
ASSIGNING CLOSELY SPACED TARGETS TO MULTIPLE
AUTONOMOUS UNDERWATER VEHICLES

Beverley Chow1 bchow@uwaterloo.ca
Christopher Michael Clark2 cmclark@calpoly.edu

Jan Paul Huissoon1 jph@uwaterloo.ca
1) University of Waterloo - Canada

2) California Polytechnic State University - USA

Abstract
This paper addresses the problem of allocating closely
spaced targets to multiple autonomous underwater vehi-
cles in the presence of constant ocean currents. The main
difficulty of this problem is that the non-holonomic vehi-
cles are constrained to move along forward paths with
bounded curvatures. The proposed algorithm solves the
task allocation problem with market-based auctions that
minimize the total travel time to complete the mission.
Simulations show that the proposed algorithm is able to
create feasible paths with a lower cost when compared to
solutions whose cost functions are calculated based solely
on Euclidean distances. Field tests conducted on an Iver2
AUV validate the performance of the proposed algorithm
in real world environments. Results show that the pro-
posed algorithm generates paths that are feasible for an
AUV to track closely, even in the presence of ocean cur-
rents.

1 INTRODUCTION

Autonomous Underwater Vehicles (AUVs) have been
used successfully in the past to solve geological, bio-
logical, chemical, and physical oceanographic problems.
This has resulted in a variety of scientific and commer-
cial AUVs to be designed, built, and deployed. With the
increasing feasibility and decreasing expense of AUVs, in-
terest in using them for ocean sampling, mapping, surveil-
lance, and communication is growing and multi-AUV op-
erations are beginning to be realized in the water. As with
any multi-robot system, a challenge is to determine which
robot should perform which task in order to cooperatively
achieve the global goal in an optimal manner.

This paper presents an approximate algorithm for the
task allocation problem where n vehicles are required to
visit m task points. The motion of the AUV satisfies a
non-holonomic constraint (i.e. the yaw rate of the vehi-
cle is bounded) which makes the costs of going from one

point to another non-Euclidean and asymmetric. Each task
point is to be visited by one and only one vehicle and the
problem has been simplified to limit the robots to operate
on the Euclidean plane. Given a set of task points and the
yaw rate constraints on the vehicles, the problem is to as-
sign each vehicle a sequence of task points to visit and to
find a feasible path for each vehicle to follow so that the
vehicle passes through the assigned task points. Each task
point is a subgoal that is necessary for achieving the over-
all goal of the system that can be achieved independently
of other subgoals. Task independence is assumed, where
individual task points can be considered and assigned inde-
pendently of each other without ordering constraints. The
objective function to be minimized includes the total time
to visit all of the task points.

The features that differentiate this research to similar
problems previously studied are the kinematic constraints
on the vehicle and the presence of a constant ocean cur-
rent. This paper addresses the inability of an AUV to turn
at any arbitrary yaw rate which becomes a problem when
target points are close together. The Dubins model [1] is
a simple but efficient way to handle the kinematic char-
acteristics of AUVs. It gives complete characterization of
the optimal paths between two configurations for a vehicle
with limited turning radius moving in a plane at constant
speed.

In this paper, Dubins paths are modified to include
ocean currents, resulting in paths defined by curves whose
radius of curvature is not constant. To determine the time
required to follow such paths, an approximate dynamic
model of the AUV is queried. Specifically, a lower order
model of the REMUS AUV model from [2] is used so that
the computational complexity is reduced.

The remainder of this paper is organized as follows:
Section 2 gives an overview of the task allocation prob-
lem and describes various other techniques that have been
used to solve related problems. Section 3 begins with the
formal problem definition. In Section 4, an overview of

mailto:bchow@uwaterloo.ca
mailto:cmclark@calpoly.edu
mailto:jph@uwaterloo.ca

the proposed algorithm is introduced with the details pre-
sented in Section 5. Section 6 discusses the results from
simulations done in Matlab to verify that the desired re-
sults are achieved. Following a satisfactory simulation, the
algorithm was tested in the field at the Avila Pier in Cali-
fornia as described in Section 7. The paper concludes with
a summary of results in Section 8.

2 BACKGROUND

The goal of the task allocation problem is to have
robots visit all targets while minimizing the total travel
time or distance of the robots. When targets are known
before the mission, it is possible to build a schedule of
targets for each robot. Unfortunately, this problem is not
straight forward because the cost for a robot to visit tar-
get C depends on whether that robot first visits target A or
target B. This problem is an instance of the multiple trav-
eling salesperson problem (MTSP), which has been stud-
ied extensively in combinatorial optimization. Even in the
restricted case of one salesperson, the MTSP is strongly
NP-hard [3].

Several approaches have been applied to the general
problem of allocating tasks between multiple robots in a
team; refer to [4] for a survey of these. Heuristic methods
are typically used since optimizing the performance is of-
ten computationally intractable. Parker’s ALLIANCE [5]
is one of the earliest demonstrations of behaviour-based
architectures for task allocation. Another frequently used
method is based on market mechanisms, such as auctions,
which have been demonstrated in [6] to be fast and robust
on real robots. Specific work for AUVs, often called mis-
sion planning, include the work by Sariel et al. [7] and
vehicles with bounded curvature are considered by Jeyara-
man et al. [8]. Similar to the mission planning problem
is the routing problem as investigated by Davis et al. [9]
for the planning for underwater gliders in the presence of
significant currents. However, the vehicle dynamics are
not accounted for in their routing strategy which this pa-
per aims to address.

3 PROBLEM STATEMENT

This paper considers the allocation of m targets to
n vehicles. Given a set of vehicles {V1,V2, ...,Vn} and
targets D = {d1,d2, ...,dm}, the problem is to assign a
sequence of targets Si to each vehicle to visit and a path
through the sequence Si. The objective is to:

Minimize

Ctotal = max
i

C (Si) (1)

subject to

D =
⊔

i

Si (disjoint union) (2)

dxi, t

dt
= u0 cos(ψi, t)

dyi, t

dt
= u0 sin(ψi, t)

dψi, t

dt
= r, r ∈ [−ω,+ω]

(3)

where u0 denotes the nominal vehicle speed, ψi, t the yaw
of the vehicle, and ω represents the bound on the yaw rate.
In (1), C (Si) is the time required for Vi to complete its
tour Si. Note that (2) dictates all tasks to be visited and
restricts each task to be assigned to only one vehicle and
(3) considers the non-holonomic constraints of the vehicle.

4 OVERVIEW OF PLANNER

This paper proposes an approximate algorithm for the
task allocation problem which is not possible to solve in
polynomial time. The problem combines the exponen-
tial complexity of integer assignment decisions with non-
linear, non-convex differential equation constraints, mak-
ing it a Mixed Integer Non-linear Program with exponen-
tial growth in computational time.

The proposed planner constructs feasible paths based
on Dubins’ model which characterizes the optimal path be-
tween two configurations of a vehicle with limited turning
radius. The vehicles have been constrained to move in a
plane at constant speed. To determine the time required to
track these paths, a lower order dynamic model is queried
to reduce the computational time. The following sections
describe the three main stages of the proposed algorithm.

4.1 Clustering
Let (x j,y j) denote the position of target d j. Given the

positions of j = 1, ...,m task points, the algorithm starts
by creating n clusters of task points, where n is equal to
the number of AUVs. The method used in this paper is k-
means [10], which partitions the m points into n clusters by
minimizing the total intra-cluster variance, or the squared
error function. For this implementation, k-means is mini-
mized with respect to the squared Euclidean distance with
the initial cluster centroid positions selected uniformly at
random from the range of x. The k-means algorithm is re-
peated 3 times, each with a new set of initial centroids. If
a cluster loses all of its member observations during the
iterative process, a new cluster consisting of the one ob-
servation furthest from its centroid is created.

After partitioning all task points into clusters, the cen-
troid of all task points is calculated. For all i = 1,2, ...,n

clusters, the three task points in each cluster i that are far-
thest from the centroid are assigned to the i th vehicle. The
number of initial task assignments was chosen to be three
because for three tasks forming a loop, the ordering of the
tasks does not matter and always produces the same loop.

4.2 Auctioning
Once each vehicle has three task points assigned to

it, the remaining m− 3n tasks are auctioned via a se-
quence of first-price one-round auctions similar to work
by Lagoudakis et al. [11]. The unassigned tasks are first
ordered according to their distance from the centroid. The
greater the distance from the centroid, the higher the pri-
ority the task will have in the order.

Following this order, each task is auctioned off. Each
vehicle i can bid on the task j, where the bid Bi is equal to
the cost of traveling a path that consists of all previously
won tasks and the current task being auctioned. Each ve-
hicle considers the insertion of the new task at every point
in the current sequence Si = (s1,s2,s3, ...,sl) where l is the
number of previously won tasks by vehicle i. Each vehicle
submits a bid as the lowest cost (i.e. time) to complete the
new tour as:

Bi (d j,Si) = min
0≤k≤l

C (s1, ...,sk,d j,sk+1, ...,sl) (4)

The i th vehicle with the lowest Bi wins target
d j and updates its sequence of targets with S′i =
(s1, ...,sk,d j,sk+1, ...,sl). The calculation of C(S′i) is the
key to this algorithm’s ability to reduce costs, as described
in detail in Section 5.

After a task auction is completed, the auctioning pro-
cess continues with the next round of bidding until all tasks
are allocated. The advantage of using this algorithm is that
it allows for a decentralized implementation. The calcula-
tion of the bids can be performed locally by each vehicle in
parallel. Additionally, each vehicle can maintain its own
sequence of tasks and the costs associated with it.

4.3 Post Processing
After all tasks have been auctioned off, each robot has

a sequence of tasks to visit. Due to the inherent short-
comings of market-based auction mechanisms, the cost
of going backwards through the same sequence of tasks
may produce a lower cost value. A post processing step is
added at the end of the algorithm to check for the possibil-
ity that reversing the order of the task points will produce
a lower cost.

5 PATH COST CALCULATION

To determine the path cost for bidding as described
above, the time C(S) for the AUV to traverse the sequence

needs to be calculated. First, the shortest path between two
points is solved using a Dubins model to consider the kine-
matic constraints of the vehicle. Then, the time required to
follow the path is calculated using a dynamic model of the
vehicle. However, due to the complexity of a full dynamic
model, it is not possible to query it in a reasonable amount
of time. Therefore, a lower order model based on the full
model is described in this section. Note that both the kine-
matic and dynamic models are modified to consider the
effects of ocean current.

5.1 Dubins Path
In order to calculate the time required to travel be-

tween two points, the Dubins shortest path problem must
first be solved. Dubins’ original work [1] derived condi-
tions that characterize the optimal path between two points
when both initial and terminal orientations were specified
and his work has been widely studied in path planning
[12]. Dubins’ result shows that, given any two points,
the shortest path that considers the constraints expressed
in (3) consists of exactly three path segments consisting
of a combination of a straight line segment and maximum
curvature arcs.

Graphically, the algorithm starts by drawing two max-
imum curvature circles that are tangential to the initial
state vector and two maximum curvature circles that are
tangential to the terminal state vector. Dubins’ result indi-
cates that the optimal trajectory selects an arc on one of the
two initial circles, and connects tangentially to an arc on
one of the two terminal circles. If the separation between
the initial and end points is sufficient, this can only be ac-
complished by a line segment. There are at most four such
line segments, and computation of the travel distances is
straightforward, as shown in Fig. 1 for two waypoints
with initial and terminal orientations, denoted αk and αk+1
respectively. Note that α is measured counter-clockwise
with respect to the positive x-axis.

−20 −10 0 10 20 30 40 50
−20

−10

0

10

20

30

40

50

β

(b) (c) (d) (e)

k

k+1

α

(a)

α

α

Figure 1: (a) Two waypoints (xk, yk) and (xk+1, yk+1) with
αk = π

4 and αk+1 = 3π

4 . (b)-(e) Four ways of connecting two
waypoints using Dubins curves.

Finding the shortest path between two points requires
repetitively solving the shortest time algorithm for vari-
ous entry and exit AUV orientations (i.e. αk, αk+1). The

added challenge here is that there may be a family of paths
that connects sk to sk+1 with only one being the shortest.
The multiplicity of paths connecting the two points com-
plicates the search for initial and final headings so an ex-
haustive coarse-resolution search is implemented. In this
algorithm, αk and αk+1 are constrained to Λ = {λπ/4 |
λ = 0, ...,7}. With 8 possibilities for αk and αk+1 and 4
ways of connecting them, a total of 8×8×4 = 256 paths
is possible for every pair of waypoints, with one of them
being the optimal path. Fig. 2 shows three paths con-
necting sk, to sk+1. Note that there are additional paths
connecting the same points which are not shown and that
different values for αk and αk+1 yield different costs.

−20 −10 0 10 20 30 40 50
−20

−10

0

10

20

30

40

50

sk

sk+1

(a)
(b)

(c)

Figure 2: Multiple trajectories for different initial and final
orientations. (a) αk = 3π

4 , αk+1 = −3π

4 (b) αk = −3π

4 , αk+1 = π

(c) αk = −π

2 , αk+1 = 3π

4 .

The cost of traversing the sequence S can then be cal-
culated as:

C(S) = min
(α1,...,αl)∈Λl

l

∑
k=1

∆t(sk,αk)→(sk+1,αk+1) (5)

5.2 AUV Dynamic Model
Calculating the time required to follow a Dubins path

requires the knowledge of the vehicle dynamics. This pa-
per uses the REMUS AUV model created by Prestero [2]
to which readers are referred to for the full derivation.
The REMUS AUV has a torpedo shape with an ellipsoidal
nose, a cylindrical constant radius mid-section, and a cubic
spline tail section as illustrated in Fig. 3.

Figure 3: Picture of the REMUS AUV.

The vehicle has 6 degrees of freedom (DOF), namely
surge, sway, heave, pitch, roll, and yaw. The AUV is as-

sumed to be neutrally buoyant, completely rigid, and in-
teracting with an ideal fluid. The vehicle is propelled by a
thruster at its tail and steered by two independent pairs of
fins for pitch and yaw control. With 6-DOF and only three
independent actuators, the system is considered to be an
underactuated system.

The 6-DOF non-linear model described in [2] can
be used to simulate how different control and hydrody-
namic forces affect the body-fixed velocities and the over-
all change in position and orientation of the vehicle. The
simulation requires the ability to represent the vehicle mo-
tion with respect to both body-fixed and inertial coordi-
nates. Therefore, the twelve states of a vehicle Vi consist-
ing of body-fixed velocities and inertial coordinates at time
t are given by:

Xi, t = [ui vi wi pi qi ri xi yi zi φi θi ψi]
T . (6)

Given the complex and highly non-linear nature of the
problem, numerical integration is used to solve for the ve-
hicle position and orientation in time. At each time step,
the vehicle state is updated by the general equation:

Xi, t+1 = f (Xi, t , Ui, t , uc, ψc) (7)

where Xi, t is the vehicle state vector, Ui, t =
[δs δr Xprop Kprop]

T is the input vector, uc and ψc
are the magnitude and direction of the ocean current
respectively. For the input vector, δs is the stern fin angle,
δr is the rudder fin angle, Xprop is the surge force, and
Kprop is the yaw torque provided by the propeller.

The function f in (7) uses the Euler method of numer-
ical integration to yield the new vehicle state at each time
step as:

X′i, t+1 = Xi, t +
(
Ẋi, t ·∆t

)
(8)

where the state vector derivative Ẋi, t is updated using the
model Ẋi, t = f (Xi, t , Ui, t) from [2]. With the presence of
a fixed current, the position of the vehicle relative to the
inertial-fixed frame is updated as follows:

xi = x′i +(uc cos(ψc) ·∆t)
yi = y′i +(uc sin(ψc) ·∆t) (9)

where x′i and y′i denote the position of the i th vehicle after
the integration step given in (8). By combining (8) and (9),
the function f in (7) is realized and can be used to update
the general state of each vehicle. This full 6-DOF non-
linear model is used in evaluating the final tour times of
the sequences generated by the proposed algorithm.

5.3 Modification of Dubins Path
To calculate the shortest path between two points in

the presence of ocean current, the dynamic model is used

to determine the feasible states of the vehicle. In the
presence of ocean currents, the shortest path between two
points given αk and αk+1 consists of arcs that are no longer
circular but elliptic. These ellipses will have different cur-
vatures depending on the magnitude and direction of the
current (Fig. 4). The shape of the ellipse depends on the
vehicle’s orientation at the start of the turn and is calcu-
lated using the difference between the vehicle’s heading ψ

and the direction of the current ψc.

−10 −8 −6 −4 −2 0 2 4 6 8 10

0

2

4

6

8

10

12

14

16

18

(a) u
c

s
k+1

s
k

−10 −8 −6 −4 −2 0 2 4 6 8 10

0

2

4

6

8

10

12

14

16

18

s
k+1

s
k

u
c(b)

−10 −8 −6 −4 −2 0 2 4 6 8 10

0

2

4

6

8

10

12

14

16

18

u
c

s
k+1

s
k

(c)

−10 −8 −6 −4 −2 0 2 4 6 8 10

0

2

4

6

8

10

12

14

16

18

s
k

s
k+1

u
c

(d)

Figure 4: Dubins Curves between two waypoints with ocean
currents uc = 0.25 m/s. (a) ψc=0, (b) ψc = π

2 , (c) ψc = π, and
(d) ψc = −π

2 .

To determine the shape of the ellipse, equation (7) was
used to determine the state of the vehicle at each time step
with X0 = [1.15 0 0 0 0 0 0 0 0 0 0 0]T , and U0 =
[0 1.75 5.16 0]T , where 1.15 m/s is the nominal speed of
the AUV, 1.75 rad is the rudder fin angle, and 5.16 N is the
propeller surge force. Note that finding the maximum cur-
vature for the ellipse requires running the simulation using
a maximum rudder fin angle of 1.75 radians. Data was
obtained for discrete cases of uc = {0.1,0.2,0.3,0.4,0.5},
and ψc = {κπ/8 for κ = 1, ...,16} and the vehicle’s posi-
tion was recorded at ∆ψ = {κπ/8 for κ = 1, ...,16}, where
∆ψ is the fraction of a complete circumnavigation of the
ellipse the vehicle travels (Fig. 5).

Using this data, a lower order model f̃ was created to

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

(a)

∆ yα
k
 = 0

α’
k
 = π/4

∆ x

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

(b)

∆ y

∆ x

α
k
 = 0

α’
k
 = 3π/4

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

∆ y

α
k
 = 0

∆ x

α’
k
 = 5π/4

(c)

Figure 5: Vehicle position for various values of ∆ψ as the
vehicle moves along the maximum curvature ellipse. (a)
∆ψ = π

4 . (b) ∆ψ = 3π

4 . (c) ∆ψ = 5π

4 .

determine the position of the vehicle given the change in
the vehicle’s heading, and the magnitude and velocity of
the current.

(∆x,∆y) = f̃ (∆ψ,uc,ψc) (10)

The next step is to find the fraction of a complete cir-
cumnavigation of the ellipse to travel before and after the
straight line segment. Finding a line segment tangent to
two curves is solved by using an iterative process. As a
starting point, the slope of the tangent line to two circular
arcs of minimum radius (when uc = 0) is calculated (Fig.
6a). Using that value, Pa and Pb are found on the respec-
tive ellipses whose slope is equal to the slope of the tangent
(Fig. 6b). The position of Pa and Pb are determined by us-
ing f̃ from (10). The slope of the line segment from Pa to
Pb is calculated and becomes the new slope for the next it-
eration (Fig. 6c). The process continues until convergence
(Fig. 6d).

−5 0 5 10 15 20
−5

0

5

10

15

20

dy
dx

(a)

−5 0 5 10 15 20
−5

0

5

10

15

20

dy
dx

Pa

dy
dx Pb

(b)

−5 0 5 10 15 20
−5

0

5

10

15

20

dy

dx Pa Pb

(c)

−5 0 5 10 15 20
−5

0

5

10

15

20

dy
dx

Pa

dy
dx Pb

(d)

Figure 6: Illustration of the iterative process used to find a
tangent to two curves.

Note that Fig. 6 depicts the desired path for the AUV
to follow in the presence of ocean current. In order for the

vehicle to stay on the desired path, the vehicle heading ψ

must be calculated to compensate for the effect of current
currents.

5.4 Shortest Time Between Two Waypoints
To calculate the time ∆t(sk,αk)→(sk+1,αk+1) in (5), a

lower order model f̂ is created based on the full model
f from (7) as:

∆t(sk,αk)→(sk+1,αk+1) = f̂ [sk,sk+1,αk,αk+1,u0,uc,ψc]
(11)

5.4.1 Arcs

For arcs, the lower order model is a piecewise linear func-
tion built from sampling the full model. Using the full
model, the vehicle orientation can be determined at a cer-
tain time t. In order to find the time required to ob-
tain a specific heading, linearly interpolation is used on
the data obtained from the full model at various fractions
of a complete circumnavigation of the ellipse (κπ/8 for
κ = 1, ...,16).

5.4.2 Straight line segments

For straight line segments, consider a vehicle moving
at speed u and heading ψ through the water with cur-
rent velocity uc and direction ψc. The vehicle’s velocity
along the desired path has magnitude udesired and direc-
tion ψdesired . These velocities are illustrated in Fig. 7.
Let ucψdesired

= uc cos(ψc−ψdesired) be the current compo-
nent assisting motion along the desired direction and ucN

= uc sin(ψc−ψdesired) be the current component π/2 ra-
dians to the left of the desired direction. Staying on the
desired path requires the perpendicular component of the
vehicle velocity usin(ψ−ψdesired) to cancel the perpen-
dicular component of the current ucN . The heading ψ and
speed udesired along the desired vehicle motion direction
are:

ψ =−arcsin(ucN /u)+ψdesired

udesired = ucψdesired
+u
√

1− (ucN /u)2.
(12)

As long as |ucN | < u, the vehicle can stay on the desired
path, but the velocity decreases as |ucN | → u. Keeping the
vehicle on the desired path is critical because making mea-
surements in the right places requires the vehicle to stay on
track in the presence of currents.

The time required to travel from Pa to Pb can then be
calculated as follows:

∆tstraight =
√

(xa− xb)2 +(ya− yb)2/udesired (13)

// udesired ,ψdesired

KKKKKKKKKKKKKKKKKKKKKKKKKKK

%% u,ψ

���������������������

?? uc,ψc

ucN = uc sin(ψc−ψdesired)

usin(ψ−ψdesired)

Figure 7: Illustration of the relative velocities.

Combining these results in

∆t(sk,αk)→(sk+1,αk+1) =∆tarc(sk→Pa) +∆tstraight(Pa→Pb)+

∆tarc(Pb→sk+1).

(14)

5.5 Path Time Calculation
When a vehicle bids for task d j and tries to add the

new task at every point in the current sequence S as de-
scribed in Section 4.2, the vehicle must try every value of
Λ = {λπ/4 | λ = 0, ...,7} for the orientation at task d j.
With the insertion of task d j in between sk and sk+1, the
optimal orientations αk and αk+1 also have to be recalcu-
lated with all values of Λ. The orientations at all other task
points in the sequence S is kept from the previous round of
bidding since the addition of task d j has minimal effect on
the rest of the tour. Because the sequence S and the values
for the optimal orientation at each task point with the ex-
ception of αk and αk+1 are kept from the previous round
of bidding, (11) only needs to be calculated between tasks
(sk−1, sk), (sk, d j), (d j, sk+1), and (sk+1, sk+2). This simpli-
fies the algorithm and significantly decreases the process-
ing time.

6 SIMULATION RESULTS

The algorithm described in Section 4 was imple-
mented in Matlab and was developed on an Intel 1.66 GHz
Core 2 Duo processor T5500 with 2GB RAM and run-
ning Windows XP SP3. To demonstrate the performance
of the proposed algorithm, computer simulations were car-
ried out with a model of the REMUS AUV. Simulations
were conducted on 50 datasets, each set containing be-
tween 6 and 20 task points. The task points were gen-
erated randomly and uniformly inside a square with side

lengths of 25 meters. The task points were generated close
together to highlight the necessity for considering the cur-
vature constraints. As a baseline for comparison, the “al-
ternating algorithm” described by Savla et al. [13] was
used.

To illustrate the behaviour of the proposed algorithm,
consider one particular trial with n = 3 and m = 20. Using
the k-means clustering method described in Section 4, the
20 task points were partitioned into 3 clusters as shown in
Fig. 8. It should be noted that Matlab uses a two-phase
iterative algorithm for k-means clustering that only con-
verges to a local minimum. The problem of finding the
global minimum can only be solved in general by an ex-
haustive choice of starting points. Therefore, Matlab pro-
duces different clusters using the same dataset depending
on the starting points chosen and Fig. 8 is one of many
solutions.

0 5 10 15 20 25

0

5

10

15

20

25

centroid

cluster 1

cluster 2 cluster 3

1

12

15
20

14

17

11
9

18

16
5

8

6

103

19

13
4

2

7

Figure 8: Results from clustering using k-means. Tasks with
a circle around it are assigned to the vehicle responsible for
that cluster.

The three task points in each cluster that were farthest
from the centroid were assigned to the vehicle responsible
for the cluster. This resulted in the following sequence for
each vehicle: S1 = {d8,d11,d1}; S2 = {d6,d7,d13}; S3 =
{d2,d4,d19}.

As a baseline for comparison, the “alternating algo-
rithm” described by Savla et al. [13] is used for the cre-
ation of Dubins TSP tours (i.e. sequences from applying
Dubins’ model). It works as follows: given a set of n
points, the optimal Euclidean MTSP tours (i.e. that do not
consider path curvature) are computed using auctions (Fig.
9). Then, it is necessary to obtain a feasible path through
these ordered points using the method in [13] which in-
cludes the curvature constraints of the vehicle.

0 5 10 15 20 25
−5

0

5

10

15

20

25

30

Figure 9: Euclidean MTSP solution for allocating 20 tasks to
3 robots

6.1 Discussion
The results from running the simulation on 50 differ-

ent datasets are summarized in Table 1 using the following
criteria:

Tmax = maxCsim(Si) and Tavg = ∑
n
i=1 Csim (Si)

n
.

Csim is the cost calculated by running the planned tours
Si through the full dynamic model in Equation (7). On
average, the proposed algorithm reduced Tmax by 43% over
the “alternating algorithm” in the absence of currents and
45% with the presence of currents.

Table 1: Summary of simulation results using n = {1, 2, 3, 4,
5} and m = {6, 7, 8,..., 20}.

No current With current
Tmax Tavg Tmax Tavg

% Improve- % Improve- % Improve- % Improve-
ment ment ment ment

n = 1 36.1 36.1 42.8 42.8
n = 2 37.8 34.3 43.4 38.9
n = 3 47.2 37.6 48.6 46.7
n = 4 52.2 41.1 45.8 37.0
n = 5 41.7 31.2 44.1 40.5

Consider one particular trial illustrated in Fig. 10 and
Fig. 11 whose results are presented in Table 2. For the
case with no ocean currents, the “alternating algorithm”
creates paths with numerous loops when two successive
points are close together and the vehicle orientation does
not allow for the second point to be reached without long
maneuvers (Fig. 10(a)). This is avoided in the proposed al-
gorithm by generating sequences that are feasible but limit
the number of additional loops (Fig. 10(b)). Similar re-
sults are obtained with the presence of ocean currents as
shown in Fig. 11(a) and Fig. 11(b).

Note that the proposed algorithm produced different
sequences for the case with no ocean currents and the case
with ocean currents. This is because the bidding scheme
considers the possibility that two successive points that

−5 0 5 10 15 20 25 30

0

5

10

15

20

25

30

(a)

1
2

3

4

5

6 7

1

2

3

4 5

6

1

2

34
5

6 7

−5 0 5 10 15 20 25 30

0

5

10

15

20

25

30

(b)

1
2

3

4

5

1

2

3

4 5

6

7

8
1

2

3

4

5
6

7

Figure 10: Sequences generated by the “alternating algo-
rithm” (a) and the proposed algorithm (b) using the dataset
in Fig. 8 with n = 3, m = 20, and uc = 0.

Table 2: Summary of path costs for the dataset in Fig. 8 with
n = 3 and m = 20.

No current With current
Alternating Proposed Alternating Proposed
Algorithm Algorithm Algorithm Algorithm

Tmax (s) 89.9 58.4 101 59.8
Tavg (s) 75.1 54.5 88.1 57.1

were reachable in the absence of ocean currents may no
longer be reachable without extra loops due to the in-
crease in turning radius from the ocean currents. Also,
the paths generated by the proposed algorithm attempts
to avoid paths that force the vehicles to drive against the
ocean current. Instead, paths that allow the ocean current
to aid the vehicle in the direction of travel are favoured.

For a sufficiently dense sets of points, it becomes clear
that the ordering of the Euclidean tours is not optimal in
the case of the Dubins MTSP. This is due to the fact that
there is little relationship between the Euclidean and Du-
bins metrics, especially when the Euclidean distances are
small with respect to the turning radius. An algorithm for
the Euclidean problem will tend to schedule very close
points in a successive order, which can imply long ma-
neuvers for the AUV. This is clearly demonstrated by the

−5 0 5 10 15 20 25 30

0

5

10

15

20

25

30

c = 0.25 m/s (a)

1
2

7
6

6

5

4

3
3

2

1
4 5

6
5

4 3

2

1

7

u

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(b) c = 0.25 m/s

7

3

1
2

4

5

6

1

2
3

45

6

8 1

2

3 4

56

u

Figure 11: Sequences generated by the “alternating algo-
rithm” (a) and the proposed algorithm (b) using the dataset
in Fig. 8 with n = 3, m = 20, uc = 0.25m/s, and ψc = 0.

numerous loops that become problematic with dense sets
of points. The algorithm proposed in this paper does not
rely on the Euclidean solution and therefore, even in the
presence of ocean currents, can create paths that are feasi-
ble for curvature bound vehicles.

6.2 System Performance

The processing time for running the proposed algo-
rithm using n = {1,2,3,4,5} and m = {1,2,3,...,20} are plot-
ted in Fig. 12. As a baseline for comparison, the pro-
cessing time for running the TSP solution followed by the
“alternating algorithm” is also shown on the graph for n =
1.

The complexity of the algorithm is a result of each ve-
hicle i trying to insert the new task at every point in the
current sequence Si = {s1,s2, ...,sl}, where l is the num-
ber of previously won tasks by Vi, when calculating the
bid cost. As l increases by 1, the number of calculations
required by the vehicle i increases by 8×8×8 = 512 con-
figurations for testing the different orientations at sk, d j,
and sk+1, and for every configuration, there are 4 possible
Dubins paths.

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

Number of task points

P
ro

ce
ss

in
g

T
im

e
(s

)

TSP + Alternating Algorithm − 1 AUV

Proposed Algorithm − 1 AUV

Proposed Algorithm − 2 AUVs

Proposed Algorithm − 3 AUVs

Proposed Algorithm − 4 AUVs

Proposed Algorithm − 5 AUVs

Figure 12: Processing Time.

7 EXPERIMENTAL RESULTS

Experiments were conducted at the Avila Pier in Cali-
fornia using the Iver2 AUV as shown in Fig. 13.

Figure 13: Picture of the Iver2 AUV.

The Iver2 is a small, low cost AUV developed by
Ocean Server Technology Inc. It is 4 feet long, 6 inches in
diameter, and weighs less than 50 pounds. It has indepen-
dent control of all 4 control surfaces, a wireless network
interface, a simple user interface, and a robust mechanical
design. The Iver2 AUV is similar to the REMUS AUV
in many aspects, and therefore, the governing equations of
motion described above for the REMUS AUV also apply
to the Iver2 AUV.

Missions were created based on the sequences gen-
erated by the different algorithms using Matlab and were
tested on the Iver2 AUV. The results from running the ex-
periments were analyzed based on following criteria:

Tmax = maxCexp(Si)

Tavg =
∑

n
i=1 Cexp (Si)

n

Davg =
∑

m
j=1 Dmin (d j)

m
.

where Cexp is the time taken by the Iver2 AUV to traverse
the sequence Si during a mission and Dmin is the minimum
distance between a task point and the line indicating the
actual position of the AUV during the mission. Note that
for Experiment 1, Tmax = Tavg since there is only one vehi-
cle, and therefore, it is denoted as Texp.

7.1 Control Architecture
Before describing the results from field tests, the lim-

itations on the control architecture of the Iver2 AUV must
be addressed. The Iver2 AUV control architecture is based
on the Underwater Vehicle Console (UVC) developed by
the Ocean Server Technology Inc. The UVC provides an
interface to the Iver2 AUV’s sensors, motors, and control
processes through a Remote Desktop Connection. How-
ever, the UVC declares victory on the approaching way-
point and will move to the next waypoint when it has
reached the “waypoint success radius” which was set to
4 meters (minimum allowed value on the UVC).

To execute a planned path, the UVC uses the sequence
of waypoints listed in an ASCII mission file. The goal is
to drive the AUV to the waypoint latitude and longitude
coordinate but unfortunately, the UVC will only track the
waypoint until it is within 4 meters, at which point it will
start tracking the next waypoint. When using the UVC to
control the Iver2, the AUV was not able to track waypoints
precisely, which can be seen in the experimental results.

7.2 Experiment 1 - Traveling Salesman Problem
The first set of experiments were conducted on 3

datasets, each containing 10 task points generated ran-
domly and uniformly inside a square with side lengths of
25 meters.

The first method solves the traveling salesman prob-
lem without considering the curvature constraints of the
vehicle or the effects of ocean current (Fig 14). The sec-
ond method takes the sequence of points generated by the
first method and tries to find a feasible path taking into
consideration the curvature constraints of the vehicle us-
ing the “alternating algorithm” (Fig 15). The third method
uses the proposed algorithm which considers the curvature
constraints of the vehicle as well as the effect of ocean cur-
rents in generating the sequence for the vehicle (Fig 16).
Results from field tests are summarized in Table 3.

On average, the proposed algorithm reduced the mis-
sion time by 34% and reduced the average minimum dis-
tance to task points by 31% over the “alternating algo-

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

35

(a)

task point
(b)

AUV’s actual
path

Figure 14: (a) Paths generated for the TSP from Matlab. (b)
Field test results - Texp = 85 s and Davg = 1.71 m.

Table 3: Field test results from three randomly generated
datasets of 10 task points for one vehicle.

Texp (s) Davg (m)
TSP 104 1.44

Alternating Algorithm 315 0.90
Proposed Algorithm 207 0.62

rithm”. Although the TSP solution was 50% faster than
the proposed solution, the paths generated were not fea-
sible for the Iver2 AUV which had a turning radius of
6 meters. This resulted in the Iver2 only getting within
1.4 meters of the desired task point on average. At worst,
the AUV only travelled to within 4.05 meters of one task
point. The paths generated by the “alternating algorithm”
improved this factor but at the expense of increasing the
mission time. The numerous loops created by the “alter-
nating algorithm” created complex missions for the Iver2
AUV and resulted in longer missions. The mission file
had 69 lines of code, reflecting the number of intermedi-
ate waypoints used to guide the Iver2 AUV to follow the
desired path. The proposed algorithm had 44 lines of code
and this reduced complexity resulted in shorter missions
with better performance.

−5 0 5 10 15 20 25 30 35
−5

0

5

10

15

20

25

30

35

(a)

(b)
task point

intermediate
waypoint

AUV’s actual
path

Figure 15: (a) Paths generated using the ‘alternating algo-
rithm’ from Matlab. (b) Field test results - Texp = 290 s and
Davg = 0.88 m.

7.3 Experiment 2 - Multiple Traveling Salesman
Problem

The second set of experiments were conducted on 3
datasets, each containing 20 task points generated ran-
domly and uniformly inside a square with side lengths of
35 meters. These task points were allocated to 3 vehicles,
similar to the multiple traveling salesmen problem. Note
that the experiments were conducted using only one Iver2
AUV. The three sequences generated from the different al-
gorithms were run one at a time.

The first method solves the multiple traveling sales-
man problem without considering the curvature con-
straints of the vehicle (Fig 17). The second method takes
the sequences generated by the first method and tries to
find feasible paths for each vehicle using the “alternating
algorithm” (Fig 18). The third method uses the proposed
algorithm which considers the curvature constraints of the
vehicle in generating the sequence for the vehicle (Fig 19).
Results from field tests are summarized in Table 4.

On average, the proposed algorithm reduced Tmax by
47% and reduced Davg by 34% over the “alternating al-
gorithm”. Again, the TSP solution was able to produce
results 39% faster than the proposed algorithm, but the av-

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

35

(a)

(b)
task point

intermediate
waypoint

AUV’s actual
path

Figure 16: (a) Paths generated using the proposed algorithm
from Matlab. (b) Field test results - Texp = 209 s and Davg =
0.42 m.

−5 0 5 10 15 20 25 30 35 40 45

−5

0

5

10

15

20

25

30

35

40

45 (a)

vehicle 1

vehicle 2
vehicle 3

(b)

(c) (d)

Figure 17: Paths generated for the TSP from Matlab. (b)
Field test results for vehicle 1. (c) Field test results for vehicle
2. (d) Field test results for vehicle 3.

erage distance to task point is 49% larger. In one instance,
the Iver2 AUV only got within 7.11 meteres from a task
point when using the TSP sequence of points. The largest
distance the AUV got to a task point was 3.53 meters us-
ing the “alternating algorithm” and 2.71 meters using the
proposed algorithm.

The proposed algorithm also performed better with re-
spect to overall mission time when compared to the “al-

−5 0 5 10 15 20 25 30 35 40 45

−5

0

5

10

15

20

25

30

35

40

45 (a)
vehicle 1

vehicle 2

vehicle 3

(b)

(c) (d)

Figure 18: (a) Paths generated using the “alternating algo-
rithm” from Matlab. (b) Field test results for vehicle 1. (c)
Field test results for vehicle 2. (d) Field test results for vehi-
cle 3.

−5 0 5 10 15 20 25 30 35 40 45

−5

0

5

10

15

20

25

30

35

40

45 (a)
vehicle 1

vehicle 2 vehicle 3

(b)

(c) (d)

Figure 19: (a) Paths generated using the proposed algorithm
from Matlab. (b) Field test results for vehicle 1. (c) Field test
results for vehicle 2. (d) Field test results for vehicle 3.

ternating algorithm” because paths were in general sim-
pler with less loops. The “alternating algorithm” is based
on the sequence of points generated by the solving the
Euclidean TSP which tends to schedule closely spaced
points in a successive order. Similar to simulation results
from Matlab, the Iver2 AUV was not able to drive from
one point to another point nearby without long maneuvers
when the orientation of the vehicle was not “ideal”. This
resulted in additional loops which are harder to execute on

Table 4: Field test results from three randomly generated
datasets of 20 task points for 3 vehicles.

Tmax (s) Tavg (s) Davg (m)
TSP 89.3 78.0 1.65

Alternating Algorithm 279 252 1.35
Proposed Algorithm 145 134 0.84

the Iver2 AUV than straight paths, leading to longer mis-
sion times.

Note that all experiments were conducted on the same
day in an attempt to test the different algorithms against
each other in similar conditions. However, ocean cur-
rents are constantly changing in magnitude and direction.
Before the mission, real-time information regarding the
ocean current along the central California coast was re-
trieved from the California Polytechnic State University’s
Marine Science Research and Education Pier. At 15:00
UTC, the ocean current was measured as 0.152 m/s at 224◦

(SW) and these values were used in the proposed algo-
rithm to create paths for the Iver2 AUV. Unfortunately, the
ocean currents had changed to 0.125 m/s at 216 ◦ (SW)
by the time the first experiment was conducted and con-
tinued changing throughout the course of the experiments.
Because all experiments were conducted on one AUV, ex-
periments were conducted sequentially and the ocean con-
ditions were not identical. Ideally, all test cases would be
run at the same time but since this was not possible, the
three methods were alternated such that experiments using
the same dataset were conducted as close as possible in
time.

8 CONCLUSION

This paper addresses the task allocation of closely
spaced targets for vehicles that follow paths of bounded
curvature in the presence of constant ocean currents. The
proposed algorithm is based on using a bidding scheme to
allocate tasks to multiple AUVs while using the Dubins set
to calculate the path costs for vehicles with non-holonomic
constraints. Bid costs are calculated using a lower order
model created from the 6-DOF non-linear model to reduce
the complexity of the algorithm.

The proposed algorithm was developed in Matlab and
tested in simulations. Simulations using the full non-linear
model of the REMUS AUV indicate that the proposed al-
gorithm yield better performance for dense sets of points
when compared to the “alternating algorithm”. It is shown
that solutions based on computing Euclidean tours that do
not have curvature constraints have extra loops when task
points are close together relative to the turning radius of
the vehicle.

To validate the proposed algorithm in a real world ap-

plication, the Iver2 AUV was used for testing at the Avila
Pier in California. Analysis of the log files indicated that
the proposed algorithm outperformed the “alternating al-
gorithm” with respect to the overall mission time as well
as the average distance to task point. The proposed algo-
rithm produced paths through a set of task points that were
feasible for the Iver2 AUV to track closely, even in the
presence of ocean currents.

References

[1] L. E. Dubins, “On curves of minimum length with a con-
straint on average curvature and with prescribed initial and
terminal position and tangents,” American J. Mathematics,
vol. 79, no. 3, pp. 497-516, Jul. 1957.

[2] T. Prestero, “Verification of a six-degree of freedom simu-
lation model for the REMUS autonomous underwater ve-
hicle,” Master’s thesis, Massachusetts Institute of Technol-
ogy, Cambridge, 1994.

[3] B. Korte and J. Vygen, Combinatorial Optimization: The-
ory and Algorithms, 3rd ed. Germany: Springer, 2006.

[4] B. P. Gerkey and M. J. Mataric, “A formal analysis and
taxonomy of task allocation in multi-robot systems,” Int. J.
Robotics Research, vol. 23, no. 9, pp. 939-954, 2004.

[5] L. E. Parker, “ALLIANCE: An Architecture for Fault Tol-
erant Multi-Robot Cooperation,” IEEE Trans. Robotics and
Automation, vol. 14, no. 2, pp. 220-240, 1998.

[6] R. Zlot, A. Stentz, M. B. Dias, and S. Thayer, “Multi-robot
exploration controlled by a market economy,” in Proc.
IEEE Conf. Robotics and Automation, vol.3, Washington,
DC, pp. 3016-3023, 2002.

[7] S. Sariel, T. Balch, and J. Stack, “Distributed Multi-AUV
Coordination in Naval Mine Countermeasure Missions,”
Georgia Institute of Technology, Atlanta, Georgia, 30332,
Tech. Rep. GIT-GVU-06-04, 2006.

[8] S. Jeyaraman et al., “Formalised Hybrid Control Scheme
for a UAV Group using Dubins Set and Model Checking,”
in Proc. IEEE Conf. Decision and Control, vol.4, Paradise
Island, Bahamas, pp.4299-4304, 2004.

[9] R. E. Davis, N. E. Leonard, and D. M. Fratantoni, “Routing
strategies for underwater gliders,” Deep-Sea Research II,
2008.

[10] J. A. Hartigan and M. A. Wong, “A K-Means Clustering
Algorithm,” Applied Statistics, vol. 28, no. 1, pp. 100-108,
1979.

[11] M. Lagoudakis, M. Berhault, S. Koenig, P. Keskinocak,
and A. Kleywegt, “Simple auctions with performance
guarantees for multi-robot task allocation,” in Proc. IEEE
Int. Conf. Intelligent Robots and Systems, vol. 1, pp. 698-
705, 2004.

[12] A. M. Shkel and V. Lumelsky, “Classification of the
Dubins set,” Robotics and Autonomous Systems, vol. 34,
no. 4, pp. 179-274, Mar. 2001.

[13] K. Savla, E. Frazzoli, and F. Bullo. “On the point-to-point
and traveling salesperson problems for Dubins vehicle.”
American Control Conference, Portland, OR, pp. 786-791,
Jun. 2005.

	INTRODUCTION
	BACKGROUND
	PROBLEM STATEMENT
	OVERVIEW OF PLANNER
	Clustering
	Auctioning
	Post Processing

	PATH COST CALCULATION
	Dubins Path
	AUV Dynamic Model
	Modification of Dubins Path
	Shortest Time Between Two Waypoints
	Arcs
	Straight line segments

	Path Time Calculation

	SIMULATION RESULTS
	Discussion
	System Performance

	EXPERIMENTAL RESULTS
	Control Architecture
	Experiment 1 - Traveling Salesman Problem
	Experiment 2 - Multiple Traveling Salesman Problem

	CONCLUSION

