (compare Figure 6 with Figure 24).   
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Figure 24: Experimental test rig of the single DOF Quarter car model. 

   

 The damper is a Lord Corporation’s sponge-based MR damper (model RD-1097-01). Its 

maximum continuous working current is 0.5 A, and the maximum intermittent input current is 

1.0 A. Also, the peak damping force of the damper is approximately 100N. Figure 25 plots the 

variation of the damper force with the applied current. 
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Figure 25: Damper force versus current. 
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 The harmonic excitations to the base are provided by a shaker VTS40 [57]. The shaker is 

capable of oscillating the base with different amplitude accelerations in different frequencies. 

Piezoelectric Dactron [58] accelerometers, displayed in Figure 26, are used to measure 

acceleration of the sprung mass and the base. Furthermore, relative motion across the 

suspension is measured by an analog string potentiometer. Complete specifications of the 

experimental setup are provided in Appendix B. 

 

 

Figure 26: The 1 DOF QC Measurement system. 

 

 A software package was generated based on the Simulink®, the Real-Time Workshop® and 

the Real-Time Windows Target®, modules of the Matlab®, to execute the KF and the Skyhook 

controller in real-time. While the shaker vibrates the system, data from the sensors are sampled 

by a PCI-DAS 1602/16 multifunction A/D-D/A board at 500 Hz and transferred to the 

KF/controller software. Figure 27 shows a sample road input with the frequency of 4Hz and the 

amplitude of 0.6 m/s2. Note that for the 1 DOF QC with the states given by Equation (5.12), 

acceleration of the base is the input to the system (see Equation (5.15)) .  
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Figure 27: Sinusoidal input to the 1 DOF QC created by the shaker. 

  

 Similar to the previous case, without the road input information provided for the KF, the 

estimation quality is not acceptable. Consequently, the road input to the QC (the base 

acceleration) is also injected to the KF embedded models. For the acceleration input plotted in 

Figure 27, the sprung mass acceleration is displayed in Figure 28. The KF fuses this signal with 

the analytical model of the QC to estimate the states1. Estimation results are given in Figure 29, 

Figure 30 and Figure 31. 

                                                 
1 From the Skyhook control implementation point of view, the states estimation of the 1 DOF QC is meaningless. 
But, it is included here just to keep the thesis integrity.   
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Figure 28: The QC’s sprung mass acceleration. 

  

 Figure 29 illustrates the effectiveness of the KF in estimating the relative displacement 

across the shock. The graph has been zoomed in on the last 0.8 seconds to provide a better 

resolution. It is shown that by using two accelerometers, the KF can accurately provide the 

relative displacement. Although this state can be simply measured by a string potentiometer, the 

experiment aims to illustrate how effectively KF can rule out the sensors drift by utilizing the 

system analytical model. It can also be seen that although the measured relative displacement is 

being truncated due to the sensor deficiency, the KF estimated signal follows the exact 

sinusoidal pattern. The corresponding estimation error is plotted in Figure 30. Figure 31 

compares the measured relative velocity (obtained by integrating the measurements of the string 

potentiometer) of the across the shock with the KF estimate. It is apparent that the estimated 

signal closely tracks the measured signal. 
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Figure 29: The graph compares the actual relative displacement of the single DOF vehicle suspension with its 
estimation. 
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Figure 30: Error of the relative displacement estimate. 
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  Figure 31: The graph compares measured and estimated relative velocity. 

  

 The Skyhook control command is also plotted in Figure 32. The most recent damping 

coefficient is sent to the KF to update the embedded models. Since the KF embedded models 

are continuously updated by the last Skyhook damping coefficient, the KF matrices do not 

converge to any steady-state value (as opposed to the 2 DOF QC’s KF discussed in Section 

5.4.1). However, they remain bounded (see Figure 33). Note that in this case, both 

Observability and Controllability matrices have full rank for any accepted value of the semi-

active damping coefficient. 

 The KF appears to be working properly, since estimation errors are within the theoretical 

bounds, as displayed in Figure 33 . Similar to the last section, the blue bounds are the square 

root of the appropriate diagonal element of the error covariance matrix, computed by Equations 

(4.14) and (4.15). 
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Figure 32: The Skyhook controller damping command  
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Figure 33: The top graph compares error [red] in the relative displacement estimate with the corresponding 
covariance bounds [blue] expected by theory. The window below demonstrates the same comparison for the 
relative velocity state. 
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 Consistency between the sprung mass accelerometer residual and the theoretically expected 

bounds is illustrated in Figure 34. It is clear that the residual is unbiased and agrees with the 

covariance bounds. This confirms that the KF has been designed and works properly. 
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Figure 34: Residual of the accelerometer attached to the sprung mass [red]. Blue bounds are the expected standard 
deviations from the theory. 
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6 States Estimation of a Full Car 

 Chapters 6 and 7 address the states estimation of an actual vehicle equipped with the sensor 

configurations proposed in Chapter 3. First, an analytical model of the test vehicle in the 

vertical and lateral modes (wheel bounces, heave, roll and pitch of the body) is derived in 

Section 6.1. Then, Section 6.2 gives an approximate model for the complete measurement 

system of the vehicle. Finally, real-time estimation results are presented in Chapter 7. 

6.1 Vehicle Dynamics Model   

 The vehicle dynamics, which are of interest for ride, handling and stability studies, include the 

vehicle’s body heave, roll, and pitch motions, as well as the four wheel bounces. This typical 7 

DOF characterization often applies to the design of active and semi-active suspension systems. 

For an efficient suspension system, the vehicle perturbations in the roll and pitch channels 

remain small ( max( , ) 6ϕ θ < D ). Therefore, the vertical and angular motions of the body can be 

described by the following linear differential equations [59]: 

1 1 2

2 3 3

4 4

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ,

CG sF CG LF CG sR CG

LR CG sF CG RF CG

sR CG RR CG

mz k z b a z c z b a z k z b a z

c z b a z k z b a z c z b a z

k z b a z c z b a z

ϕ θ ϕ θ ϕ θ

ϕ θ ϕ θ ϕ θ

ϕ θ ϕ θ

= − + − − − + − − − + + −

− + + − − − − − − − − −

− − + − − − + −

���� � �
� �� �� � � �

��� �
 (6.1) 

1 1 2

2 3 3

4 4

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ,

xx sF CG LF CG sR CG

LR CG sF CG RF CG

sR CG RR CG

I bk z b a z bc z b a z bk z b a z

bc z b a z bk z b a z bc z b a z

bk z b a z bc z b a z

φ φ θ φ θ φ θ

φ θ φ θ φ θ

φ θ φ θ

= − + − − − + − − − + + −

− + + − + − − − + − − −

+ − + − + − + −

�� � �� �
� � � �� � � �

� �� �
 (6.2) 

  and 

1 1 2

2 3 3

4 4

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ,

yy sF CG LF CG sR CG

LR CG sF CG RF CG

sR CG RR CG

I ak z b a z ac z b a z ak z b a z

ac z b a z ak z b a z ac z b a z

ak z b a z ac z b a z

θ φ θ φ θ φ θ

φ θ φ θ φ θ

φ θ φ θ

= + − − + + − − − + + −

− + + − + − − − + − − −

− − + − − − + −

�� � �� �
� � � �� � � �

� �� �
 (6.3) 

where CGz  stands for the vertical displacement of the body’s CG, ϕ  is the vehicle roll angle, and 

θ  is its pitch deflection. The remaining variables and parameters are illustrated in Figure 35. 
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Figure 35: Vehicle multi-body representation. The vehicle is decomposed into five lumped masses with 7 DOF. 

 
 The vertical movements of LF, LR, RF and the RR wheel-hubs are denoted by 321 ,, zzz , and 

4z , respectively. Again, by assuming the linear characteristics for the vehicle springs and shock 

absorbers, the following linear differential equations govern the wheel bounces:  

)()()( 11111 rwFCGLFCGsFwF zzkzabzczabzkzm −−−−++−−+= ������ θϕθϕ ,    (6.4) 

)()()( 22222 rwRCGLRCGsRwR zzkzabzczabzkzm −−−+++−++= ������ θϕθϕ ,   (6.5) 

)()()( 33333 rwFCGRFCGsFwF zzkzabzczabzkzm −−−−−+−−−= ������ θϕθϕ ,   (6.6) 

and 

)()()( 44444 rwRCGRRCGsRwR zzkzabzczabzkzm −−−+−+−+−= ������ θϕθϕ .     (6.7) 

 Since any information regarding the relative displacement and velocity of the vehicle dampers 

is crucial for the semi-active suspension controller; the following state vector is introduced:  

                                 1 16[ ,..., ]Tx x x= ,                  (6.8) 

where 1x  to 8x  are the relative displacements and velocities, corresponding to the suspensions, 

1 1( )
LFCG rx z b a z zφ θ= + − − = , 

2 1( )
LFCG rx z b a z vφ θ= + − − =� �� � , 

3 2( )
LRCG rx z b a z zφ θ= + + − = , 

4 2( )
LRCG rx z b a z vφ θ= + + − =� �� � , 

5 3( )
RFCG rx z b a z zϕ θ= − − − = , 
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6 3( )
RFCG rx z b a z vϕ θ= − − − =��� � , 

7 4( )
RRCG rx z b a z zφ θ= − + − = , 

and 

                8 4( )
RRCG rx z b a z vφ θ= − + − =� �� � .                          (6.9) 

 Moreover, the absolute vertical velocity of each wheel-hub and the tire deflections build the 

rest of the vehicle state vector as follows: 

9 1 1( )
LFr wx z z δ= − = , 

                                                                  10 1 LFhx z v= =� ,  

11 2 2( )
LRr wx z z δ= − = , 

                                                                  12 2 LRhx z v= =� , 

13 3 3( )
RFr wx z z δ= − = , 

                                                                  14 3 RFhx z v= =� , 

15 4 4( )
RRr wx z z δ= − = , 

and 

            16 4 RRhx z v= =� . (6.10)

riz , with 1,..., 4i = , represents the road profile (the road vertical displacement) associated with 

the i th wheel.  

 Another alternative to the state vector (6.8) is the minimal state vector of the 7 DOF vehicle 

which contains 14 states: 

 1 14[ ,..., ]Tx x x= ,                                                          (6.11) 

where 1x  to 6x  represents kinematics of the body, 

1 CGx z= , 

2 CGx v= , 

3x ϕ= , 

4x ϕ= � , 

5x θ= , 
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and 

6x θ= � .                                                              (6.12) 

The rest of the states are absolute vertical positions and velocities of the wheel-hubs as follows: 

7 1 LFhx z z= = , 

8 1 LFhx z v= =� , 

9 2 LRhx z z= = , 

10 2 LRhx z v= =� , 

11 3 RFhx z z= = , 

12 3 RFhx z v= =� , 

13 4 RRhx z z= = , 

and 

14 4 RRhx z v= =� .                                                       (6.13) 

 By selecting either sets of the states, the vehicle dynamics differential equations, Equations 

(6.1) to (6.7), can then be expressed in the following state space form: 

            ( ) ( ) ( ) ( )dx t A t x Eu t Lw t= + +� . (6.14)

However, with the sixteen states vector (6.8), the disturbance input in the realization (6.14), du , 

contains the road vertical velocities:  

1 2 3 4[ , , , ]T
d r r r ru z z z z= � � � � ,                                                  (6.15) 

but, with the minimal fourteen states vector, du  is the vector of the road vertical displacements; 

that is:  

1 2 3 4[ , , , ]T
d r r r ru z z z z= .                                                  (6.16) 

Moreover, )(tw  is a zero mean white noise process (random function input) with a spectral 

density Q , which accounts for the uncertainties in the vehicle’s simplified model. System matrix 

A is shown as a time variable, since it is an explicit function of the semi-active suspensions 

damping coefficients , ,LF LR RFc c c  and RRc  which are continually adjusted by the RHSC 

controller. 
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6.1.1 The Full Car Analytical Model Validation 

The vehicle system and its various suspension components are very complex. Hence, the 

effort is usually focused on developing simple analytical models of the vehicle and the 

suspension system. The models are then verified and fine-tuned experimentally [60]. Figure 36 

depicts a 4-poster test facility where the fully instrumented test vehicle is excited by sweeping 

frequency excitations created by four base shakers (posters). Moreover, the excitation of each 

shaker can be in-phase or out-of-phase with respect to the other shakers’ excitation. 

 

 

Figure 36: The Cadillac SRX test vehicle in the 4-posters test facility.  

 

 Figure 37 portrays acceleration of the LF wheel base shaker. The corresponding frequency 

content is also shown in Figure 38. The road input exhibits its maximum power in frequencies 

ranging from around 5 to 35Hz. Accordingly, the primary frequency components of the shaker 

excitation are located in the same frequency range to excite the same mode shapes of the 

vehicle, which are excited by real road disturbances. The real frequency response of the test 

vehicle is then compared with the spectrum predicted by the analytical models.  

  

Shakers 
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Figure 37: Input acceleration to the LF wheel by the base shaker. 
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Figure 38: Frequency content of the input acceleration signal depicted in Figure 37. 
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 Eigenvalues of the state matrix A  in the vehicle model state space realization (Equation 

(6.14)) must match the resonance frequencies of the body and those of the wheels. The typical 

values are between 1 and 3Hz for the body (roll, pitch, and heave mode) and 8 to 12Hz for the 

wheels. For the Cadillac SRX, the eigenvalues of the state matrix (with minimum semi-active 

damping coefficients) are repetitively located at (-0.3±j10.5) and (-0.8±j58). The first eigenvalue 

corresponds to a natural frequency of ωn≈1.7Hz which relates to the body resonance frequencies. 

The second one, with ωn≈9Hz, represents the resonance frequencies of the wheels.  

 Figure 39 portrays the accelerometer signal, mounted on the LF corner of the vehicle body, in 

response to the 4-poster excitations. Figure 40 plots the frequency content of the signal. It is 

demonstrated that the real resonance frequency of the vehicle body is located at somewhere 

around 2Hz, which is in agreement with the analytical model prediction.  
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Figure 39: Acceleration of the LF corner of the body (point A, see Figure 35). 
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Figure 40: Frequency content of the acceleration of the body’s LF corner (point A). 

 

 Similarly, a reading of the LF wheel-hub accelerometer is plotted in both time and frequency 

domains in Figure 41 and Figure 42, respectively. In Figure 42, the peak at the 2Hz belongs to 

the resonance frequencies of the body. The next peak, occurring at approximately 9Hz, 

represents the wheel resonant frequency. The vehicle’s analytical model also predicts the same 

natural frequency for the wheels.  

 As described earlier, the 7 DOF vehicle model, given by Equation (6.14), is a simplified 

model which cannot express the behavior of the entire vehicle. For instance, there is another 

resonance peak at approximately 22Hz in Figure 42 which is not predicted by the analytical 

model. The peak represents the resonance frequency of a solid component of the LF suspension 

system which has not been considered in the 7 DOF model. However, the role of the additive 

white noise w  in Equation (6.14) is to take into account such inaccuracies in the analytical 

model. 
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Figure 41: Acceleration of the LF wheel-hub. 

 

5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

10

Frequency (Hz)

Fr
eq

ue
nc

y 
C

on
te

nt
 o

f t
he

 w
he

el
 a

cc
el

er
at

io
n

 

Figure 42: Frequency content of the LF wheel-hub acceleration. 
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6.2 Sensing System Analytical Model 

  In this section, an analytical model of the sensor configurations proposed in Chapter 3 is 

presented. It describes how the sensor measurements relate to the vehicle states. To avoid 

replication, the measurement model is derived for a complete sensor suite (the union of all the 

proposed sensor configurations), which consists of one IMU1, two accelerometers per each 

vehicle corner, and four displacement sensors.  The IMU is installed near the CG, and the 

accelerometers and the displacement sensors are mounted at the ends of the dampers. 

 Having considered the aforementioned sensory collection, the measurement vector kz  is then 

given by: 

   1 2 3 4[ , , , , , , , , , , , , , , ]
LF LR RF RR

T
k CG A B C D wh wh wh wh r r r rz z a a a a a a a a z z z zφ θ= � ��� .       (6.17) 

In Equation (6.17), CGz�� , φ�  and θ�  are the outputs of the vertical accelerometer and the roll-and-

pitch rate gyros of the IMU. , ,A B Ca a a , and Da  are the accelerations at each corner of the 

vehicle body, which are related to the acceleration of the CG by applying the Coriolis law: 

( )B B B B B B B
i CG i ia a r rω ω α= + × × + ×                (6.18) 

The superscript B  denotes the vectors, expressed in a body reference frame of the vehicle 

centered at CG. B
ir  with CBAi ,,= , and D  is the coordination vector corresponding to each 

body corner, expressed in the body frame (see Figure 35). Also, Bω  and Bα  are the angular 

velocity and acceleration vector of the vehicle in body frame, respectively, given by: 

[ , , ]B Tω ϕ θ ψ= �� � , 

and 

    [ , , ]B Tα ϕ θ ψ= ���� �� .          (6.19) 

By assuming a negligible yaw motion of the vehicle2, after some mathematical manipulation, the 

accelerations at each corner are described as: 
2 2( )A CG CGa z h a bϕ θ θ ϕ= − + − +� ��� ���� , 

2 2( )B CG CGa z h a bϕ θ θ ϕ= − + + +� ��� ���� , 

                                                 
1 Note that only three of the six IMU sensors are utilized by the estimator. The lateral accelerometer signal is 
directly sent to the stability controller. The yaw rate gyroscope and the longitudinal accelerometer signals are not 
used in this application. 
2 In a study regarding the RHSC design, this assumption is considered valid. 
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2 2( )C CG CGa z h a bϕ θ θ ϕ= − + − −� ��� ���� , 

and 
2 2( )D CG CGa z h a bϕ θ θ ϕ= − + + −� ��� ���� ,     (6.20) 

where ,CGz ϕ���� , and θ��  are given by Equations (6.1) to (6.3).  

1 2 3, ,wh wh wha a a , and 4wha  are the wheel-hub accelerometers measurements which are modelled 

by Equations (6.4) to (6.7). And finally, , , ,
LF LR RFr r rz z z  and 

RRrz  are the outputs of the 

displacement sensors measuring the relative displacements across the shocks. 

 After considering either the state vector (6.8) or (6.11), the measurement vector (6.17) is 

expressed by the following equation: 

       ( , , )
kk k d kz h x u k v= + , (6.21) 

where h  is a matrix vector of nonlinear combinations of the vehicle states and the road input 

disturbances. Nonlinearity of the measurement model (6.21) is due to the accelerometers at each 

corner (shock-end) of the vehicle body (see Equations (6.20)). Therefore, except the sensor 

configuration (d), the other sensor configurations of Chapter 3 are linear. For those 

configurations, the measurement system model, Equation (6.21), is simply rewritten as:  

  
kk k k d d kz H x D u v= + + .                                           (6.22) 

Moreover, with the non-minimal state vector of the vehicle (the state vector (6.8)), the 

disturbance input matrix, dD , becomes zero, and the measurement model is reduced to a more 

compact form of Equation (6.23):  

k k k kz H x v= + .                                                (6.23) 

   In the above equations, kv  is the measurements noise vector which is assumed to be zero-mean 

Gaussian with a covariance of kR . The power of the measurements noise is initially computed 

according to the sensor noise characteristics given by the manufacturers [76], [77], [78] and [79], 

and then fine-tuned during real-time tests. For this application, the Analog Devices MEMS 

accelerometers and gyroscopes are employed. The accelerometers are chosen from the model 

ADXL202E, and the gyroscopes are from ADXRS401 [80], [82]. Moreover, the displacement 
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sensors are1 non-contact rotary position sensors from the Delphi [83]. Table 2 provides some of 

the sensors specifications. Complete information can be found in the corresponding data sheets 

[80], [83].  

 
Table 2: Specifications of the measurement system sensors. 

Gyroscope 

Scale Factor Error FS%1.0  

Noise Density 0.05 Hzsec/deg/  

Linear Acceleration Effect 0.2 deg/sec/g 

Bandwidth 100Hz 

Accelerometer 

Scale Factor Error FS%3.0  

Noise Density 200 Hzg /μ  

Bandwidth 150Hz 

Displacement Sensor 

Noise Variance 0.003 m 

Bandwidth 50Hz 

 

 Measurements of the accelerometers and the IMU are transferred at a rate of 500Hz with 12 

bit resolution to a processing onboard computer. While, displacement sensors are sampled via a 

10 bit A/D device at approximately 200Hz. The estimation algorithms presented in Chapter 4 are 

then applied to fuse the measurements data of a Cadillac SRX test vehicle and provide a central 

control unit with required states estimate. The real-time estimation results are presented in 

Chapter 7. 

 

 

  

                                                 
1 The displacement sensors were originally installed by the Cadillac SRX test vehicle manufacturer (GM). 
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7 Real-Time States Estimation Results of a Vehicle 

 A software simulation and real-time processing platform running in VC++ is developed for 

the off-line simulation and real-time implementation of the estimation algorithms (KF, EKF or 

the UKF). The onboard processor, where the estimation software processes the sensor signals, 

is a Pentium 4 desktop with 3.4 GHz computational power (CPU) and 1 GB RAM. The 

estimation algorithm is executed at a rate of 500Hz, which is the rate that the accelerometers 

and the IMU signals are sampled1.     

 The first test vehicle is a Toyota Tercel model 1993 (see Figure 2) with passive suspensions. 

It is then replaced by the Cadillac SRX model 2005, which is equipped with a semi-active 

suspension system. Some of the specifications of the Cadillac SRX are listed in Table 3.  

Table 3: Cadillac SRX Exterior Dimensions. 

Wheelbase (mm) 2957 
Overall length (mm) 4950 
Overall width (mm) 1844 
Overall height (mm) 1722 

Track (mm) Front: 2957 
Rear: 1580 

Base Curb Weight (kg) 2013 
Weight Distribution  

(% front/rear) 
52/48 

 
 

In each case, the fully-instrumented test vehicle is driven on a selected segment of Ring Road at 

the University of Waterloo (UW), with two consecutive bumps. 

 

Figure 43 and Figure 44 reflect the satellite picture of Ring Road and the two bumps. Moreover, 

the experiments are conducted at various velocities to investigate the effects of the vehicle’s 

longitudinal speed on the performance of the estimator.   

 

 

 
                                                 
1 The bandwidth of semi-active control systems are restricted to maximum 50 Hz due to the dampers response time 
limitations [84] and [85].  Therefore, the estimator should not be executed at a rate of slower than five times1 the 
controller speed (250 Hz). Since there was a capability of transferring the sensors’ data at 500 Hz, the estimator 
update rate is also selected to be at 500 Hz (ten times greater than the controller).  
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Figure 43: Satellite picture of UW’s Ring Road with two bumps. 

 
Figure 44: The first bump on Ring Road. 

  

 The vehicle’s embedded model is the simplified 7 DOF model, which is given by Equation 

(6.14) of Section 6.1 (both realizations are examined). The model is digitized by a zero-order 

hold with a sampling rate of 500Hz. The sampled data form is written as: 
'

1( ) ( 1, ) ( )
kk k d d kx k k x E u w+ − = Φ + + + + ,                                   (7.1) 

where the state transition matrix is expressed by the following exponential series: 

( 1, ) A Tk k e ΔΦ + = .                                                (7.2) 

The new disturbance input matrix becomes 

First 
Bump 

Second 
Bump 



 71

         
1

0
0 ( 1)!

k k
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d
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A TE e Ed Ek
ξ ξ

+∞Δ

=
∑∫

Δ= =
+

. (7.3)

 Moreover, the embedded measurement model is given by Equation (6.21) or the linear 

versions, Equation (6.22) or (6.23), depending on the selected state vector. Also, the road 

disturbance input should be evaluated in-line and fed back to the estimator embedded models. A 

preliminary method to provide the information of the road condition is to pass a unit white noise 

through the following first-order shaping filter:  

SF

SF
SF s

F
β

α
+

= .     (7.4) 

The bandwidth and the DC gain of the shape filter are selected as a function of the road 

roughness and the vehicle speed [14], [86]. 

 The Cadillac MR dampers (see Figure 45) also need to be characterized before any vehicle 

test. The dampers’ characterization is conducted at the UW’s MTS test facility.   

 
 

Figure 45: Cadillac SRX front semi-active damper (left) and the rear damper (right). 

 

Figure 46 portrays a 3-D surface fit to the experimental data of the damper experiments. The 

curve describes the damping forces with respect to the applied control current and the relative 

velocity across the damper (relative velocity of the vehicle chassis to the wheel). After the semi-

active damper characteristics are identified, the vehicle embedded models are updated at each 

real-time step. However, during the real-time implementations, it turns out that this increases the 
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estimation system computational burden without enhancing the estimation performance 

significantly.  
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Figure 46: MR damper characteristics curve of the Cadillac SRX.  
 

 Figure 47 plots the EKF estimate of the relative displacement of the Toyota Tercel’s LF 

suspension and the measured quantity, side by side. The EKF incorporates measurements of a 

combination of the sensor suites (a) and (b) – that is, 1 IMU and all the accelerometers. The 

speed of the vehicle is 40 km/hr during the experiment. Figure 47 shows the EKF estimate on the 

second bump. Looking at the positive side of the figure, it is apparent that the estimated relative 

displacement matches the measured data precisely. However, the measured signal is truncated 

from the negative side due to the mal-installation of the string potentiometer1. The rest of the 

Toyota Tercel’s estimation results are also affected by the same reason and are therefore not 

presented anymore.  

                                                 
1 It was installed without an offset, which is required to accommodate the compressions of the shock.  
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Figure 47: The graph compares the measured relative displacement of the Toyota Tercel’s LF suspension with the 
EKF estimate. 

   

 The states estimation results of the Cadillac SRX with different sensor configurations are then 

presented in the following sections. The estimators performance are investigated for both vehicle 

models: the model with the state vector (6.8) and the one with the minimal state vector (6.11). In 

each case, estimation results associated with the states of the vehicle’s LF corner are compared 

with the actual measurement data, except the tire deflection states that no actual information is 

provided by the existing measurement system.  

 

 

 

 

 

 

 

Filtered Actual 
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7.1 State Estimation Results with the Non-Minimal Realization 

 The non-minimal (sixteen-state) realization of the vehicle model is given by Equations 

(6.14), (6.15) and (7.1), where the dimensions of the state transition matrix and the input matrix, 

kΦ  and dE , are 16 16×  and 16 4× , respectively. The next sub-section gives the real-time 

estimation results of the KF, which uses the sensor suite (a).  

7.1.1 One IMU and Four Accelerometers Sensor Suite  

 As described in Chapter 3, the IMU is attached adjacent to the vehicle’s CG. It measures the 

vehicle’s body roll and pitch rate, and also the vertical acceleration of the CG. The 

accelerometers, mounted on the wheel-hubs, measure the vertical acceleration of each wheel 

due to the road disturbances. The analytical model of the sensor suite (a) is given by the linear 

Equation (6.23). In this case, the Observability matrix is not full rank, and therefore it is 

expected to have some states of the vehicle not estimated properly.  

 During the experiments, the speed of the Cadillac is maintained at around 40 km/hr. The 

state estimation results are compared with the real sensors data in Figure 48 to Figure 57. As 

Figure 48 demonstrates, the estimate of the LF suspension relative displacement does not match 

the actual measurement. It is apparent that the relative displacement state is not observable 

through measurements of the sensor suite (a) and hence the corresponding estimation error 

grows over time1.  

                                                 
1 However, passing the estimated state through a high-pass filter recovers the true signal. 
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Figure 48: Performance of the KF with 1 IMU and four accelerometers in real time. The graph compares the actual 
relative displacement of the vehicle suspension with its estimation. 

 
 The measured and estimated relative velocity is displayed in Figure 49. The plots have been 

zoomed in on the first bump to show the estimation performance with a better resolution. It 

appears that the KF does a much better job in estimating the relative velocity state. The 

differences between the two signal peaks are attributed to the fact that no knowledge regarding 

the bump input is provided for the estimator’s embedded models in real time.   
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Figure 49:  The graph relates the actual relative velocity with its estimation zoomed in on the first bump. 

  

 From Figure 50 and Figure 51, it is obvious that the KF cannot estimate the wheel-hub 

velocity. It is apparent that, specifically, at the leading edge and tailing edge of the bump (at 

approximately t = 3.7 sec and t = 4.1 sec, respectively), the estimated state travels in an inverse 

direction. However, after a fairly long transient time, the estimated signal finally attains the same 

pattern as that of the actual one. Looking at the experimental data reveals that the deviation of 

the estimated signal from the actual signal occurs when the significant disturbance input (the 

bump) is introduced to the vehicle. Indeed, the coloured output noise of the shape filter (7.4) is 

not able to resemble the bump input information for the KF embedded models1. This is also 

explained by the wheel accelerometer residuals (see also the measured and the KF estimate of the 

LF wheel-hub acceleration in Figure 53). As illustrated in Figure 52, residuals are reasonably 

small and within the theoretically expected bounds until the vehicle hits the road irregularities 

(see the residuals at approximately t = 5 sec (first bump), t=40 sec (hole) and t=60 sec (second 

                                                 
1 Note that with the non-minimal realization, ud is the road vertical velocity which is non-zero only at the leading 
and trailing slopes of the bump. For the the rest of the bump ud is zero. That’s why at the leading and trailing 
slopes of the bump, deviation of the measured and estimated signals occurs.   
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bump)). At these moments, the residuals are sharply increased, which indicates that the KF does 

not work properly and that some states are not estimated accurately. 
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Figure 50: The graph compares the actual velocity of the wheel-hub with its estimation zoomed in on the bump. 
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Figure 51: The graph compares the actual velocity of the wheel-hub with its estimation zoomed in on the bump. 
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Figure 52: Innovation signal (residual) of each accelerometer measurement [red] and expected variances of the 
residuals given by the KF [blue]. 
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Figure 53: The graph compares the measured LF wheel-hub (wheel No.1) accelerometer and the KF estimate. 
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Figure 54 and Figure 55 also compare two measurements of the IMU, pitch rate and 

acceleration of the CG, with the corresponding KF estimates.  
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Figure 54: The graph compares the measured pitch rate of the test vehicle with the KF estimate. 
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Figure 55: The graph compares the actual measurement of the vehicle body’s CG with the KF estimate. 
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 Figure 56 depicts the estimation error, associated with the LF suspension relative 

displacement. As illustrated earlier in this section, the relative displacement is not evaluated 

correctly by the KF, resulting in an unstable estimation error.  The blue bounds have been 

obtained by taking the square root of the appropriate diagonal element of the error covariance 

matrix. They indicate how confident the KF is with respect to the corresponding estimation 

product. The expansion of the error covariance bounds, reported by the KF, implies that it 

confirms the unobservability of the state.   
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Figure 56: The graph illustrates estimation error [red] corresponding to the estimate of the LF shock relative 
displacement and the error covariance bounds [blue]. 

 

 The estimation errors of the suspension relative velocity and the absolute velocity of the LF 

wheel-hub are given in Figure 57. The convergence of the covariance bounds1 in Figure 57 

denotes that both states are observable by the KF using the measurement system (a). However, 

it is demonstrated by Figure 50 and Figure 51 that, due to the lack of information of the road 

disturbance input, the KF cannot provide the absolute velocity state efficiently. In this case, not 

only the KF estimate is poor, but the KF thinks (on the basis of the computed error covariance) 

                                                 
1 It implies that the KF remains confident to its estimates accuracy. 
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that the estimate is better than what it really is (observe the moments where the estimation 

errors are out of the bounds). 
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Figure 57: Performance of the EKF with 1 IMU and four accelerometers. The state estimation errors are red and 
the KF evaluated error covariance bounds are blue. 

  

7.1.2 Four Displacement Sensors and One Lateral Accelerometer Sensor Suite  

 This section describes performance of the KF incorporating four displacement sensors (sensor 

suite (c)). The lateral accelerometer, mounted at the vehicle CG, produces the required 

information for the stability controller. The Observability matrix of the system with this sensor 

configuration has full rank. Therefore, it is expected that the KF provides an accurate estimate of 

all the states this time. The real-time experiments are carried out at a speed of 30 km/hr at the 

UW’s Ring Road. The vehicle state estimation results are recorded in Figure 58 to Figure 65. 

Figure 58 illustrates that even though the measurement is a noisy signal with sharp spikes, the 

KF extracts the true signal efficiently. Indeed, the KF offers signal smoothing to a great extent, 
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free of any phase lag. However, to completely eliminate the spikes1, a digital Butterworth low-

pass filter with the appropriate bandwidth is implemented for the remaining experiments.   
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Figure 58: Performance of the KF with four displacement sensors in real time.  The graph compares the measured 
relative displacement of the vehicle LF suspension with its estimate zoomed in on the first bump. 

                                                 
1 The control system performance is degraded due to the spikes. 
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Figure 59: Performance of the KF with four displacement sensors in real time. The graph compares the actual 
relative displacement of the vehicle LF suspension with its estimate. 
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Figure 60: Performance of the KF with four displacement sensors in real time. The graph compares the actual 
relative displacement of the vehicle LF suspension with its estimation zoomed in on the second bump. 
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 Opposed to the KF with the sensor configuration (a), the relative displacement of the shock 

is estimated accurately by utilizing the four displacement sensors suite (see Figure 59, Figure 60 

and Figure 60). The actual and estimated relative velocity of the LF suspension is compared in 

Figure 61. In this case, the plots have zoomed in on the second bump to offer a closer view of 

the KF’s performance. It is apparent that the actual relative velocity signal is followed by the 

considerably attenuated KF estimate, shifted by a small phase angle. However, during the real-

time experiments, it is revealed that magnifying the estimated signal by a simple gain (which is 

a function of the vehicle speed) can decrease the estimation error significantly. Figure 62 

demonstrates that the KF/4 displacement sensors poorly estimate the absolute velocity of the 

wheel-hub. 

60.5 61 61.5 62 62.5 63 63.5 64 64.5
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

 v
rL

F (m
/s

) 

Time (sec)

Estimated
Filtered Actual

 

Figure 61: Performance of the KF with four displacement sensors in real time. The graph compares the actual 
relative velocity with the KF estimation zoomed in on the second bump. 
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Figure 62: Performance of the KF with four displacement sensors real time.  The graph compares the measured 
absolute velocity of the wheel-hub with the KF estimate zoomed in on the second bump. 

 

 The KF estimation errors and the corresponding covariance bounds are displayed in Figure 63 

and Figure 64. Similar to those in the previous section, the blue bounds are obtained by taking 

the square root of the appropriate diagonal element of the error covariance matrix. As displayed 

in the figures, the error covariance bounds remain bounded, which implies that the KF feels 

confident with respect to all the estimation products. This is already suggested by the 

Observability analysis of the KF. In this case, the error covariance bounds are much wider than 

those generated by the previous KF (compare Figure 57 with Figure 64). In fact, the strength of 

the plant noise sequence, kw′  in Equation (7.1), has been increased to compensate for the model 

uncertainties due to lack of information of the road disturbances (de-weighting the system model 

). This causes the KF to rely more on the measurements of the sensing system than the 

information from the analytical model (a more conservative design, since the road input 

information is not available). However, it is illustrated in Figure 62 that the KF still cannot 

provide a useful estimate of the wheel-hub absolute velocity.  
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Figure 63: The graph illustrates the estimation error [red] corresponding to the LF shock relative displacement and 
the KF evaluated error covariance bounds [blue]. 
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Figure 64: The graph portrays the estimation errors [red] corresponding to the LF shock relative velocity and the 
wheel-hub absolute velocity. Blue bounds are the KF evaluated covariance quantities for the estimation errors. 
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 The covariance bounds of the measurement residuals are also increased by increasing the 

plant noise covariance. It is obvious in Figure 65 that the measurement residuals are unbiased, 

but there is no consistency between the residuals and the expected covariance bounds (the 

residuals should be within the 1σ  bounds for 68% of the time).  
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Figure 65: The graph illustrates the innovation signals (residuals) [red] corresponded to the displacement sensor 
measurements. Blue bounds are the theoretically expected covariance. 

 

7.2   State Estimation Results with the Minimal Realization 

 This section provides estimation results of the KF which embeds the minimal realization of 

the vehicle’s model, Equation (7.1) with the fourteen-state vector (6.11). The measurement 

model is also given by Equation (6.22). First, the estimation results with the sensor 

configuration (a) are presented in Section 7.2.1. Next, Section 7.2.2 investigates performance of 

the KF with the sensor suite (c).  

7.2.1 One IMU and Four Accelerometers Sensor Suite 

 Similar to Section 7.1.1, the experiments are carried out at the speed of 40 km/hr. Inputs to 

the KF are the measurements of the IMU and the four wheel accelerometers. Since the pair 
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( , )k kH Φ  is Observable, the KF is expected to provide all the states accurately. Figure 66 

illustrates that the KF, embedding the minimal model, effectively estimates the wheel-hub 

absolute velocity, which the previous KF cannot do. Also, Figure 67, Figure 69, and Figure 70 

demonstrate that the KF does a good job in estimating the absolute velocity of the CG, the body 

pitch rate, and the LF shock relative velocity, respectively.   
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Figure 66: Performance of the KF using the minimal realization and the sensor suite (a). The graph compares the 
KF estimate of the LF wheel-hub absolute velocity with the measured signal, on the second bump. 
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Figure 67: Performance of the KF using the minimal realization and the sensor suite (a). The graph compares the 
measured velocity of the vehicle’s CG with the KF estimate zoomed in on the second bump. 
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Figure 68: Performance of the KF using the minimal realization and the sensor suite (a).The graph compares the 
measured pitch rate of the vehicle’s body with the KF estimate. 
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Figure 69: Performance of the KF using the minimal realization and the sensor suite (a).The graph compares the 
measured pitch rate of the vehicle’s body with the KF estimate zoomed in on the second bump. 
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Figure 70: Performance of the KF using the minimal realization and the sensor suite (a). The graph compares the 
LF suspension relative velocity with its estimation zoomed in on the second bump. 
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Figure 71 provides a comparison between the measurement and the KF estimate of the pitch 

angle of the vehicle body. A closer view to the estimation performance on the second bump is 

also provided by Figure 72. Unlike the anticipation of the Observability analysis, the KF 

estimate of the pitch angle is not accurate. Further experimental results demonstrate that the 

estimates of the body’s roll angle, the position of the CG, and the absolute positions of the 

wheel-hubs are also inaccurate. The discrepancy between the expectation of the theory 

(Observability analysis) and the actual results are described by considering the KF update 

equation, Equation (4.10). The measurement residual, ˆ( )k kz z− , is written as: 

ˆˆ ( ( ) )
kk k k k k d dz z z H x D u− = − − + ,                                     (7.5) 

where the estimated measurement, ˆkz , is computed based on the measurement model (6.22). 

However, the road input disturbance, 
kdu , is unknown. Since, the KF makes the residual white, 

in the absence of 
kdu , it manipulates the state estimate ˆkx  in a way to compensate for the lack 

of information of the road disturbances. Moreover, as pointed out earlier in Section 6.1, with the 

minimal state vector, 
kdu  contains road vertical displacements (see Equation (6.16)). This 

results in erroneous estimates of the displacement type states such as body pitch and roll angles, 

absolute displacement of the CG, and the absolute positions of the wheel-hubs1.  

 

                                                 
1 Here, KF provides accurate estimates of the states required for implementation of the Skyhook control strategy 
(relative and absolute velocities). However, in a more general case, other control strategies, like those specifically 
designed to enhance handling and stability of the vehicle, work parallel with the Skyhook controller. These 
controllers may need the other states of the vehicle; hence, the estimator is expected to provide estimates of all the 
vehicle states in a precise manner.  
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Figure 71: Performance of the KF using the minimal realization and the sensor suite (a). The graph compares the 
vehicle’s measured pitch angle with the KF estimate. 
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Figure 72: Performance of the KF using the minimal realization and the sensor suite (a). The graph compares the 
vehicle’s measured pitch angle with the KF estimation zoomed in on the second bump. 
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7.2.2 Four Displacement Sensors and One Lateral Accelerometer Sensor Suite 

 The estimation performance of the KF incorporating the measurements of the sensor 

configuration (c) is investigated in this section. The vehicle speed during the road tests is 

maintained at approximately 30 km/hr. The Observability matrix of the pair ( , )k kH Φ  has full 

rank. However, as explained in Section 7.2.1, due to the lack of information of the road 

disturbances, the KF does not provide accurate estimates of all the states. Since the sensor 

configuration (c) measures the relative displacement of each shock, estimates of the 

displacement type states are provided with acceptable quality. Figure 73 illustrates the 

estimation accuracy associate with the LF shock relative displacement. However, the other 

states such as roll and pitch rates of the body, absolute velocity of the CG, and the absolute 

velocity of the wheel-hubs, are not estimated precisely. Figure 74 compares the KF estimate of 

the LF wheel-hub absolute velocity with its measurement. The same comparison is given for LF 

shock relative displacement in Figure 751.   
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Figure 73: Performance of the KF using the minimal realization and the sensor suite (c). The graph compares the 
measured relative displacement of the vehicle suspension with its estimation zoomed in on the second bump. 

                                                 
1 Note that the relative velocity is an indirect estimate for the KF of the current section. 
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Figure 74: Performance of the KF using the minimal realization and the sensor suite (c). The graph shows the KF 
estimate of the LF wheel-hub absolute velocity and the measured signal, on the second bump. 
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Figure 75: Performance of the KF using the minimal realization and the sensor suite (c). The graph compares the 
measured relative velocity of the LF shock with the KF estimate on the second bump. 
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7.2.3 Nine Accelerometers Sensor Suite 

 As described in Section 6.2, the sensor configuration (b), consisting of nine accelerometers, 

is nonlinear. The nonlinearity of the measurements model arises from the centrifugal 

acceleration terms, terms 2 2( ) CGh− φ + θ� �  in Equation (6.20), of the body accelerometers. CGh  is 

usually in the order of 0.1m to 0.25m for SUVs, which makes the effect of the centrifugal terms 

considerable. For the current nonlinear state estimation problem, the UKF1 algorithm, presented 

in Section 4.4, is implemented. Computer simulation results are given by Figure 76 to Figure 

84. The Cadillac is driven in the same road of Section 5.4.1 with a bump, shown in Figure 11, at 

a speed of 30 km/hr. There are two reasons to exhibit the computer simulation results instead of 

those of the real-time road tests. First, measuring some of the vehicle states such as absolute 

positions of the CG and the wheel-hubs are almost impossible by the use of the sensor 

configurations of Chapter 3. The only way is to integrate the corresponding accelerometer 

output twice. But, in the presence of the high noise level, the resultant position signal is too 

inaccurate to be compared with the estimated state. Second, by comparing the estimation results 

of the computer simulations and the real-time experiments, the consistency between the 

simulations and the experiments is confirmed.  

 Measurements of the sensor configurations (a) and (b) are almost the same. Both measure 

the wheel-hubs accelerations. IMU of the sensor configuration (a) provides the roll and pitch 

rate of the vehicle body and also acceleration of the CG. These measurements are related to the 

four body accelerometer measurements of the sensor suite (b) by the Coriolis law (Equation 

(6.18) of Section 6.2). Therefore, in the absence of the road input information, due to the same 

reason explained in Section 7.2.1, the UKF is expected not to be able to provide accurate 

estimates of the displacement type states (compare Figure 72 and Figure 78). This is illustrated 

by Figure 76, Figure 78, and Figure 80. Figure 76 compares the actual position of the body’s 

CG and the UKF estimate. Figure 78 does the comparison for the pitch angle of the body. As 

well, the comparison between the actual and the estimated LF wheel-hub absolute position is 

provided in Figure 80. None of the UKF estimates are acceptable.  

 Similar to the KF with the sensor configuration (a), the UKF provides high quality estimates 

of the velocity type states by incorporating the measurements of the configuration (b). This is 
                                                 
1 Estimation results of the EKF for the current problem are very similar to the results of the UKF which are 
presented in this section.   
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demonstrated by Figure 77, Figure 79, and Figure 81 plotting the estimates of the CG’s 

velocity, pitch rate of the body, and the absolute velocity of the LF wheel-hub. Finally, the 

estimation errors and the corresponding covariance bounds are portrayed in Figure 82 to Figure 

84. While the Observability analysis is not applicable for the nonlinear estimation problem, the 

convergence or non-convergence covariance bounds are used for the same purposes. The 

convergent error covariance bounds indicate that all the states must be estimated precisely. 

However, it is illustrated that due to lack of information of the road disturbances, this 

expectation is not met. 
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Figure 76: Estimation performance of the UKF with the sensor configuration (b).  The graph compares the actual 
position of the CG with the UKF estimate. 
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Figure 77: The graph compares the absolute velocity of the body’s CG with the UKF estimate. 
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Figure 78: The graph provides a comparison between the actual and the UKF estimate of the body’s pitch angle. 
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Figure 79: The graph compares the actual and the estimated pitch rate of the vehicle. 

0 0.5 1 1.5 2 2.5 3
-0.1

-0.05

0

0.05

0.1

0.15

 z
w

hL
F (m

) 

Time(sec)

 

 
Estimated
Filtered Actual

 

Figure 80: The graph shows the absolute position of the LF wheel-hub and the UKF estimate. 
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Figure 81: The graph compares the actual and estimated LF wheel absolute velocity. 
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Figure 82: The estimation errors [red] of the absolute position and velocity of the CG and the corresponding 
covariance bounds [blue]. 
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Figure 83: The pitch angle and pitch rate estimation errors [red] and the corresponding covariance bounds [blue].  
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Figure 84: Estimation errors [red] associated with the absolute position and velocity of the LF wheel-hub and the 
error covariance bounds [blue]. 
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8 Road Input Determination 

 As demonstrated in Chapter 7, there are always some states of the vehicle that are not 

accurately provided by the estimator. Indeed, at the presence of the unknown non-zero mean 

disturbances from the road, there is no guarantee that the dynamics of the KF estimation error, 

given by Equation (4.21), remain asymptotically stable. The objective of this chapter is to 

estimate the significant inputs from the road and then feed them back to the estimator embedded 

models. Two different approaches are examined: Estimation of the road input by a nonlinear 

estimator such as an UKF, and filtering the wheel accelerometer data through the inverse 

dynamics of the tire.  

8.1 Estimation of the road Inputs 

 In the first approach, the road disturbance to each wheel is modeled as a Markov process 

[41]. The new state is then concatenated to the original vehicle realization. With the minimal 

realization of the vehicle model (which uses the fourteen-state vector), the dimension of the 

augmented system becomes eighteen. Now, consider a combination of the sensor suites (b) and 

(c); that is, a measurement system of nine accelerometers and four displacement sensors. The 

test vehicle is driven at 30 km/hr on the same road and over the same bump used in the 

computer simulations of Section 7.2.3. The UKF estimate of the bump is plotted in Figure 85. It 

appears that even with such a complete sensor system, the estimator cannot provide an 

acceptable estimate of the bump geometry. This is attributed to the fact that no direct 

information regarding the position profile of the bump (the road displacement)1 is being 

provided for the UKF, either by the embedded models or by the measurement system.  

                                                 
1 For the minimal realization, the road displacement is the input to the system. 
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Figure 85: The actual bump, used in the computer simulations, and the UKF estimate. 

8.2 Tire Inverse Dynamics 

 Assume that a linear transfer function 
iwhG  can be found that relates the road disturbances to 

the i th  wheel, to the acceleration of the same wheel-hub, 
iwha , as: 

( ) i
i

i

wh
wh

d

a
G s

u
= ;   1,..., 4i = ,                                              (7.6) 

where 
idu  is the road displacement (the road position profile) input to the wheel (see Equation 

(6.16)). Theoretically, by measuring the wheel-hub acceleration and filtering it by the inverse 

dynamics of the tire, 1
iwhG− , the road displacement should be extracted; that is: 

1 ( )
i i id wh whu G s a−= .                                                    (7.7) 

  The transfer function of the wheel is obtained by processing the experimental data of the 

Cadillac 4-poster tests.  Figure 42 portrays the frequency content (FFT plot) of the LF wheel-

hub acceleration in response to the base poster displacement, shown in Figure 40. The 
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magnitude plot of the LF wheel transfer function is then achieved by dividing the corresponding 

components of the acceleration plot by the disturbance input plot.  
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Figure 86: Frequency response (magnitude plot) of the LF wheel. 

 

Figure 86 illustrates the magnitude plot (in dB) of the Cadillac LF wheel transfer function. In 

the next step, a suitable transfer function is fitted to the magnitude plot of Figure 86. However, 

prior to doing so, it is worth assuming that the transfer function is given and therefore 

investigate the feasibility of the proposed idea. Equation (7.8) is the transfer function from the 

road displacement input to the hub acceleration of the 2 DOF quarter car wheel of Section 5.1: 
2 12 10 2

2 2
4500( 6.039 10 3.188 10 )( 3.657 56)( )

( 3.018 51.47)( 32.64 4896)
w

w
d

z s s s sG s
u s s s s

− −− × + × + +
= =

+ + + +
��

.             (7.8) 

This is computed based on the simple analytical model of the quarter car, Equations (5.8) and 

(5.19), for a damping coefficient equal to 2000sc ≅ N.sec/m. The magnitude and the phase plot 

of the transfer function (7.8) are exhibited in Figure 87. It is demonstrated that the wheel 

behaves analogous to a high-pass filter with a cut-off frequency at 1 rad/sec (0.15Hz). 

Therefore, the inverse of such a filter, 1( )wG s− , is a low-pass filter which passes through only 

frequency components below the 0.15Hz, and  the other significant frequency components of 
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the road disturbance input (up to approximately 15Hz, see Figure 40) are all eliminated. Figure 

88 plots the filtered signal of the wheel-hub accelerometer by the tire inverse dynamics 1( )wG s− . 

It is obvious that the computed road profile (the filtered signal) does not contain all the 

frequency components required to build the actual bump geometry1.  
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Figure 87: Bode plot of the QC wheel transfer function. 

 

                                                 
1 The high frequency components are required to build the sharp edges of the bump. 
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Figure 88: The actual and the estimated road geometry. 

 
 
 

 

 

 

 

 

 

 

 

 



 106

9 Beyond the Kalman Filter 

 Chapter 7 described how, due to lack of information on road disturbances, the estimators are 

not able to provide accurate estimates of all vehicle states. Chapter 8 is intended to predict the 

road profile and then feed it back to the estimators embedded models. However, it is 

demonstrated that none of the proposed approaches provides rich information regarding the 

road disturbances to the vehicle. Chapters 8, 9 and 10 develop estimation mechanisms which 

are effective for systems with unmeasurable (or unknown disturbance) inputs, such as the 

vehicle systems subjected to the unknown road disturbances. 

9.1 Bayesian Estimation and Particle Filtering 

 Suppose that the system and measurement equations are given as follows: 

1 ( , )k k k kx f x w+ =  

( , )k k k kz h x v= ,                                                        (9.1) 

where kw  and kv  are uncorrelated Gaussian white noise sequences with known probability 

density functions (pdf’s). The initial conditions are also given by Equation (4.9). It is also 

assumed that: 

0 0 0( | ) ( )p x z p x= ,                                                       (9.2) 

where 0 0( | )p x z  denotes the conditional pdf of the initial state vector based on the initial 

measurement. The goal is to approximate the pdf of the state vector at time kt t= , conditioned 

on the available measurements set 1 2{ , ,..., }k kZ z z z= , that is ( | )k kp x Z , given (9.1) and (9.2).  

 Similar to the filters described in Chapter 4, a Bayesian estimator consists essentially of two 

steps: prediction and update. In the prediction step, a priori conditional pdf of kx  is evaluated 

by incorporating all the measurements before the time kt . This is accomplished by considering 

the fact that the density function of a random variable can be found from the joint density 

function of the same random variable and another [42]:   

1 1 1 1( | ) [( , ) | ]k k k k k kp x Z p x x Z dx− − − −∫= .                                   (9.3) 
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The right side of Equation (9.3) is then rewritten as the product of two conditional pdf’s by 

applying the Chapman-Kolmogorov formula [62] as: 

1 1 1 1 1 1( | ) [ | ( , )] ( | )k k k k k k k kp x Z p x x Z p x Z dx− − − − − −∫= ,                          (9.4) 

where, the first pdf is computed by the use of the system analytical model, Equation (9.1), 

independently of the measurements 1kZ − ,i.e., 

1 1[ | ( , )]k k kp x x Z− − 1( | )k kp x x −= .                                        (9.5) 

The second pdf is given by Equation (9.2) for the initial time-step.  

 In the update step, upon receiving the new measurement, a posteriori conditional pdf of the 

state is computed by using the Bayes’s rule [62]: 

( | ) ( )( | ) ( )
k k k

k k
k

p Z x p xp x Z p Z= .                                           (9.6) 

By substituting for the ( )kp x  in the above equation from: 

1 1

1

( | ) ( ) ( , )( ) ( | ) ( , )
k k k k k

k
k k k k

p x Z p Z p x zp x p Z x p x z
− −

−
= ,                                    (9.7) 

after some mathematical manipulations, the updated estimate in Equation (9.6) is rewritten as: 

1

1

( | ) ( | )( | ) ( | )
k k k k

k k
k k

p z x p x Zp x Z p z Z
−

−
= .                                        (9.8) 

On the right side of Equation (9.8), ( | )k kp z x  is known from the measurement model. The term 

1( | )k kp x Z −  is the predicted pdf of the state vector already evaluated by Equation (9.4). 

Furthermore, 1( | )k kp z Z −  is computed as follows [42]: 

1 1( | ) [( , ) | ]k k k k k kp z Z p z x Z dx− −∫= .                                       (9.9) 

By employing the Chapman-Kolmogorov equation, and considering the fact that 

1[ | ( , )]k k kp z x Z − =  ( | )k kp z x , Equation (9.9) is rewritten as: 

1 1( | ) ( | ) ( | )k k k k k k kp z Z p z x p x Z dx− −∫= .                                   (9.10) 

Now, both pdf’s inside the integration operator of Equation (9.10) are known; the first one from 

the knowledge of the measurement model, and the second one from Equation (9.4).  

 Equations (9.4) and (9.8) are the kernels of the Bayesian state estimator. They should be 

recursively implemented, given the initial condition (9.2), to predict and update the conditional 

pdf of the state vector by incorporating the new measurement data. However, analytical 
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solutions to these equations are only available for a few special cases [41], [56], [55]. For linear 

systems ( (.)f  and (.)h  are both linear) with uncorrelated Gaussian white noise sequences, the 

solution is the Kalman filter [56], [55]. For other cases, the recursive Bayesian estimator should 

be implemented numerically.  

 Similar to the basic idea of the UT, presented in Section 4.4, the Bayesian estimator can be 

implemented by the use of N randomly generated particles. Each particle is an individual state 

estimate with an associated probability which indicates its likelihood. The initial particles, 

0,ˆ ( 1,..., )ix i N+ = , are generated based on the initial pdf 0( )p x , given by Equation (9.2). The 

particles are then propagated between the measurements using the process equation (.)f  [42], 

[54], [61], [55]: 

1, 1 ,ˆ ˆ( , )i
k i k k i kx f x w− +
+ −= ,      ( 1,..., )i N=                                         (9.11) 

 In the update step, the latest measurement is used to identify the particles with higher 

likelihoods. This is done by computing the relative likelihood iq  that the measurement is equal 

to the specific measurement *
kz z= , conditioned on the state kx  is equal to the particle 1,ˆk ix−+ , 

that is, *
1,ˆ[( ) | ( )]k k k ip z z x x−+= = . For example, for the following measurement system: 

( )k k kz h x v= + ,     (0, )kv N R∼                                           (9.12) 

the relative likelihood iq  is obtained as [41], [42]: 

                                    *
1,ˆ[( ) | ( )]i k k k iq p z z x x−+= = =  

                                        *
1,ˆ[ ( )]k k ip v z h x−+= = −  

     
* 1 *

1, 1,
/2 1/2

ˆ ˆ[ ( )] [ ( )]1 exp( )2(2 ) | |

T
k i k i

m

z h x R z h x
Rπ

− − −
+ +− −

∝ − .            (9.13)  

The symbol ∝  means that the likelihood is proportional to the right side of the above equation. 

Now, a new set of particles 1,ˆ ( 1, 2,..., )k ix i N+
+ =  are refined out of the previous particles, 1,ˆk ix−+ , 

based on the (normalized) relative likelihoods iq . This is called resampling and must guarantee 

that the ensemble pdf of the new particles 1,ˆk ix++  converges to the pdf ( | )k kp x z , when N  is 

sufficiently large. Several algorithms have been developed to perform the resampling stage 

[42], [54], [55] . A simple algorithm is given by the following two steps [42], [54]:  
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For 1, 2,...,i N= , 

1. Pick a random number [0,1]r∈  which is uniformly distributed. 

2. Find j  such that, 
1

1

j
m

m
q r

−

=
∑ < , but 

1

j
m

m
q r

=
∑ >  . Select the old particle 1,ˆk jx−+   to be in the 

resampled set, that is 1, 1,ˆ ˆk i k jx x+ −
+ += .  

The required statistical characteristics of the state vector at each time-step are then 

approximated from that of the resampled particles. For example, the estimated state at the time 

1kt t +=  is given by Equation (9.14): 

1 1 1 1,
1

1ˆ ˆ[ | ]
N

k k k k i
i

x E x z xN
+ +
+ + + +

=
∑= ≈ .                                        (9.14) 
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Figure 89: The Particle Filter (PF) and the Kalman Filter (KF) estimation performance for the absolute velocity of 
the LF wheel-hub. 

 The estimation algorithm, presented by Equations (9.11) to (9.14), is known as Particle Filter 

(PF). Figure 89 plots the PF estimate of the Cadillac LF wheel-hub velocity. The simulation is 

performed on a 1.8 GHz processor PC with 1 GB RAM. It is assumed that the vehicle is 

moving on the same road and the bump is that used in previous experiments (see Figure 43 and 

Figure 44). The PF is initiated by 10,000 randomly generated particles ( 10000N = ). The non-

minimal (sixteen-state) realization of the vehicle model, Equation (7.1), is used to propagate the 



 110

particles with time. Measurements of nine accelerometers of the sensor configuration (b) (see 

Chapter 3) are captured every two milliseconds (500Hz sampling rate) to evaluate the particles’ 

relative likelihoods (see Equation (9.13)). The resampling stage is accomplished by the 

resampling algorithm presented in this section. It almost takes fifteen minutes for the 1.8 GHz 

processor to perform the 1.8 sec simulation length, approximately one second for each cycle 

(prediction-update) of the PF algorithm.  

 From Figure 89, it is evident that the PF is not able to provide an accurate estimate of the 

wheel-hub absolute velocity, even at the price of higher computational effort. Increasing the 

number of particles and using more efficient resampling algorithms may improve the PF 

estimation performance [42], [54], [55], [56]1. However, the required processing time by the PF 

per each cycle cannot be even moderately decreased. As described in Chapter 12, the control 

system loop (estimator-controller) must be performed at a rate of at least 60Hz to be able to 

suppress the resonant frequencies of the wheels. This is the bottleneck to the real-time 

implementation of the PF for the current state estimation problem.          

9.2 Observers for Linear Systems with Unmeasurable Inputs2 

 Consider the linear time-invariant system: 

( ) ( ) ( ) ( )dx t Ax t Bu t Eu t= + +�  

( ) ( )z t Hx t=                                                            (9.15) 

where, nx R∈  is the state vector, mu R∈  is the control input vector, q
du R∈  is the 

unmeasurable disturbance vector, and pz R∈  is the measurement vector. Without the loss of 

generality, assume that ( )rank H p=  and ( )rank E q= . Also assume that the matrix pair 

( , )H A  is observable. The problem is to design an observer to asymptotically estimate the state 

vector ( )x t  irrespective of the unknown disturbance vector du 3. 

 Since H  has full row rank, a non-singular transformation on the states can be found: 

                                                 
1 For nonlinear or non-Gaussian estimation problems, it has been proven that the PF outperforms both EKF and 
UKF [42], [54]. However, it is achieved at the price of extremely higher computational effort. 
2 Observer design for Bilinear systems with unknown inputs is also addressed in references [67], [66], and [67]. 
The solutions are not presented here, since the required conditions are usually too hard to be met.   
3 References [62] and [64] present another solution to this problem by utilising the geometric theory of linear 
systems. This approach is not reviewed in here.  
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z H
x

Dα
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

,                                                          (9.16) 

such that p states, in the new coordinate system, are directly measurable. In this coordinate 

system, the system (9.15) is expressed in the following partitioned form [68], [69]: 

11 12 1 1

21 22 2 2

( ) ( )
( ) ( )

( ) ( ) d
A A B Ez t z t

u t u t
A A B Et tα α
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�
�

 

( )
( ) 0

( )p
z t

z t I
tα

⎡ ⎤⎡ ⎤= ⎢ ⎥⎣ ⎦ ⎣ ⎦
.                                                     (9.17) 

 In the next step, a reduced ( )n p th−  order Luenberger observer [70] is constructed as 

follows: 

ˆ ˆ( ) ( ) ( ) ( ) ( )dt F t Gz t Cu t Ju tβ β= + + +�                                         (9.18) 

where, 

           22 12F A LA= − ,     

       21 11G FL A LA= + − , 

            2 1C B LB= − , 

2 1J E LE= − .                                                          (9.19) 

From the Observability of the pair ( , )H A , Observability of the pair 12 22( , )A A  is also implied 

[72]. And hence, in a case, when ( )du t  is available, the Luenberger observer gain, L , is chosen 

to place eigenvalues of F  in desired locations. Consequently, the estimate α̂  of α  is obtained 

from β̂ , the estimate of β  produced by Equation (9.18), as [68], [69], [70]: 

ˆˆ ( ) ( ) ( )t t Lz tα β= + .                                                     (9.20) 

 However, ( )du t  (the road disturbance input in the current estimation problem) is not 

available. Therefore, the Luenberger gain matrix, L  , is also required to make the unknown 

disturbance matrix identically zero, that is: 

                                                        i) 0 ; 0J t= ∀ ≥ , and 

ii) ( ) 0;i F i nλ < ∀ ≤ .                                                (9.21)    

A general solution to (9.21)(i) is given by [73], [74]: 

2 1 1 1( )pL E E K I E E+ += + − ,                                                  (9.22) 
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where 1E+  is the pseudo-inverse of 1E :  

1
1 1 1 1( )T TE E E E+ −= ,                                                      (9.23) 

and K  is an arbitrary ( )n p p− ×  matrix which is determined later to satisfy (9.21)(ii). 1E+  

exists if 1E  has full column rank, which means: 

1( ) ( )rank E rank HE q= = and p q≥ .                                    (9.24) 

 Assuming that (9.24) holds, it implies that there exists an orthogonal matrix S  such that: 

  1
1

( )0 p q q

E
SE

− ×

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

,                                                         (9.25) 

where 1E  is a ( )q q×  non-singular matrix. By substituting for 1E  in (9.22) from Equation (9.25) 

and some mathematical manipulations, the Luenberger gain formula, Equation (9.22), is 

rewritten as: 

( )1
2 1 ( ) ( )

( ) ( ) ( )

0
0 ( )

0 0
q q q p qT

n p p q p
p q q p q p q

I
L E E S KS I S× × −−

− × −
− × − × −

⎡ ⎤
⎡ ⎤= + − ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

.           (9.26) 

Let, 

1 2
TKS K K⎡ ⎤= ⎣ ⎦ ,                                                     (9.27) 

Equation (9.26) is finally given by: 
1

2 1 2( )L E E K S−⎡ ⎤= ⎣ ⎦ .                                               (9.28) 

 In the next step, 2K  is determined such that the eigenvalues of F  are located properly. 

Having considered Equation (9.28), the expression of matrix F  in Equation (9.19) is rewritten 

as: 
2

1 2 12F F K A= − ,                                                      (9.29) 

where, 
1 1

1 22 2 1 12( )F A E E A−= − ,                                               (9.30) 

 and 
1
12

12 2
12

A
SA

A

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

.                                                        (9.31) 
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It is clear from Equation (9.29) that 2K  can assign all the eigenvalues of F  arbitrarily, except 

unobservable modes of the pair 2
12 1( , )A F . 

 Lemma 1: Let ( )rank HE q= , the unobservable polynomial of the pair 2
12 1( , )A F is equal to 

the invariant zero polynomial of the triple ( , , )H A E . The proof of this lemma is given in [74] 

and [75]. 

 An immediate outcome of the Lemma 1 is that if the triple ( , , )H A E  has no invariant zeros, 

then all the eigenvalues of the reduced order observer (9.18) can be arbitrarily assigned.  If the 

triple ( , , )H A E  has stable invariant zeros (the pair 2
12 1( , )A F  is not observable, but detectable), 

the Luenberger observer (9.18) would be asymptotically stable. However, some modes cannot 

be placed arbitrarily. And finally, if the invariant zeros of the triple ( , , )H A E  are unstable, 

estimation error dynamics would be unstable, too.  

 A similar approach is examined to establish the observer existence conditions for discrete 

systems. Consider a linear discrete system modelled as: 

1 kk k k k d dx x Gu E u+ = Φ + +  

k kz Hx=                                                             (9.32) 

where 
kdu is the disturbance sequence which cannot be measured. All the vector dimensions are 

the same as the continuous system (9.15). The problem is to estimate the state vector kx  by 

using the measurements kz  with no knowledge of the 
kdu . The following theorem summarizes 

existence conditions for a stable reduced-order Luenberger observer [74], [75]: 

 Theorem 1: Disturbance decoupling conditions for the discrete systems. Consider the 

nth  order system (9.32), and assume that p q≥ , ( )rank H p=  (condition for existence of the 

non-singular transformation (9.16)), ( )drank E = ( )drank HE q= . If the triple ( , , )k dH EΦ  has 

no invariant zeros or the invariant zeros are all inside the unit circle, then the following reduced 

order observer 

1
ˆ ˆ

k kk k k k k k k d dM N z V u J uβ β+ = + + + ,                                      (9.33) 

with 0, 1
kdJ k= ∀ ≥ , can be implemented to asymptotically estimate the dummy state kβ . 

Inverse transformations of the estimate ˆ
kβ  through,  
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ˆˆk k kLzα β= + ,                                                        (9.34) 

and  
1

ˆ
ˆ
k

k
k

zH
x

D α

−
⎡ ⎤⎡ ⎤

= ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

,                                                       (9.35) 

yields the states estimate ˆkx .  

 In the next step, the existence conditions are examined for the vehicle state estimation 

problem with unknown road disturbances. Consider the non-minimal (sixteen-state) realization 

of the vehicle model1, given by Equation (7.1), without the additive noise term. The first sensor 

configuration, which is investigated, consists of one IMU and four accelerometers, i.e., sensor 

configuration (a) in Chapter 3. The measurement system is modelled by Equations (6.3), (6.7), 

and (6.23). In this case, the pair ( , )kH Φ  is not observable. Matrices , dH E  and dHE , all have 

full ranks, and both invariant zeros of the triple ( , , )dH EΦ  are on the unit circle. Therefore, the 

required conditions for the unknown disturbance decoupling ( 0)dJ =  do not exist. The same 

result is obtained for the sensor configuration (b). 

 For the fourth sensor configuration of Chapter 3, four displacement sensors and five 

accelerometers, the pair ( , )H Φ  is observable, and matrices , dH E  and dHE  have full ranks. 

However, the triple ( , , )dH EΦ  has four repetitive zeros at 1z = . Obviously, the existence 

conditions are not satisfied for this case, too. Finally, with the sensor configuration (c) of four 

displacement sensors and one accelerometer, a similar outcome is achieved. 

 The disturbance decoupling conditions, given in Theorem 1, are all fulfilled only when 

virtual velocity sensors, measuring vertical velocity of the wheel-hubs, are added to the sensor 

configurations (d) or (c). In these cases, the triple ( , , )dH EΦ  has no invariant zeros. Hence, a 

reduced-order unknown input (Luenberger) observer exists whose eigenvalues can be chosen 

arbitrarily. It makes sense, since the KF of Section 7.1.2 was able to provide accurate estimates 

of all the states except the wheel-hub velocities. The KF resembles a Luenberger observer after 

a few time-steps when the Kalman gain converges to its steady-state quantity (see Section 

                                                 
1 The measurement model associated with the 14 states realization, Equation (6.23), does not match the structural 
requirement for the observer introduced in this section (please see Equation (9.32)). 
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4.2.1). Clearly, providing the velocity data for the Luenberger observer of Section 4.2.1 renders 

all the state estimates available, which confirms the last result of this section. 
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10 Aided Kalman Filter (AKF) 

 Consider a dynamical system modelled by the following linear difference equation: 

1 kk k k k d d kx x Gu E u Lw+ = Φ + + + ,                                      (10.1) 

where, n
kx R∈  is the state vector, m

ku R∈  contains m -known deterministic control inputs to 

the system, 
k

q
du R∈  is the vector of q  unknown non-zero mean disturbance inputs ( du  also 

contains A th  control input which is inaccessible ( m>A )), and n
kw R∈  is a zero-mean 

Gaussian white sequence with a strength of Q . The measurement system is also modelled by: 

k k k kz H x v= + ,                                                       (10.2) 

where p
kz R∈  is the measurement vector and p

kv R∈  is the measurement noise sequence 

having a strength of R . Assume that the matrix pair ( , )kH Φ  is observable. Also, Matrices 

, dH E  and dHE , all have full ranks.  However, without the information of the disturbance du , 

the KF is not able to provide accurate estimates of some of the states of the system. It is desired 

to modify the estimation system in a way that accurate estimates of all the states, in an 

asymptotically stable manner, with no direct measurement of the disturbance vector du  are 

rendered.  

 Suppose that the first 1n n<  elements of the state vector kx  are not estimated precisely1. 

Now, assume that the following linearly independent combinations of these elements can be 

indirectly provided from the measurements (10.2): 

1
( ) ( ) ; 1, 2,...

ji

n
v v

i
z j h x i j p p

=
∑= = + +  ,                                     (10.3) 

where 11,...,i n= . Indeed, the ( )vz j 's are the virtual measurements, from fictitious sensors, that 

are obtained by integrating or differentiating or post processing the measurements of the real 

sensors. By adding the fictitious sensors to the real sensors, the new measurement model is 

written as: 

                                                 
1 It is always possible to reaarange the elements of the state vector such that those states, which are not accurately 
estimated by the KF, are placed as the first 1n elements of the state vector. 
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k

k t
k k

v v

z H
x v

z H
⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

.                                                  (10.4) 

It is then rewritten in the following more compact form: 
t t t
k k kz H x v= + ,                                                      (10.5) 

where superscript t denotes the total measurements of the system. 

 Corollary (of Theorem 1, Section 9.2): Consider the dynamical system (10.1) with the 

measurement system (10.2). If there exists the virtual measurements (10.3) such that the triple 

( , , )t
k dH EΦ  has no invariant zeros (or, if it does, all of them are inside the unit circle), then the 

KF1, incorporating the measurement system (10.5), estimates all the system states in an 

asymptotically stable manner, with no knowledge (no direct measurement) of the disturbance 

vector du . Since the KF is aided by the fictitious sensors to compensate for the unknown 

disturbance input du , the KF is named Aided Kalman Filter (AKF) in this context. 

 The next section applies the Corollary for the vehicle state estimation problem in the 

presence of unknown road disturbances.  

  

 

 

 

 

 

 

 

 

  

  

                                                 
1 Note that at steady state, KF is a Luenberger observer.  
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10.1 The AKF Estimation Results with the Real Data 

 Consider the non-minimal (sixteen-state) realization of the vehicle model. As it is illustrated 

in Section 7.1, the absolute velocity states of the wheel-hubs are not accurately estimated by the 

KF, regardless which sensor configuration is utilised. Therefore, the first 4 ( 1 4n = ) elements of 

a new state vector nx  are the absolute velocity states, 10 12 14, ,x x x  and 16x  of the original state 

vector (6.8): 

10

12

14

(1)

(2)

(3)

n

n

n

x x

x x

x x

=

=

=

 

16(4)nx x= .                                                          (10.6) 

The remaining elements of nx  are filled by the other vehicle states, given by Equations (6.9) 

and (6.10). To implement the AKF, the first step is to find a sensor configuration such that the 

matrix pair ( , )kH Φ  is observable. Among the possible sensor configurations, presented in 

Chapter 3, only the sensor suites (c) and (d) satisfy the Observability condition. However, no 

information regarding the ( )nx i 's, 1,..., 4i = , is obtained from the displacement sensors data of 

the configuration (c)1.  

 Now consider the sensor suite (d) which consists of one displacement sensor for each 

suspension and one accelerometer for each wheel-hub. Even without one of the displacement 

sensors, for instance the one on the RF suspension, the pair ( , )kH Φ  remains observable. Also, 

it is assumed that the front and rear wheels always experience the same disturbances, but shifted 

in time. Therefore, the two rear accelerometers are eliminated. Instead, the front accelerometers 

signal are used for the rear wheel-hubs by considering the time delay between the front and rear 

wheels. Finally, the absolute velocity of the wheel-hubs is indirectly measured by integrating 

the corresponding wheel accelerometer signal. According to the AKF theory, six fictitious 

sensors, including two accelerometers and four velocity sensors, are added to the original sensor 

suite. The accelerometers measurement is modelled by: 

                                                 
1 It means that by processing the displacement sensors data of the sensor suite (c), no information regarding 
the ( )nx i 's, 1,..., 4i = , which are absolute velocities of the wheel-hubs, can be extracted. 
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1
( ) ( ) ; 1, 2

ji

n
v v

i
z j h x i j p p

=
∑= = + + ,                                    (10.7) 

where 
jivh 's are given by Equation (6.7) . The virtual velocity measurements are also modelled 

by Equation (10.8), as: 

       ( ) ( ),n
vz j x i=    

2 ; 1,..., 4j i p i= + + = ,                                         (10.8) 

where 5p =  is the dimension of the original reduced number sensor suite consisting of two 

accelerometers and three displacement sensors. Concatenating the models of the fictitious 

sensors to that of the actual sensors, it is revealed that the triple ( , , )t
k dH EΦ  has no invariant 

zeros.  

 First, a computer simulation result is presented in Figure 90. The graph compares the AKF 

and the KF estimates of the LF wheel-hub absolute velocity.  
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Figure 90: The graph compares the AKF and the KF estimates of LF wheel-hub absolute velocity in a computer 

simulation. 
 

It is apparent that the AKF does a very good job in estimating the velocity states which the KF 

can not. Figure 91 to Figure 102 illustrates the AKF estimation efficiency with the real data. 
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The sensor data, which are fed to the AKF, is a set of data collected from the Cadillac SRX 

sensors, driven over the bump at a rate of 40 km/hr (see Chapter 7 for further descriptions of the 

real-time experiments). It is demonstrated by Figure 93 and Figure 94 that even without the RF 

suspension sensor, the AKF provides fairly accurate estimates of the RF relative displacement 

and velocity. The AKF estimates of the absolute velocity states associated with the LF and LR 

wheel-hubs are also plotted in Figure 96 and Figure 98, respectively. It is shown that the AKF 

effectively estimates the absolute velocities with no direct measurement (no knowledge) of the 

road disturbances. Finally, the measurement residuals are displayed in Figure 100 to Figure 

102. The residuals are unbiased and within the theoretically expected bounds, given by 

Equation (5.36). 
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Figure 91: The graph compares the measured relative displacement of the LF shock with the AKF estimate. 
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Figure 92: The graph compares the measured relative displacement of the LF shock with its estimation, zoomed in 
on the second bump. 
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Figure 93: The graph compares the measured relative displacement across the RF shock with the AKF estimate on 
the second bump.  
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Figure 94: The graph compares the measured relative velocity of the RF shock with the AKF estimate on the 
second bump.  
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Figure 95: The AKF estimate of the LF wheel deflection on the second bump. 
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Figure 96: The graph compares the measured absolute velocity of the LF wheel-hub with the AKF estimate. 
 

58.5 59 59.5 60 60.5 61 61.5 62 62.5
-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

 δ
w

LR
 (m

) 

Time (sec)

Estimated

 
Figure 97:  The graph shows the estimate of the LR tire deflection on the second bump. 
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Figure 98: The graph compares the measured absolute velocity of the LR wheel-hub with the AKF estimate. 
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Figure 99 : The graph compares the measured acceleration of the LF wheel-hub with the AKF estimate. 
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Figure 100: The graph shows the LF wheel-hub acceleration residual [red] and the theoretically expected 
covariance bounds [blue]. 
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Figure 101: The graph shows the residual [red] corresponding to the measurement of the LF suspension relative 
displacement and the theoretically expected covariance bounds [blue]. 
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Figure 102: The graph shows the residual [red] corresponding to the measurement of the LF wheel-hub absolute 
velocity and the theoretically expected covariance bounds [blue]. 
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11 Supervisory Kalman Filter (SKF): A New State-Estimation 

Scheme for Systems with Unknown Inputs 

 Consider a dynamical system modelled by the following linear difference equation: 

1 kk k k k d d kx x Gu E u Lw+ = Φ + + + .                                     (11.1) 

The measurement system is modelled as:  

k k k kz H x v= + .                                                       (11.2)                        

In Equation (11.1), nx R∈  is the state vector, mu R∈  is the control input containing m -known 

deterministic control inputs to the system, q
du R∈  is the vector of q  non-zero mean 

disturbance inputs which cannot be measured ( du  also contains those control inputs which are 

inaccessible, ( )u A ’s with m>A ), and n
kw R∈  is a zero-mean Gaussian white sequence with a 

strength of Q . In the measurement model, Equation (11.2), pz R∈  is the vector of 

measurements corrupted by a Gaussian white sequence p
kv R∈ . The covariance (strength) of 

the measurement noise is R . The subscript k  refers to the time-step. It is assumed that the 

matrix pair ( , )k kH Φ  is observable. Also, the initial condition (4.9) is given. The problem 

consists of designing an estimator to asymptotically estimate the state vector kx  with no 

knowledge of the disturbance vector du 1.  

 In the absence of the disturbance input du , the KF is the optimal solution to the above 

estimation problem (see Section 4.2). However, the KF theory is violated when the non-zero 

mean unknown disturbance du  is acting on the system. If the KF is implemented for the state 

estimation of such a system, not all the states of the system are estimated precisely. Suppose 

that the estimation quality associated with 1n n<  elements of the state vector kx  is 

unacceptable. A state estimation is defined as unacceptable when the estimation error is 

unbiased and is not in agreement with the corresponding covariance bounds, calculated by the 

KF. This is determined by analyzing the off-line computer simulation results. For instance, the 

UKF estimation errors of the absolute position of the vehicle’s CG (see Sections 4.4 and 7.2.3 
                                                 
1 With no direct measurement of the disturbance vector. 
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for further descriptions), obtained by the Monte Carlo simulation method, are portrayed in 

Figure 103. It is apparent that the estimation errors, during the period that the system is hit by 

the unknown disturbance input due to the bump located at between 1t =  and 1.5t = sec, are not 

unbiased and also do not remain inside the expected covariance bounds (at least for 68% of the 

times). The comparison of the estimated and the real CG position, given in Figure 76, also 

confirms that the estimation quality is unacceptable.   
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Figure 103: The UKF estimation errors [red] of the CG position obtained by the Monte Carlo simulation method. 

 

The remaining 2n n<  states are assumed to be reasonably estimated by the KF. By rearranging 

the states, the state vector is rewritten in the following partitioned form1:  

11

12

1

2

n

n

k

x
x

x
×

×

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

 ;  1 2n n n+ = .                                            (11.3) 

 The SKF is a KF with an extra update step whose function is similar to that of the Bayesian 

estimator (PF), presented in Section 9.1. The extra step, called a supervisory layer, operates on 

the 1x  portion of the state vector to enhance its estimation accuracy. It is either triggered from 

                                                 
1 It is always possible to rearrange the elements of the state vector such that those states, which are not accurately 
estimated by the KF, are placed as the first n1 elements of the state vector. 
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the initial time or activated when the disturbance input du  is introduced to the system and 

sensed by a responsive sensor1. Suppose that ( | )k kp x z  is the latest estimated pdf provided by 

the KF update step immediately prior to the supervisory layer being triggered. The supervisory 

layer generates N  random state vectors ,ˆ ( 1, 2,..., )k ix i N+ = , hereafter referred to as particles, 

which their first 1n  elements, 
,1ˆ ( )

k i
x j+ 's 1( 1,..., )j n= , are distributed based on the KF updated 

pdf, that is: 

                                 
,1ˆ ˆ[ ( )] [ ( ( ) | )] ( )

k i k k kE x j mean p x j z x j+ += = ; 1,...,i N= ,   

, ,1 1
1

1 ˆ ˆ ˆ ˆ( ( ) ( ))( ( ) ( )) [ ( ( ) | )] ( , )
k i k i

N
k k k k k

i
x j x j x j x j cov p x j z P j jN α α+ + + + +

=
∑ − − = × = ,         (11.4)      

where ˆkx+  and kP+  are the KF updated state and covariance matrix, given by Equations (4.10) 

and (4.14), respectively. Also, α  is a design parameter which is selected such that the particles 

are spread throughout the variation ranges of the first 1n  states. Since the 2x  portion of the state 

vector is accurately estimated by the KF, the remaining 2n  elements of each particle, 
,2ˆ ( )

k i
x j+ 's 

1( 1,..., )j n n= + , are identically substituted from the KF last updated estimate, ˆkx+ : 

,2ˆ ˆ( ) ( )
k i kx j x j+ += ;  1,...,i N= .                                           (11.5)   

 The following three steps are accomplished recursively. First, the particles are propagated to 

the next time-step by using the system analytical model, Equation (11.1). However, since 

estimation quality of the 1x  portion of the state vector is degraded due to the lack of information 

of the disturbance input, the first 1n  elements of each particle are propagated by including the 

white sequence in the system model: 

1,1 , ,ˆ ˆ( ) ( ) ( ) ( )
k i k i k k ix j j x g j u w jϕ
+

− += + + ;  11,...,j n= ,                     (11.6) 

where ( )jϕ  and ( )g j  are the j th  rows of the state transition matrix kΦ  and the input matrix 

G , respectively. The elements of  2x  portion of each particle are also propagated by: 

1,2 ,ˆ ˆ( ) ( ) ( )
k i k i kx j j x g j uϕ
+

− += + ;  1 1,...,j n n= + .                           (11.7) 

                                                 
1 A responsive sensor, in the case of the vehicle systems, can be a wheel accelerometer which immediately senses 
the significant disturbance inputs by the bumps or holes of the road.  
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Furthermore, the error covariance matrix is propagated by Equation (4.15) (the regular KF 

equation). 

 Upon receiving a new measurement, *
1kz + , each particle is updated by the KF update formula: 

*
1, 1, 1 1 1,ˆ ˆ ˆ( )k i k i k k k ix x K z z+ −
+ + + + += + − ,   1,...,i N= .                              (11.8) 

where the Kalman gain, 1kK + , is given by Equation (4.12) and the measurement estimates 1,ˆk iz +   

are computed by using the measurement model, Equation (11.2), as: 

1, 1 1,ˆˆk i k k iz H x−+ + +=  ;   1,...,i N= .                                         (11.9) 

However, with no direct information of the disturbance input du , KF updated estimate of the 1x  

portion of the particles are not accurate. Therefore, each 
1,1ˆ ( )

k i
x j

+

+  1( 1,..., )j n=  element of the 

KF updated particles is replaced by a number picked up from a random distribution with the 

mean value of the 
1,1ˆ ( )

k i
x j

+

+  itself and the corresponding KF updated covariance times α , i.e., 

1( , )kP j jα +
+ .  

 Finally, the resampling stage (see Section 9.1) is performed to collect the particles with 

higher belief. First, each particle is assigned a weight depending on how well the estimated 

measurement fits the actual measurement. This is achieved by evaluating the relative likelihood 

iq  of each particle given the most recent measurement *
1kz + : 

   *
1 1 1 1,ˆ[( ) | ( )]i k k k k iq p z z x x++ + + += =∼ ;   1,...,i N= .                           (11.10) 

Now, either of the resampling algorithms presented in [42], and [54] or the one in Section 9.1 is 

utilized to select the particles with higher likelihoods iq  and create a new set of particles. At 

each time-step 1kt t += ,  after the resampling stage, the SKF estimate, denoted by 1ˆ ( )S
kx + + , is 

then approximated by the following expression: 

1 1,
1

1ˆ ˆ( ) ( )
NS r

k k i
i

x xN+ +
=
∑+ ≈ + ,                                             (11.11) 

where 1,ˆ ( ) ( 1,2,..., )r
k ix i N+ + =  are the particles in the resampled set.  

 The above-mentioned three steps are recursively implemented until the supervisory layer 

function is terminated as a result of diminishing the unknown disturbance input du . This is also 

sensed by the responsive sensor. After turning off the supervisory layer, the SKF is again a 
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regular KF initiated by the latest SKF estimate, given by Equation (11.11). The SKF algorithm 

is summarized in  

Figure 104 in which operations on the 1x  portion of the state vector are presented above the 

dashed time-axis and operations on the 2x  portion are below the axis. The same algorithm is 

used for a nonlinear state estimation problem. However, instead of the KF (the KF is the base 

estimator for the SKF in a linear estimation problem), a nonlinear estimator like the EKF or 

UKF is employed as the base estimator. The next section applies the SKF to the current vehicle 

state estimation problem.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 104: The SKF algorithm. 
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11.1 SKF Results for the Vehicle States Estimation Problem  

 As demonstrated earlier, neither the KF estimators (see Chapter 7) nor the PF or the 

conventional observers for systems with unknown inputs (see Section 9.2) are able to provide 

high quality estimates of all the vehicle states. The relative displacements of the vehicle shocks 

are the states that are not satisfactorily estimated by the KF, embedding the minimal fourteen-

state realization. With the non-minimal realization, those states not estimated accurately are the 

absolute velocities of the wheel-hubs.  

 Consider the test vehicle equipped with the minimized sensor configuration introduced in 

Chapter 10. It consists of two accelerometers on the front wheel-hubs and three displacement 

sensors, one on the LF suspension and the two remaining on the rear suspensions. A non-

explicit model of the measurement system with respect to the unknown road disturbance du  is 

obtained by the use of the non-minimal realization1 of the vehicle model. Then the pair 

( , )kH Φ  is also observable. By considering the original state vector, given by Equation (6.8), 

the 1x  portion of a new state vector nx  includes the four absolute velocity states of the wheel-

hubs: 

1 10 12 14 16[ , , , ]Tx x x x x= .                                               (11.12) 

The rest of the states, given by Equations (6.9) and (6.10), are accurately estimated by the KF 

and therefore placed in the 2x  portion. For the current estimation problem, the unknown 

disturbance input is due to the bump in Ring Road. The vehicle velocity is approximately 30 

km/hr while passing the bump. The front wheel accelerometers are the sensitive sensors to the 

bump disturbance. 

 Figure 105 illustrates how effective the SKF is in estimating the absolute velocity of the LF 

wheel-hub, the state that neither KF nor PF can accurately estimate. The KF estimation result is 

also plotted in the figure (Figure 89 shows the PF estimation result). The RMS values 

associated with the estimation errors are compared in Table 4. It is obvious that the SKF 

estimate perfectly matches the actual velocity data, specifically during the period when the 

unknown disturbance is acting on the vehicle. But, at the same period, the KF estimate does not 

                                                 
1 With the minimized sensor configuration, the measurement model with the 14-states vector would be an explicit 
function of the unknown disturbance input. This is not in agreement with the structural requirements of the 
measurement model of this section (see Equation (11.2)).  
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remain acceptable. Before and after the vehicle hits the bump at the time 1 sect =  and 

approximately at 1.35 sect =  respectively, the SKF and the KF results are both reasonably 

accurate.  

 

Figure 105: Performance of the SKF in estimating the absolute velocity of the LF wheel-hub. 

 

 As demonstrated by Figure 105, before the bump disturbance at 1 sect = , the SKF and the 

KF estimation results are identical since the SKF works exactly similar to the KF. As soon as 

the wheel-accelerometer triggers the supervisory layer, random particles, shown by the green 

stars in the Figure 105, are generated based on the distribution given in Equation (11.4). Here, 

the magnifying coefficient α  in Equation (11.4) is selected to be 3 n× , where 16n =  is the 

dimension of the state vector. α  should be big enough to assure that the particles are distributed 

throughout the working space. Afterwards, the particles are recursively processed by the three 

consecutive steps of the SKF until again the accelerometer turns off the supervisory layer. For 

the rest, the SKF is the KF initialized by the SKF’s last estimate. 

 The supervisory layer allows the SKF to explore wider regions of the states space than an 

ordinary KF to find the best estimates of the state vector. However, compared to the PF, the 

SKF spreads the particles more intelligently based on the updated estimates of a base filter such 

  SKF Estimate 
  KF Estimate 
 * Particles 
  Filtered Actual 
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as a KF, EKF or UKF. Moreover, the search is accomplished on the only portion of the state 

vector which is not accurately provided by the base estimator1 (see Equation (11.4), only the 

first 1n  elements of the state vector are randomly distributed). Consequently, a fewer number of 

particles is required to guarantee the convergence of the SKF. This reduces the computational 

burden of the SKF and makes it suitable for real-time applications. For instance, the accurate 

estimate of the wheel-hub velocity in Figure 105 is obtained by the SKF which uses 200 

particles2. With this number of particles, sample impoverishment [54], [55] happens in the PF 

implementation only after a few steps. The processor in Section 9.1 needs less than six 

milliseconds (approximately 150Hz) to process the 200 particles at each cycle of the SKF. 

 The SKF estimates of the states, which are also provided accurately by the KF, are plotted in 

Figure 106, Figure 107 and Figure 108. Figure 106 compares the SKF and KF estimation 

results of the relative displacement across the LF shock. The comparison on the LF relative 

velocity state is given in Figure 107. And finally, the tire deflection estimates are plotted in 

Figure 108. It is demonstrated that the SKF provides accurate estimates of the tire deflection 

which are crucial for the vehicle stability controllers.  

 The performance of the two filters in terms of the RMS value of the estimation error is 

detailed in Table 4. Other than for the relative displacement estimate, which is marginally 

degraded, the use of the SKF improves the estimation accuracy of all the other states.  

   

 

 

                                                 
1 Given the Observability of the pair ( , )kH Φ , the base estimator provides accurate estimate for only a portion of 
the state vector without any knowledge of the unknown disturbance. 
2 Even with only 20 particles, the SKF estimation results remain quite accurate. 
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Figure 106: Performance of the SKF in estimating the relative displacement of the LF shock. 

 

Figure 107: Performance of the SKF in estimating the relative velocity across the LF shock. 
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Figure 108: Performance of the SKF in estimating the LF tire deflection. 

 

Table 4: Comparison of the RMS values of the SKF and KF estimation errors associated with the vehicle LF states.  

 KF SKF 

Relative displacement 0.0033 0.0039 

Relative velocity 0.0962 0.0235 

Absolute velocity 0.4851 0.0734 

Tire deflection 0.0017 0.0008 
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12 Control1  

 This chapter develops a novel practical methodology to design and implement vehicle semi-

active suspension control systems by using simple analytical models. The proposed design 

technique is then employed to design a semi-active suspension system for the Cadillac SRX 

equipped with Delphi Magneto-Rheological (MR) dampers. 

 Semi-active suspension systems utilize dampers that can change their damping and stiffness 

properties, given a low power electrical signal, and exhibit high performance vibration 

isolation. Usually, the command signal is provided by the vehicle computer, or preferably, a 

low-cost micro-controller module. There are two classes of semi-active dampers in practice. 

One is a modification of passive dampers that are equipped with external solenoid valves to 

vary the oil flow rate between the compression chamber and the reverse chamber of the damper. 

For the second class, the dampers (e.g., MR dampers) change the properties of the material 

inside the shock to provide different levels of resisting forces. 

 Sensors are essential components of vehicles semi-active suspension systems. They measure 

the chassis and wheels motion, relative to the road. The information is then fed back to the 

vehicle computer, preferably a micro-processor, which in turn sends a control command to the 

semi-active dampers. It is therefore of great practical interest to develop/implement control 

strategies that are efficient for embedded programming so that the micro-processor cost and size 

are reduced.    

 Various control strategies have been proposed to determine the desired damping forces. The 

Skyhook control strategy, introduced by Karnopp et al. [11], is undoubtedly, the most widely 

used control policy for semi-active suspension systems. Following the Skyhook policy, the 

semi-active damper mounted between the sprung mass and a stationary sky emulates a fictitious 

damper behavior. It has been established that the Skyhook strategy can significantly attenuate 

the resonant peak of the sprung mass, enhancing the vehicle’s ride comfort. The Skyhook 

strategy is also effective in terms of the simplicity of the control algorithm. Its other advantage 

is that, aside from the information regarding the vehicle’s shock characteristics, the control 

                                                 
1 This chapter along with Chapter 13 have been accepted for future publication in the Vehicle System Dynamics 
journal. 
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strategy does not require any a priori knowledge about the dynamics of the vehicle; that is, it is 

not model-based.     

 The Skyhook policy can be applied either as a bang-bang controller or in a continuous 

manner by utilizing the sprung mass vertical velocity feedback (however, this version is also 

discontinuous). The on-off Skyhook controller is usually simpler and better suited for the 

industrial applications.  The control law can be described simply as 

{ max
min

0
sky

if v vr b
otherwise

cc c
≥= ,                                                (12.1) 

in which bv  is the absolute velocity of the sprung mass, and rv  is the relative velocity between 

the sprung and unsprung mass across the suspension. Extensive theoretical and experimental 

studies of the performances of different types of semi-active Skyhook controllers can be found 

in the literature [11], [14], [28], [88] and [92].  

 Nevertheless, the controller’s upper and lower gains (that is, maxc  and minc , respectively) are 

usually determined by trial and error, and there is no systematic method to adjust them. This 

would make the controllable suspension system development process time consuming and 

sometimes too difficult. Consequently, this chapter introduces a new methodology which allows 

for the systematic design and implementation of the on-off Skyhook control strategy for semi-

active suspensions. Although the design methodology is developed for the Skyhook control 

strategy, it remains valid for implementation of other semi-active control policies, presented in 

Appendix A, which have switching natures. 

 The discontinuous nature of semi-active control strategies, including the Skyhook policy, is 

the principle barrier in methodical design. The first step of the new methodology is to apply the 

Fuzzy system theory to create a network with continuous valued outputs to emulate the 

discontinuous controller law. Once the original control strategy is converted to a continuous 

form, different well-established frequency or time domain techniques can be employed to 

design and adjust suspension system controller parameters. 

 The remainder of the chapter is organized in two sections.  In Section 12.1, the structure of a 

general semi-active suspension system is presented and a proper analytical model is assigned to 

each element of the closed loop control system. The new design methodology is then introduced 

in Section 12.2. 
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12.1 Structure of the Closed Loop Semi-Active Control System 

 Figure 109 shows a typical configuration of a vehicle’s semi-active suspension systems. 

Vector z  contains outputs of the sensors, strategically distributed throughout the vehicle, to 

capture the vehicle’s motions. As described in Chapter 3, the sensing system consists of 

accelerometers, gyroscopes, and displacement sensors with different configurations. The 

information sent by the sensors is processed by an estimator (e.g., a KF, UKF or SKF). Outputs 

of the filtering unit are the vehicle states required for the semi-active controller. Frequently-

used state variables include the absolute vertical velocity of the vehicle body at each corner 

(shock ends), the absolute velocity of the wheel-hubs, relative displacement and velocity across 

each shock, and the vehicle’s CG kinematics. Incorporating the vehicle states (in this case, the 

relative velocity of the shocks as well as the absolute velocity of the body corners), the Skyhook 

control strategy determines the damping characteristic suitable for the current time-step. The 

control command is accordingly fulfilled by the vehicle semi-active shocks. 

 

 
Figure 109: Block diagram of the vehicle’s semi-active suspension control system. 
 

 As described in Section 6.1.1, simplified vehicle models of the vehicle and the suspension 

systems are first derived analytically. Next, these models are verified and fine-tuned by the 4-

poster experiments. The semi-active dampers behave similarly to low-pass filters with relatively 

high bandwidths. The bandwidth corresponding to the MR dampers can be experimentally 

determined [80], [85], as approximately 65 (rad/sec). As described in Section 6.1, the vehicle 

dynamics is expressed by a linear time-varying formulation with respect to the semi-active 

damping coefficient, sc , (which is equal to the skyc  in this study) of the following form: 

( ) ( ) ( ) ( )s dx t A c x Eu t Lw t= + +�                                           (12.2) 
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where ( )x t  and du  refer to the vehicle state vector and the inputs to the wheels by the road 

roughness, respectively. In addition, A  and E  are the corresponding state and road input 

matrices.  

 Typically, the measurement system model is given as a nonlinear combination of the vehicle 

states, the road disturbances, and the current damping coefficient such that  

( , , )d sz h x u c v= + .                                                     (12.3) 

In addition, the sensor data is assumed to be corrupted by a zero mean white noise v  with a 

covariance of R . As described in Chapter 11, by employing a proper sensor configuration, all 

the vehicle’s required states are observed by the SKF1. In this case, the SKF simply appears as a 

low-pass filter whose bandwidth is a function of the Q  and R  matrices. Consequently, the 

filtering block can be easily substituted by a suitable transfer function.  

   The ultimate control objective is to determine minc  and maxc , such that the state vector and its 

derivatives are minimized ( 0d d dx x x= = =� �� ). The state variables that need to be regulated, such 

as absolute position and velocity of the wheel-hubs and relative displacement and velocity of 

the shocks, have frequency components up 12Hz, which is the typical resonant frequency of the 

vehicle wheels. Therefore, the control loop must be performed as fast as at least 60Hz (five 

times faster) to be able to effectively suppress the vibratory motions. Moreover, the closed-loop 

control system must guarantee to meet some given transient response criteria. However, the 

lower bound, minc , is limited to the minimum possible damping coefficient (ideally zero) that 

the semi-active shock offers (determined by the damper characteristic tests). Therefore, the 

problem is reduced to the determination of maxc  so that the desired requirements are satisfied. 

 The discontinuous block in Figure 109, describing the Skyhook control strategy, is the only 

module that cannot be classified in the framework of the conventional control system theory.  

The new approach should bring the discontinuous control strategy into the general framework 

of the classic control theory. Only then can all the conventional control system theory tools be 

employed in the design of a semi-active suspension controller. The next section pursues this 

goal. 

                                                 
1 The early real-time experiments were conducted with the KF in-line. As described in Chapter 7, some of the 
required states were not provided accurately. Therefore, a combination of a low-pass filter and a differentiator, or 
an integrator followed by a high-pass filter, were also utilized to calculate the unobserved states. In either way, the 
entire filter blocks are substituted by an appropriate linear transfer function.  
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12.2 Fuzzy Skyhook System 

 It can be proven that a Fuzzy logic system is capable of approximating any non-linear 

function on a compact set to an arbitrary accuracy [93]. Thus, a continuous Fuzzy system can 

be developed to mimic the on-off Skyhook control strategy and maintain the controller 

efficiency. One method to create such a system is to encapsulate the Skyhook control law into 

the inference engine of the Fuzzy system. This engine is the brain of the Fuzzy system which 

induces a Fuzzy output, based on a predefined Fuzzy rule base. In this case, the rule base built 

on the Skyhook strategy consists of the following 4 rules 

 R1: IF bv  is "P" AND rv  is "P" THEN sc  is "B" 

 R2: IF bv  is "N" AND rv  is "P" THEN sc  is "S" 

 R3: IF bv  is "P" AND rv  is "N" THEN sc  is "S" 

 R4: IF bv  is "N" AND rv  is "N" THEN sc  is "B", 

where P and N are the primary Fuzzy sets defined in the \ , which is the universe of discourse 

of the input variables bv  and rv . P represents "Positive" and N denotes "Negative", and are 

selected as follows:   

     ( ) 1 exp( / )p i
i

v v q
κμ = + − ,                                               (12.4)                         

and, 

( ) 1 exp( / )N i
i

v v q
κμ =

+
,                                               (12.5) 

with i b, r= . Figure 110 plots the input membership functions for q  equal to 0 01. . q  

determines the growing or decaying rates of the sigmoid functions. Proper values of the q  for 

this particular application are between 0 and 0 1. . κ  is usually set to 1. 
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Figure 110: The Positive and Negative membership functions ( 0 01q .= ). 

 

The inputs to the Fuzzy system are normalized such that the same membership functions can be 

employed for both inputs. The normalized crisp input vector [ ] Trbv v v=  is then fuzzified via 

a Singleton Fuzzifier [93]. Figure 111 shows the basic structure of the Fuzzy system model. 

 

 
Figure 111: The basic structure of the Fuzzy logic system. 
 

 Each IF-THEN rule of the Fuzzy rule base is characterized by a membership function, 

( , )R sv cμ μ × ×=A \ \ \ , defined in the Cartesian product space = × ×^ \ \ \ . The final structure of 

the Rμ A  is determined by using a particular operation rule of the Fuzzy implication [93]. By 

employing the product operation rule, the Rμ A  is evaluated by  

PμNμ
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( ). ( ). ( )
j kR b r su uv v cμ μ μ μϒ=A A A A ,                                        (12.6)                         

where 1 4,...,=A , and j,k  is either p  or N , depending the rule number. In addition, μϒA  is 

one of the two membership functions defined on the output variable sc ; that is, "B" (Big) or "S" 

(Small). Then, a Fuzzy output is induced from each IF-THEN rule and the fuzzified input 

vector V  by applying the following equation: 

  s V RC =A AD ,                                                        (12.7)                         

where D  refers to a compositional rule of inference. In this design, the sup-product 

compositional rule is applied [93], [94]. As a result, sCA  is evaluated as: 

{ }( ). ( , )sup V RCs s
v

v v cμ μμ
∈ ×

= AA
\ \

.                                        (12.8)                         

 The output of the Fuzzy inference engine is the union of each individual IF-THEN rule 

outcome sCA , 

4

1

n
s sC C

=

=
= A
A
∪ .                                                         (12.9)                         

The Fuzzy output set, sC , is ultimately transformed into a crisp output by a Center Average 

Defuzzifier (CAD) [93], given by:  
4

1
4

1

. ( , )
( , )

R

R

s s
s

s

c v cc
v c

μ
μ

=

=

∑

∑
= A

A

A A
A

A
A

,                                            (12.10)                         

where sc A  is the extremum of the output Fuzzy set, ( )scμϒA , (at which the ( )scμϒA  has a 

maximum value of 1). The substitution of (12.6) in (12.10) results in the crisp output of the 

Fuzzy system as:   

4
1
4

1

. ( ). ( )

( ). ( )
j k

j k

s rbu u
s

rbu u

c v v
c

v v

μ μ

μ μ
=

=

∑ ∏

∑ ∏
=

A A

A A

A
A

A
.                                     (12.11)                         

 By defining W A as 

4
1

( ). ( )

( ). ( )
j k

j k

rbu u

rbu u
W

v v

v v

μ μ

μ μ=

∏

∑ ∏
=

A A

AA AA

A

AA
,                                    (12.12)                         

the output of the Fuzzy system is ultimately written in the following compact form:  
4

1 . .Ts s W Cc c W=∑= =A A
A .                                            (12.13)                         
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In (12.13), [ ]WW = A , sC c= ⎡ ⎤⎣ ⎦A , and sc A  equals either maxc  or minc . Having employed the 

Fuzzy system, the structure of the semi-active suspension control loop is illustrated as in Figure 

112, where the on-off controller is replaced by the continuous nonlinear map N  defined by 

(12.13):  

max min, )ˆ( ,sc cx c=N .                                               (12.14)                        

 
Figure 112: The semi-active suspension control system with the Fuzzy Skyhook controller 

 

 In the next step, the nonlinear control law, Equation (12.14), is designed to provide some 

desired performance around a system equilibrium point. In order to do that, N  is expanded 

around the equilibrium point, 0x , in which 

0 0 0b rv v= = .                                                        (12.15)                         

After applying the Taylor series expansion formula, the nonlinear function can now be 

described as follows 

0

0 0
0

) ( )(
T

x
x x

x
x ∂+ −

∂
≅ NN N .                                    (12.16)                         

 By the use of Equations (12.4), (12.5), and (12.11), after some mathematical manipulation, it 

can be shown that   

00
0

xx
∂ =
∂
N ,                                                   (12.17)                         

due to the symmetry of the membership functions, defined on the inputs. Moreover, since minc  

is much less than maxc  (zero in theory), the terms containing minc  are overlooked. And 

therefore, 0 )(xN  is obtained by calculating 
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max
0 )

( , )
( c

r q
x

κ
≅≅N N .                                               (12.18)                         

r  is a constant quantity which relates to the membership functions parameters, κ  and q . By 

properly selecting κ  and q , r  usually falls into a region of [1.5, 2.5].  

 Now, the original switching control loop is approximated by a linear state-space model 

described (around the equilibrium point) by 

c c c c c c cx A x B u L w= + +�  ,                                             (12.19)                         

where the state, input and disturbance vectors are given in (12.20) 

c
s

xx ĉ
⎡ ⎤= ⎢ ⎥⎣ ⎦

, max

( , )c
cu

r qκ
= , d

c
uw w
⎡ ⎤= ⎢ ⎥⎣ ⎦

,                                      (12.20)                         

and the corresponding matrices are as follows: 

1
ˆ( ) 0

0
s

c
MR

A cA τ −
⎡ ⎤= ⎢ ⎥−⎣ ⎦

, 1
0

c
MR

B −
⎡ ⎤= ⎢ ⎥⎣ ⎦τ  

and 

  ˆ( )
0 0

s
c

E c LL ⎡ ⎤= ⎢ ⎥⎣ ⎦
.                                                     (12.21)                         

where subscript c refers to the controller design. Subsequently, all the tools, well-known in the 

conventional control system theory from the pole placement, LQR/LQG and H2/∞ to the various 

frequency domain techniques, can be utilized to design the unknown parameter, maxc , such that 

the closed loop control loop satisfies the desired performance requirements in the vicinity of the 

equilibrium point. For the other points of the universe of discourse, the required performance 

may not be satisfied. However, the exponential stability of the controlled system is always 

guaranteed in the entire universe of discourse, due to the passivity property of the suspension 

system [95]. 

 In practice, either the original bang-bang Skyhook strategy, Equation (12.1), or the nonlinear 

Fuzzy controller (12.14) is implemented by incorporating the designed maxc . However, maxc , 

obtained by the proposed methodology, might need to be fine-tuned during the road tests to 

assure the desired performance. Also, sensitivity and smoothness of the Fuzzy Skyhook 

controller can be altered and adjusted by tuning the membership functions parameters. q  

changes the membership function growth or decay rate. Setting q  to small quantities increases 
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the sharpness of the Fuzzy controller – that is, it behaves more or less similar to the original on-

off controller. Moreover, to decrease sensitivity of the Fuzzy controller to the input noises, an 

offset value γ  is introduced to the input membership functions as follows: 

[ ]( )
1 exp ( ) /p i

i
v

v q
κμ

γ
=

+ − −
,                                        (12.22) 

and, 

[ ]( )
1 exp ( ) /N i

i
v

v q
κμ

γ
=

+ +
.                                         (12.23) 

The greater the γ  selected, the less sensitive the controller becomes to the input variables 

[ ]Tb rv v v= noise.  

 The design procedure is summarized in the following six steps: 

1. Establish the semi-active control system desired performance.   

2. Find out the vehicle information, such as mass, moment of inertia, and dimensions. 

Then, develop the vehicle’s state space realization (see Equation (12.2)), accordingly. 

3. Determine and adjust the parameters of the input Fuzzy sets (see Equations (12.22) and 

(12.23)). Then calculate ( , )r qκ  in Equation (12.18). As pointed out earlier, proper κ  

and q  result in a number between 1.5 and 2.5 for r . Such an outcome leads to a 

convenient rule-of-thumb expression for choosing r , which bypasses the entire 

mathematical manipulations required in this step. As a rule of thumb, r  can be selected 

in the [1.5, 2.5] region; 1 5r .=  results in a smoother controller and softer suspension 

(luxury vehicles) while 2 5r .=  offers a harder suspension (sporty vehicles).  

4. Consider the approximated controlled system realization, given by Equations (12.19) to 

(12.21). By using a well-known time or frequency domain design technique, calculate 

maxc  such that eigenvalues of the corresponding state matrix cA  are placed in the proper 

regions of the s-plane.  

5. With maxc , determined from the previous step, implement either the on-off Skyhook 

strategy (Equation (12.1)) or the nonlinear Fuzzy controller (Equation (12.14)). 

6. Fine-tune the maxc  ballpark estimate during road tests to guarantee the desired ride and 

stability requirements. 

  



 147

13 Real-Time Tests of the Combined Estimator and Controller 

 Chapter 11 presents a nonlinear estimator, named SKF, to provide the vehicle states by 

fusing the measurements of a minimum number of sensors configuration. The estimated states 

are then processed by the Fuzzy Skyhook controller, developed in Chapter 12, to enhance the 

ride comfort, road handling and stability of the vehicle. In a more advanced case, the specific 

handling and stability-assist controllers also work in parallel with the Skyhook controller of 

Chapter 121. The design and analysis of such controllers are out of the scope of this research. 

 In this chapter, the newly-proposed estimator and controller are integrated first in Section 

13.1, and the stability and performance of the combined system are analyzed from a theoretical 

point of view. In real life, to investigate the efficiency of the integrated system, the Cadillac 

suspension controller is bypassed and replaced with the newly-developed estimator and 

controller. The real-time tests results are provided in Section 13.2.  

13.1 Nonlinear Separation Theorem 

 Theorem 1 (Nonlinear Separation Principle). Consider a nonlinear system in the form of 

( , )x f x u=� , 

− Suppose that ( ), (0) 0u g x g∃ = = , 1g c∈ , and ( )x g x∇  is bounded so that the equilibrium 

point ex  of the ( , ( ))x f x g x=�  is exponentially stable. 

− Furthermore, suppose that there exists an observer ˆ ˆx h( x,z,u )=�  which estimates the system 

state vector, such that the estimation error dynamics of the form, e ( e )= α�  with ˆe x x= − , is 

exponentially stable. 

Then [ ]0 T
ex is an exponentially stable equilibrium point of the integrated system [96], 

ˆ( , ( )
( )

x f x g x
ee

⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
�
� α .                                                  (12.24) 

                                                 
1 The estimator is aimed to provide vehicle states required by different types of control strategies, including ride, 
handling and stability, not only the states needed by the Skyhook scheme (which is more effective for the ride 
improvement). 
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 Theorem 1 confirms that the integrated estimator and controller loop of Figure 112, which is 

described by the following equation: 

( , , )s s s cx f x z w=� ,                                                    (12.25)                         

is exponentially stable1 in the entire universe of discourse, and guarantees the desired 

performance in the vicinity of the equilibrium point [ ]0 0 Tx . The concatenated state vector in 

Equation (12.25) is 

s
s

x
ˆx x
ĉ

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

,                                                             (12.26)                         

where subscript s refers to the semi-active closed-loop control system. 

 The real-time performance of the integrated semi-active control system, implemented on the 

Cadillac SRX, is studied in the next section. During the experiments, either KF or EKF is used 

to estimate the required states2 of the vehicle. As explained in Section 7.1, some of the states 

are not precisely provided by the KF estimators; hence, the sensors’ signals are filtered and 

directly processed (differentiated or integrated3) to extract those states. Nevertheless, the 

combination of the KF and the auxiliary filters resembles an estimator, which provides accurate 

estimates of all the states. The combination of such a stable estimator with the Fuzzy controller 

of Chapter 12 results in a stable integrated system, as Theorem 1 implies.    

13.2 Real-Time Experiments of the Integrated System 

 As described in Chapter 7, the test vehicle, Cadillac SRX, is equipped with the 

MagneRide™ semi-active MR dampers. The dampers are tested in the University of Waterloo’s 

MTS lab to characterize the damping forces with respect to the applied control current and the 

relative velocity across the shock. Figure 113 plots the rear dampers test results for different 

supplied currents. It is experimentally shown that the damper is capable of providing a wide 

range of damping coefficients from 200 N.sec/ m  at 0 Amp to about 7000 N.sec/ m  at 5 Amp.  

                                                 
1 Assumed that the estimator’s stability has been already proved based on the Lyapunov’s second stability 
theorem. 
2 At the time of the real-time experiments, neither SKF nor AKF had been developed. 
3 For instance, absolute velocity of the wheel-hubs is not accurately provided by the KF estimators. Therefore, 
signals of the wheel-hubs accelerometers are filtered by a high-pass filter to reject the DC gain and then integrated 
to obtain the absolute velocity states. 
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 A semi-active control problem is defined as follows. It is desirable to find appropriate lower 

and upper bounds of the Skyhook control strategy, that is, minc  and maxc , such that the 

following performance requirements are fulfilled  

• soft ride on even roads/pavement (luxury style), 

• controlled ride on rough roads/bumps with a settling time of around 1sec and a damping 

ratio of approximately 0.4ζ =  (not more than two bounces after the disturbance). 

Note that the design requirements are subjective and vary from one designer to the next. 
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Figure 113: The behavior of the Cadillac SRX rear MR damper 

 

 By considering the design requirements, the membership functions (see Equations (12.22) 

and (12.23) ) parameters are chosen as follows: 

1, 0.01,q= =κ 0.05γ = .                                                (12.27) 

As mentioned previously, κ  is usually selected to be 1. With q  set to the small quantity of 

0.01, the Fuzzy controller behaves similarly to the on-off Skyhook controller. 0.05γ =  renders 

the Fuzzy controller insensitive to the low amplitude vibrations of the vehicle’s body/wheels, 

caused by weak disturbances. Consequently, the controller maintains the damping of the MR 

dampers at the most minimum values (around minc ) when the vehicle is moving on the even 
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segments of a road. This results in a luxury-style comfortable ride. From the known parameters 

of Equation (12.27), r  is then calculated to be 2.2. 

 The next step considers the approximated controlled system model (Equations (12.19) to 

(12.21)), and the given r  to determine a proper maximum limit for the damping coefficient, 

maxc . The desired closed loop poles (or regions in the s-plane) are first specified in accordance 

to the performance requirements. Then, by using the pole-placement technique (or any other 

similar design methodology), maxc  is calculated to satisfy the requirements. For this particular 

semi-active control problem, maxc  is obtained to be approximately 5500 N.sec/ m . From the 

MR damper characteristic equations, it is revealed that the required upper damping is achieved 

at approximately 4 Amp of the supplied current. However, the lower bound of the damping 

coefficient, minc , is obtained by the damper characteristic tests and is approximately 

200 N.sec/ m  at 0.0 Amp of the supplied current.   

 The real-time VC++ processing platform, introduced in Chapter 7, is used to implement the 

integrated estimator and controller. The sensors’ data are collected at 500Hz from the 

accelerometers and IMU and approximately 40Hz from the displacement sensors, and fed to the 

estimator. The computed control command is sent at the rate of approximately 20Hz1 out of the 

onboard computer through an RS485 serial port to a voltage-controlled current circuit. The 

circuit drives a PWM amplifier which, accordingly, feeds the MR dampers. The road tests are 

carried out (similar to the real-time experiments of Chapter 7) on the portion of the UW’s Ring 

Road where there are two bumps, as shown in Figure 43 and Figure 44. 

 The test vehicle is driven on the specified section of Ring Road (including the bump) with 

speeds between 20 km/hr and 50 km/hr. For each velocity, the performance of the Cadillac SRX 

original controller is compared with that of the designed controller. The measurements from the 

vertical accelerometer of the IMU (acceleration of the CG) are used as the ride-comfort 

measure. Figure 114 reflects the acceleration of the CG for two cases: when the benchmark 

control system is engaged, and when the integrated estimator and Fuzzy Skyhook controller is 

in-line. In comparison with the Cadillac controller, the integrated control system decreases the 

maximum acceleration of the vehicle’s CG and also the peak-to-peak value by 19% and 13%, 
                                                 
1 Theoretically, it must be at least 60Hz to effectively suppress the fast frequency components of the vehicle 
vibrations. However, due to the limitation of the MR damper bandwidth (approximately 10Hz), the controller 
command is sent at a rate of 20Hz.  
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respectively. The settling time of the closed-loop system is around 1.5 seconds (the bump input 

ends at approximately t=85sec), which is close to the desired magnitude. 
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Figure 114: The graph compares the performance of the integrated control system and the Cadillac SRX original 
controller (the test vehicle speed is 30km/hr). 
 

 Figure 115 puts the command signal, sent by the Fuzzy Skyhook controller, and the 

controller inputs ( [ ]Tb rv v v= ) side by side. It is apparent that the designed controller is not 

sensitive to the small perturbations. The low damping value, assigned by the controller on the 

even segments of the pavement, provides a soft and comfortable ride. Also, the controller 

effectively acts to reduce the effects of the bump, as seen in Figure 114. The entire processing 

time is evaluated as less than two milliseconds for each iteration of the integrated estimator and 

controller loop with the exisiting on-board processor. 
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Figure 115: Absolute velocity of the front left corner of the body, relative velocity of the associated MR damper, 
and the control current sent to the damper. 
 

 Overall, it is observed that employing the systematic design methodology, proposed in this 

research, results in a semi-active suspension system whose performance is comparable to that of 

a commercialized industrial system. Also, it is confirmed that the proposed technique makes the 

semi-active control system design straightforward and free from the need of numerous trial-

and-error attempts. Small modifications on the Fuzzy controller performance can be achieved 

by altering and adjusting the membership function parameters. However to entirely satisfy a 

different set of performance requirements (different settling time and transient response 

requirements), the design steps should be repeated to generate new values of maxc  and minc . 

 Another semi-active control problem with different design requirements and control strategy 

is studied next. Consider the design requirements of the previous problem, except that the 

desired damping ratio is decreased by 10%. Moreover, the sub-optimal Skyhook control 

strategy, presented in Appendix A, is replaced by the original Skyhook strategy. By following 

the step by step design procedure of Chapter 12, the upper damping limit of the MR dampers, 

maxc , is calculated to be around 5000 N.sec/ m  (at approximately 3 Amp of the supplied 

current). The sub-optimal Skyhook, with the calculated maxc , is then coded to the onboard 
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processor. The real-time experiments are carried out on the same road conditions at the same 

speed. Figure 116 offers a comparison of the performance of the integrated system and the 

Cadillac SRX original control system. It is illustrated that the integrated system with the sub-

optimal Skyhook controller performs in a similar manner to the Cadillac SRX original semi-

active control system. 
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Figure 116: The graph compares the performance of the integrated system with the sub-optimal Skyhook 
controller, and the Cadillac SRX original semi-active control system (the test vehicle speed is 30km/hr). 
 

 To demonstrate the efficiency of the integrated control system further, Figure 117 plots the 

accelerations of the vehicle CG for two situations: when the integrated system is engaged and 

when it is off. The vehicle is driven on the same road and bump but with a different speed of 40 

km/hr. It is obvious that when the suspension control system is in-line, the transmitted 

disturbance to the body is significantly reduced. 
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Figure 117: The graph compares acceleration of the vehicle CG for two different cases: the integrated control 
system is on and off (the test vehicle speed is 40km/hr). 

 

 



 155

14 Conclusions and Future Work 

 A solution has been given for the state estimation problem of systems with unmeasurable 

non-zero mean inputs/disturbances which do not satisfy the disturbance decoupling conditions. 

The proposed filtering scheme was then applied to the state estimation of a test vehicle model, a 

Cadillac SRX 2005, subjected to unknown road disturbances such as bumps. Vehicle states are 

required by an active or a semi-active suspension control system, which improves ride comfort, 

road handling, and stability of the vehicle. Due to the lack of information on road disturbances, 

the conventional estimation techniques such as the Kalman filter (also conventional observers 

such as the Luenberger observer) fail to provide accurate estimates of the states. More robust 

estimators, such as the particle filter, also fail as a result of the system’s high-dimensional 

structure.  

 The proposed estimation algorithm, called the Supervisory Kalman Filter (SKF), consists of 

a Kalman filter with an extra update step, inspired by the particle filtering technique. The extra 

step, named the supervisory layer, can be triggered from the initial time or can be activated as 

soon as the unknown disturbance input is detected by a responsive sensor. It operates on the 

portion of the state vector that cannot be estimated by the Kalman filter. First, it produces N  

randomly-generated state vector – the particles – which are distributed based on the Kalman 

filter’s last updated pdf. The other portion of the state vector that is accurately estimated by the 

Kalman filter remains unchanged in the particles. Then, a resampling stage is performed to 

collect the particles with higher probability.  

 The effectiveness of the SKF is demonstrated by comparing its estimation results with that of 

the Kalman filter and the particle filter when a test vehicle is passing over a bump. The 

estimation results confirm that the SKF precisely estimates those states of the vehicle that 

cannot be estimated by either the Kalman filter or the particle filter, without any direct 

measurement of the road disturbances. Although the filtering algorithm has been developed for 

linear systems, the same scheme can be utilised for nonlinear state estimation problems. 

However, for this case, instead of the Kalman filter as the base estimator, a nonlinear estimator, 

like the extended Kalman filter or the unscented Kalman filter, is employed.  

 In addition, a systematic and practical methodology has been developed for the design and 

implementation of vehicle semi-active suspension control systems by using simple analytical 
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models. The proposed methodology takes into consideration the dynamics of the semi-active 

dampers and those of the estimation/filtering unit. The discontinuous nature of the semi-active 

control strategies, including the Skyhook policy, is the principle barrier in methodical design. 

The first step of the new methodology is to apply the Fuzzy system theory to create a network 

with continuous valued outputs to emulate the discontinuous controller law. Once the original 

control strategy is converted to a continuous linear form, different well-established frequency or 

time-domain techniques can be employed to design and adjust the suspension system controller 

parameters (i.e., the upper and lower bounds of the Skyhook policy). If the semi-active control 

loop is designed to satisfy some desired ride and stability requirements, an inverse mapping 

offers the ultimate control law.  

 In the end, the entire design procedure was summarized to six steps. To demonstrate the 

effectiveness of the proposed methodology, it was employed in the design of a semi-active 

suspension control system for the Cadillac SRX test vehicle. The Cadillac original controller 

was then by-passed and replaced by the newly-designed controller. The road test results verified 

that applying the developed design technique results in a semi-active control system whose 

performance is comparable with that of the Cadillac SRX. It was also confirmed that the use of 

the newly-developed systematic design methodology reduces the time and effort required in 

real industrial problems.  

  

 The thesis contributions are summarized as follows: 

• Development of a filtering scheme for the state estimation of systems with unknown 

inputs/disturbances which do not satisfy the disturbance decoupling conditions. A direct 

application of the proposed technique is the state estimation of terrain vehicles subjected 

to unknown disturbances from the road.  

• Development of a systematic and practical approach to the design and implementation 

of vehicle semi-active suspension control systems. By using the proposed design 

methodology, the estimator and the controller are designed simultaneously to satisfy the 

desired time and frequency domain requirements. 

 

 A challenging problem that has not been addressed in this manuscript is the task of 

optimizing the resampling stage of the SKF to require less number of particles (and hence less 
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computational burden), while avoiding sample impoverishment. During sample 

impoverishment, all the particles will collapse to a single point within a few iterations. This 

problem reduces the diversity of paths of the particles, which will degrade the estimation 

performance significantly. Further road tests need to be conducted to study and analyze the 

performance of the combined SKF and the semi-active controller with the minimum sensor 

configuration in real life. Also, the robustness of the integrated system to different payloads and 

manoeuvres should be validated through real-time experiments.  

 It was demonstrated, through computer simulations, that the SKF has the ability to estimate 

the vehicle tire deflections accurately. These states are crucial for vehicle stability controllers. It 

is expected that, by incorporating the tire’s model into the estimator’s body, the estimation 

accuracy associated with the tire deflections will be improved. Furthermore, road tests with the 

wheel deflection measurements are required to confirm the SKF’s real performance. 

  

 



 158

Appendices 



 159

Appendix A: Semi-active Suspension Control Strategies 

 

A.1 1 and 2 DOF Suspension Systems Model 
 Figure 118-a shows a 1 DOF suspension system for a base excitation input. The equation of 

motion for this system is given by:          

( ) ( ) 0mx c x y k x y+ − + − =�� � �  (A.1)

This equation could be re-written as: 

2 22 sin( )r n r n rx x x y tξω ω ω ω+ + =�� �  (A.2)

where the parameters of the above equation are: 

km
c

2
=ξ ,  2n n

k f
m

ω π= = ,  rx x y= −  (A.3)

In a harmonic base excitation system, two parameters are studied; the first one is called 

Displacement Transmissibility: 
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= =
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 (A.4)

This expresses the ratio of the maximum magnitude of response to the input displacement. The 

second parameter is called Force Transmissibility: 
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+
= =
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��
 (A.5)

where, η  is the force transmitted to the mass as a result of excitation. Using the transform 

method, we can find the desired parameters mentioned above with respect to frequency ratio, 

n

ω
ω , and for different damping ratioξ . 

Figure 118-b shows a 2 DOF suspension system for a base excitation input. The equations of 

motion for this system are given by: 

2 1 2 1 2 1( ) ( )bm x k x x c x x= − − − −�� � �  

1 1 2 1 2 1 2 1( ) ( ) ( )wm x k x x c x x k x y= − + − − −�� � �  
(A.6)
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The two parameters of interest in the harmonic base excitation Displacement Transmissibility 

and Force Transmissibility are [28]: 
2 2 2
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where the equation parameters are: 2 2C DΔ = + , 2 2
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 In the frequency domain analysis, it is common practice to compare the results based on an 

overall analysis obtained by RMS method. The RMS of the above-mentioned parameters are 

defined as: 
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in which max min,r r are the frequency analysis range boundary. 
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a:  One Degree of Freedom System                            b: Two Degrees of Freedom System 

Figure 118: One and Two Degrees of Freedom Systems [28] 

 

A.2 The Semi-active Suspension Control Strategies 
 In this section, conventional semi-active control strategies are presented, namely: Skyhook 

and its modified versions, LRD, and the Rakheja-Sankar (R-S) method.   

 

A.2.1 Skyhook Control Method 

 The Skyhook strategy is undoubtedly the most effective technique for the vibration 

suppression of a vehicle body [11], [13], and [14]. A typical Skyhook model is shown in Figure 

119; the damping force provided by the Skyhook damper C2 is always opposite to the absolute 

velocity of m .  

 

Figure 119: A schematic structure of the skyhook control system [28] 

m



 162

 

 

According to the Skyhook working principle [11], the semi-active on-off control law is 

{ max
min

0
sky

if v vr b
otherwise

cc c
≥= , (A.9)

where rv x y= −� �  is the relative velocity across the shock, and bv x= �  is the absolute velocity of 

the sprung mass. The relative velocity rv  can be obtained by differentiating the measurement of 

a displacement sensor.  

 However, measuring the absolute velocity is difficult. This is considered a negative aspect of 

the Skyhook control policy. Traditional methods integrate the accelerometer signal, over time, 

to obtain the required state. However, the quality of the resultant signal is extremely degraded 

by the high rate drift and noise, associated with the low-cost automotive grade MEMS sensors 

(<$30). Here, a modified version of the Skyhook control policy is presented which is 

independent of the absolute velocity states and maintains the performance of the original 

strategy.  

 

A.2.2 Sub-Optimal Skyhook Control Method 

 Figure 120 shows the relative displacement and velocity of the vehicle LF shock, along with 

the absolute velocity of the sprung mass. The data are generated through the computer 

simulation of the 7 DOF Cadillac model, passing over the bump at 40 km/hr. From this graph 

and similar simulation results for the other speeds, it is discovered that the behavior of the sign 

change of the .r bv v  (relative velocity times the absolute velocity) is opposite to that of the .r rv z  

(relative velocity and relative displacement product). This behavior is further clarified in Figure 

120, where the non-zero status of the green line refers to the positive sign of the relative and 

absolute velocity product, while the non-zero status of the black curve refers to the negative 

sign of the relative velocity and the relative displacement product. It is apparent that the two 

curves almost overlap, which means that when the relative velocity times the absolute velocity 

is positive, the relative velocity times the relative displacement is negative. 
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Figure 120: The graph compares signs of the relative and absolute velocity product and the relative velocity and 
displacement product. 

 

 Figure 120, or similar simulation results, implies that the sign of the product of the relative 

velocity and the relative displacement can be monitored as a replacement for the original 

Skyhook controller switching criterion. The proposed alternative eliminates the need for 

computing the sprung mass absolute velocity. However, the performance of the semi-active 

control system is lowered to some extent. The sub-optimal Skyhook control policy is then given 

by [22], 

{ max
_

min

0
sub sky

if v zr r
otherwise

cc c
≤= . (A.10) 

Now, rz  is measured by the damper displacement sensor. rv  is obtained by differentiating the 

filtered rz  through a low-pass filter.  

 Another modified version of the Skyhook strategy is presented in [28], where the sprung 

mass jerk x���  is used instead of its absolute velocity. The control law is then modified to the 

following form: 
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{ max
min

0x
sky

if vr
otherwise

cc c
≥= ��� . (A.11) 

In this case, the sprung mass jerk, x��� , is obtained by differentiating the filtered acceleration of 

the sprung mass.  

 

A.2.3 Groundhook Control Method 

 The Groundhook control strategy is described by looking at Figure 118(b). Assume that a 

fictitious damper is mounted between the unsprung mass and the ground to suppress the 

vibratory motion of the unsprung mass. The Groundhook control strategy alters the semi-active 

damper coefficient, c , such that the damper force be equivalent to that of the fictitious damper 

[13], [88] :  

{ max
min

0
sky

if v vr w
otherwise

cc c
− ≥= , (A.12) 

where rv x y= −� �  is the relative velocity across the shock, and 1wv x= �  is the absolute velocity of 

the unsprung mass. 

 

A.2.4 Skyhook-Groundhook Control Method 

 The Skyhook-Groundhook method, also called the hybrid control strategy, is a combination 

of the Skyhook and the Groundhook strategies. With the hybrid control, it can be specified that 

how closely the semi-active damper emulates the Skyhook damper or the Groundhook damper. 

The hybrid control strategy is given by [88]: 

{
{

max
min

max
min

0

0
(1 )hybrid sky Ground

Ground

sky
if v vr b

otherwise

if v vr w
otherwise

c c c

cc c

cc c

ε ε
−

≥

≥
⇒ = + −

=

=

, (A.13) 

where the variable ε  is the relative ratio between the Skyhook and the Groundhook control (for 

1ε = , the control policy is purely Skyhook, and for 0ε = , the control policy is purely 

Groundhook). 
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A.2.5 Limited Relative Displacement (LRD) Control Method 

 For the purpose of controlling the relative displacement in this control method, a mechanism 

is required to provide a high damping ratio when the relative displacement is above a specific 

threshold. Otherwise, a low damping ratio is implemented. This on-off control law can be 

expressed as: 

max

min      
r

r

c z
c

c z

δ

δ

⎧ ≥⎪= ⎨
<⎪⎩

. (A.14)

 

 

A.2.6 Rakheja-Sankar (R-S) Control Method 

 The control strategy, proposed by Rakheja and Sankar [22], [28], is based on the fact that the 

damping force in a passive damper tends to increase the mass acceleration when it is applied in 

the same direction as the spring force. Ideally, a semi-active damper should not produce any 

damping force, or at the least a minimum value in the same direction as the spring force. Based 

on this concept, the following on-off control strategy is suggested: 

0
0

r r r
d otherwise

kz z v
F

ε− ≤⎧
= ⎨
⎩

, (A.15)

where rz x y= −  is the relative displacement across the shock. In practice, though, it is difficult 

to have the damping force properly follow the spring force. Therefore, the previous control 

strategy can be modified to a new form, which can be expressed as: 

max

min

0r rc z v
c

c otherwise
≤⎧

= ⎨
⎩

. (A.16)
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Appendix B: The Quarter Car Test Setup 

 Characteristics of damper, shaker control, accelerometers, and potentiometer are described 

as follows (see also Figure 24 and Figure 26):  

 

B.1 Damper 
 RD-1097-01 is a controllable friction magnetically responsive (MR) fluid damper providing 

controllability and responsiveness in a lightweight package. As a magnetic field is applied to 

the MR fluid inside the housing, the damping characteristics of the fluid increase under 25-

millisecond response time. The MR damper is especially well-suited for suspension and 

isolation applications. 
 

Extended Length 7.68 inches (195 mm) 

Compressed Length 9.96 inches (253 mm) 

Body Diameter 1.26 inches (32 mm) 

Weight 1.1 pound (0.48 kg) 

Electrical Characteristics: 
Input Current (continuous) 
Input Current (intermittent) 
Resistance (25° C) 

 
0.5 amps maximum 
1.0 amps maximum 
20 ohms 
 

Damper Forces: (Peak to Peak) 
2 in/sec at 1 amp 
8 in/sec at 0 amp 

 
> 22 pounds (100 N) 
< 2 pounds (9 N) 
 

Mechanical Characteristics: 
Maximum Operating Temperature 
Storage Temperature Limits 

160°F (70°C) 
- 40° F to 212°F (-40°C to 100°C) 

Response Time  
(amplifier and power supply dependent) 

< 25 millisecond – time to reach 90% 
of max level during a 0 to 1 amp step 
input @ 2 in/sec (51 mm/sec). 
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B.2 Accelerometers 
 The characteristics of the accelerometers, mounted on the sprung and unsprung masses, are 

tabulated as follows: 

 

Weight 2.1 gram 

Element Style Quartz planar shear 

Sensitivity ± 10%  mV/G 

Range for ± 5 Volts output ± 50 G's 

Frequency range ± 5% 0.5 to 10 kHz 

Resonant Frequency 45 KHz 

Equivalent Electrical Noise Floor 0.007 G's RMS 

Linearity 1% F.S. 

Temperature Range                                    -60 to +300 °F 

 

B.3 Potentiometer 
 The specifications of the potentiometer used in the QC’s test rig are as follows: 

 

Potentiometer Type 1−turn, precision, conductive plastic 

Resistance: Value, Tolerance 5K ohms, ±10% 

Travel: Electrical, Mechanical 340°, 340° min 

Mechanical Life 100 million shaft revolutions min 

Power Rating 1.0 W at 158° F (70° C) 

Supply Current 12 mA max 

Supply Voltage 35 VDC max (using voltage divider circuit) 

Independent Linearity Error ±0.5% max per VRCI−P−100A 

Output Smoothness 0.1% max 

Resolution infinite signal 

Operating Temperature −85° to +257° F (−65° to +125° C) 

Temperature Coefficient ±400 ppm/°C max 
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B.4 Shaker Control 
 The purpose of environmental vibration testing is to ensure that a specific Unit Under Test 

(UUT) can perform its desired function when subjected to the vibration stress of its operating 

environment. A Shaker System allows the operator to verify this in a controlled environment. 

The emphasis here is on a controlled environment. 

A complete Shaker System consists of seven major components: 

UUT – The Unit under Test is the essential component of the system. 

Fixture – The Fixture is the device that holds the UUT and simulates its normal mounting 

environment. 

Head – The Head of the shaker is the part to which the fixture is attached. 

Shaker – The Shaker converts the electronic signal that describes the desired test into vibratory 

motion. 

Amplifier – The Amplifier multiplies the electronic signal produced by the control system. The 

purpose is to achieve an amplitude sufficient to “drive” the shaker at the proper levels. 

Control System – The Control System compensates for the dynamics of the shaker and UUT 

and creates an electronic signal that causes the desired vibratory motion. 

Sensors – The sensors measure the vibratory motion and convert this motion into an electronic 

signal that can be measured by the control system. 
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Appendix C: Experimental Apparatus of Real-Time Vehicle Tests  

 

C.1 Test Vehicle 
 The first test vehicle was a Toyota Tercel model 1993, equipped with a complete sensor 

system with passive dampers (see Figure 2). In this stage, only the performance of the KF in 

estimating the required states of the test vehicle was examined. Then, a fully instrument 

Cadillac SRX model 2005 with semi-active suspension system (see also Figure 36) was utilised 

to analyze the performance of the combined estimation and control system.  

 

C.2 Dampers 
 To control the ride comfort of a vehicle using an active or semi-active suspension system, 

the dampers must be modeled. That is, the resulting damping force from applied current and 

velocity must be known. To characterize the damping property of the existing Cadillac MR 

dampers, two dampers were ordered and tested separately. Different sets of tests were 

performed on the Cadillac SRX rear and front dampers. Damping forces, in terms of relative 

velocity and applied current, are shown in Figure 46 and Figure 113. 

 

C.3 Sensors 
 Since acceleration and relative displacements must be measured, two types of sensors were 

used: MechSenseTM MD S 202 –U accelerometers for measuring the acceleration, and string pot 

for measuring the relative displacement, 0173-0161. The displacement sensors are used only as 

a research tool to provide truth data of the actual displacements which the accelerometers/KF 

will estimate. Subsequently, a comparison between the displacements measured directly from 

the string pots and the displacement estimates from the KF will be made to show the accuracy 

of the estimation. It should be noted that all accelerometers were calibrated before being 

mounted on the vehicle. 
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C.3.1 Accelerometers 

 MechSense Digital is a completely digital, low-cost sensing system. It integrates a two- or 

three-axis accelerometer with a reconfigurable signal conditioning unit, a 12-bit analog to 

digital converter and power regulator, all in one small, low-cost package. It also includes the 

MechManager™ software package that enables the user to conveniently collect, display and 

store data, and to re-configure the sensor’s operation as required.  MechSense Digital is 

available in ranges of ±2g and ±10g, with a typical noise floor of 200ug/√Hz. Standard 

applications include automotive testing, vibration monitoring, alarms and motion detection. 

MechSense Digital is available in a compact, mountable and hermetically-sealed 2-7/8 x 1-1/2 x 

1 inch package.  MechSense Digital is available with three communication interfaces. 

 The port powered USB interface is a 1.1/2.0 full-speed interface that allows the sensors to be 

meshed together for a multi-drop network of up to 64 units. A half-duplex RS-485 interface is 

available for greater communication lengths, even in noisy environments. With the RS-485 

interface option, units can be daisy chained together to create an addressable multi-sensor 

network of up to 64 units. The accelerometer’s signal conditioner features a fifth-order 

Butterworth low-pass filter that is configurable from DC-50Hz to DC-1000Hz and a gain 

adjustment from 1.00 to 10.00.  Data sampling ranges from 1Hz to 2000Hz per channel. With 

the RS-232 interface option, the maximum low-pass filter adjustment is reduced to DC-500Hz 

and the maximum sampling rate is 1000Hz per channel.   

 A re-calibrate function accurately determines the zero g offset and sensitivity of each 

accelerometer axis. A temperature measurement can be employed by the user for a temperature 

compensation algorithm. A self-test function can be used for testing the unit’s functionality.  

With the MechManager interface software, the accelerometer unit interfaces with any PC 

running Windows 98 or better, for capturing, plotting and storing data.   

 

  

 

 

 

 

 



 171

 

 

 

 

 

 

 

 

 

Figure 121: A MechSense Accelerometer.  

 

C.3.2 Inertial Measurement Unit (IMU) 

 MechSense AIMU/DIMU is a completely Analog/Digital, low-cost sensing system. It 

integrates three accelerometers and three rate gyros with a suitable signal conditioning unit, a 

12-bit analog to digital converter and a microcontroller equipped with temperature sensor, all in 

one small, low-cost package. It also includes the MechIMUCal™ software package that enables 

the user to conveniently collect, display and store data as well easily re-configure the sensor’s 

calibration values as required.   

 The MechSense AIMU/DIMU accelerometers are available in any combination of the ranges 

±2g and ±10g, with a typical noise floor of 200ug/√Hz. MechSense DIMU is available in a 

compact, mountable and hermetically-sealed package. MechSense DIMU is equipped with USB 

1.1/2.0 full-speed hardware. As well, the sensors are networkable, allowing for a multi-drop 

network AIMU/DIMU units. The sensor’s signal conditioner features sharp cut-off filters in 

analog and digital domains. A recalibrate function accurately determines the zero g offset and 

sensitivity of each accelerometer axis. A temperature sensor measurement is used for the 

onboard temperature compensation algorithm. 
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Figure 122: A MechSense IMU  

 

C.3.3 String Potentiometer 

 To measure the relative displacement across the shocks, a string potentiometer Model # 

0173-0161 was used. Figure 123 shows a string potentiometer and its various aspects. The 

specifications of the potentiometer are as follows: 

 

Potentiometer Type 1-turn, precision, conductive plastic 

Maximum Travel (Series 176) 6.5-Inch (165-mm) 

Resistance: Value, Tolerance 5K ohms, ±10% 

Travel: Electrical, Mechanical 340°, 340° min 

Mechanical Life 100 million shaft revolutions min 

Output Signal analog signal from 0 to supply voltage 
(voltage divider circuit) 

Power Rating 1.0 W at 158° F (70° C) 

Supply Current 12 mA max 

Supply Voltage 35 VDC max (using voltage divider circuit) 

Resolution infinite signal 

Operating Temperature −85° to +257° F (−65° to +125° C) 

Temperature Coefficient ±400 ppm/°C max 
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Figure 123: The String Potentiometer.  

 

C.4 Sensors and IMU Data Integration 
 The software collects the data from the sensors, including the IMU. The data are saved in the 

computer and fed to the estimator. The analog output signal of each of the sensors (typically, 

rate gyros, accelerometers and displacement sensors) is fed into a separate configurable analog 

signal conditioning circuit. The conditioning circuit is inside an enclosure that may also contain 

additional pluralities of analog sensors “internal sensors” such as rate gyros, accelerometers and 

temperature sensors. The output of the each filter circuit is fed into an analog multiplexer, 

which is then fed to an analog-to-digital converter.  The analog-to-digital converter is controlled 

by a processor that includes a software algorithm for additional sensor analysis as well as 

control of the various components within the configurable sensor.   

 The configurable analog signal-conditioning circuit consists of a variable gain amplifier 

circuit and a variable bandwidth filter.  The variable gain amplifier circuit can be controlled by 

the processor to change the bias of the analog sensors as well as to change the gain of the sensor 

signal.  The modified sensor signal is sent to the variable bandwidth filter. The bandwidth filter 

is controlled by the processor, and applies a desired low pass filter to the modified sensor 

signal, with a turning point selected by the processor. The filtered sensor signal is fed to a 

multiplexer.  An embedded program in the processor configures the analog signal conditionings 

based upon values stored in the memory. The processor in each configurable sensor is either a 

microcontroller or a Digital Signal Processor (DSP). The processor controls the analog-to-

digital converter, configurable filter circuit, memory, and communications interface. The 



 174

analog-to-digital converter samples each available filtered sensor signal. The memory can 

include both flash memory and RAM. The communications interface can include both wired 

and wireless communications mechanisms.   

 Additionally there is a power regulation circuit. The digital filtered sensor signals are 

analyzed by a program on the processor that can be customized for each sensor signal. The 

program includes a bank of configurable digital filters, observers, RMS levels calculators, peak-

to-peak level calculators, and other key measures that may vary depending on the application or 

required criteria. The main unit can be configured to save sensor data in memory and record the 

time of the event, and can drive a digital-to-analog converter whose value can be read outside of 

the configurable sensor by a more powerful computer for further analysis and decision making. 

The storing of sensor data in the memory is automatic and accomplished in a method that 

respects the limited resources available with regard to both memory and processor resources. 

The sensor stores all the sensor data in a cache within the RAM so that a configurable period of 

the most recent sensor data is always available.  

 Also, the sensor is capable of operating together with other similar sensors on a shared data 

bus consisting either of a wired connection or a wireless connection.  Since each sensor has an 

individual serial programmed into the memory, the sensors can be individually configured from 

a computer acting as the bus master.  The master computer can collect the data from the sensors 

on the bus either in real time or by transferring data stored in the sensor memory cache. The 

sensors on the bus can be configured as a group and can operate in a real-time data collection 

mode where a few sensors send back data in pseudo real time. Individual sensors will return the 

contents of their cache to the master computer, reducing the communications’ overhead.  
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