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Abstract

Intelligent Planning and Assimilation of AUV-obtained Measurements within a

ROMS-based Ocean Modeling System

Benjamin Davini

Efforts to learn more about the oceans that surround us have increased dra-

matically as the technological ability to do so grows. Autonomous Underwater

Vehicles (AUVs) are one such technological advance. They allow for rapid deploy-

ment and can gather data quickly in places and ways that traditional measure-

ment systems (bouys, profilers, etc.) cannot. A ROMS-based data assimilation

method was developed that intelligently plans for and integrates AUV measure-

ments with the goal of minimizing model standard deviation. An algorithm

developed for this system is first described that optimizes paths for AUVs that

seeks to improve the model by gathering data in high-interest locations. This

algorithm and its effect on the ocean model are tested by comparing the results

of missions made with the algorithm and missions created by hand. The results

of the experiments demonstrate that the system is successful in improving the

ROMS ocean model. Also shown are results comparing optimized missions and

unoptimized missions.
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Chapter 1

Introduction

The area of robotics is a large field with many areas of research and even

more applications. Motion planning, mechatronics, localization, mapping, and

artificial intelligence are just a few of the many fields under the umbrella of

robotics. Robots are used in a variety of settings, from small domestic settings

(floor vacuums), to applications in the sky (i.e., unmanned aerial vehicles) and

underwater (i.e., autonomous underwater vehicles).

Autonomous Underwater Vehicles (AUVs) are natural successors to the manned

underwater exploration devices and tethered underwater robots still in common

use today. They offer a number of obvious advantages; most importantly, they re-

duce the need for manned underwater exploration, which can be a dangerous feat

considering temperature and pressure at depth. Additionally, they can explore

tighter spaces, move faster, and navigate autonomously. They are not strictly

better, of course - disadvantages include a limited underwater lifespan due to the

fact that the robot has to provide its own power and the higher likelihood of

losing the robot due to errant motion planning or other malfunctions. However,

if correctly configured and built, the advantages of such a system become great.
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One application of an AUV is in the rapid acquisition of ocean data - depth,

temperature, salinity, current speeds, etc. This data can be introduced into an

ocean model to reduce the error in these ocean models. Acquired data can also

be used for reports on global warming, marine habitats and global ecosystems.

This thesis seeks to explore the use of an AUV to most efficiently gather op-

timal data in order to reduce the standard deviation, or uncertainty, in an ocean

model of part of the California coast line. A system is described that can facili-

tate AUV data assimilation. An algorithm is developed that does a rapid off-line

search of the model to create a mission path that covers the most points of high-

est temperature standard deviation. This mission is executed by an AUV that

collects temperature data along the mission path. The reduction in temperature

standard deviation resulting from this data is compared to that gathered from

other missions that were developed without using the path planning algorithm.

Chapter 2 is devoted to background information related to AUVs and an ocean

modeling system called ROMS. Chapter 3 is an analysis of related works. Chapter

4 identifies the problem statement and offers a mathematical representation of the

problem. Chapter 5 proposes a solution to the problem. Chapter 6 discusses the

specific components used to solve the problem. Chapter 7 details the optimized

and unoptimized Iver2 AUV missions. Chapter 8 presents the data acquired

from each mission. Chapter 9 seeks to explain the data and how it relates to the

problem statement. Finally, Chapter 10 presents a conclusion and discussion of

future work.
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Chapter 2

Background

There are a number of different technologies and areas of research that are

relevant and symbiotic to the goal of this thesis. In this chapter, background

information on these technologies and fields of research is provided.

2.1 Regional Ocean Modeling System

The Regional Ocean Modeling System, or ROMS, is a mathematical model

capable of “simulating currents, ecosystems, biogeochemical cycles, and sediment

movement in various coastal regions” [11]. It is an instance of a larger class of

atmospheric and geophysical models, and one of many Oceanic General Circu-

lation Models (OCGMs) [22]. ROMS was primarily developed by researchers at

Rutgers University and UCLA in the late 1990s (www.myroms.org).

ROMS can model areas as large as the Earth’s oceans, or as small as a bay

(resolution from a few meters to hundreds of kilometers; scale from 10,000 km

down to a few hundred meters). Typically, the desired output of the models - the
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estimate of the ocean region - is a collection of the region’s state variables. These

variables are estimates of temperature, salinity, sea surface height, and velocity.

Besides an estimate of each of these variables, ROMS can also provide a measure

of uncertainty about these variables in the form of standard deviation.

ROMS utilizes a number of complex mathematical equations (the partial dif-

ferential equations of fluid dynamics) in combination with acquired data (via

satellite, stationary observatories, AUVs, etc.) to provide an estimate of ocean

parameters within the ocean region being modeled. While the partial differential

equations used in ROMS are beyond the scope of this thesis, a high-level overview

of ROMS will be given in 2.2.1. ROMS relies upon data assimilation, which is

explained below in Section 2.2.

2.2 Data assimilation

This thesis was motivated by the desire to provide a more accurate model

of ocean parameters (e.g., temperature, salinity, ocean current) in the bay near

Avila Beach, California. ROMS (described above), the system used to develop

this model, relies upon the equations of fluid dynamics to propagate the states

of the system forward and provide forecasts of the ocean in the future. It also

relies upon real, observational data, to provide initial conditions and corrections

to this model. The observational data is introduced and integrated into ROMS

through a process called data assimilation.

According to Ding Wang,

Ocean Data Assimilation refers to the quantitative estimation of ma-
rine fields of interest by melding data and dynamics in accord with
their specific uncertainties. [29]
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Data assimilation serves as a method to estimate the variables of an environ-

ment in question (e.g., salinity in sea water, or humidity in air, etc.) by combining

observational data with the equations or principles that govern the medium be-

ing studied. Data assimilation is used primarily in the field of geoscience - in

weather forecasting, atmospheric data analysis, or oceanographic data analysis.

However, nearly any geophysical fluid system governed by a system of equations

can benefit from data assimilation [28].

At a high level, data assimilation is an iterative process that in each iteration

takes observational data and combines it with a forecast (the current estimated

state of the model; e.g., one provided by ROMS). The combination of model data

and actual observational data produces an analysis, which provides the best guess

of the current system. The analysis is then fed back into the model, which will

then produce another forecast, against which additional observational data will

be compared. The ROMS specific use and implemenation of data assimilation is

described and illustrated in detail below.

2.2.1 Data assimilation in ROMS

Given a set of initial conditions, boundary conditions, and surface wind (a

forcing function), ROMS can give an estimate of the ocean system at some later

time T. It does this by moving the governing primitive equations forward in time.

Any real ocean data, or observations, acquired in the region between t = 0

and t = T will likely conflict with the model, no matter how “good” the model. In

an attempt to reconcile these differences, ROMS corrects itself by reducing a cost

function. This cost function is incremental; its solution (minimum) is discovered
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iteratively. Given a model

z = [T0 S0 u0 v0 · · · Tn Sn un vn] (2.1)

this cost function J is represented by the following equation:

J =
1

2
δzTD−1δz +

1

2
(Gδz− d)TR−1(Gδz− d) (2.2)

where δz is the control vector (initial condition increments), D is the background

error covariance matrix, R is the observation error covariance matrix, G is the

tangent linear model sampled at the observation points, and d = (y−H(xb(t)))

is the innovation vector that represents the difference in observations y and the

model at the times and locations of the observations [20].

J can be minimized by solving:

∂J/∂δz = D−1δz + GTR−1(Gδz− d) (2.3)

ROMS essentially makes “compromises” between the model and the obser-

vations in order to reach an equilibrium. J is the metric through which this

equilibrium is reached. The process can be illustrated as seen in Figure 2.1.

In the first step (Non-linear Forward Model), state variables z (e.g., temper-

ature) are propagated forward in time to T by numerically solving the ROMS

primitive equations. The data assimilation process is then started; this process is

repeated as many times as possible or until convergence, where J is minimized.

In the data assimilation process, a linearized version of the forward model, called

the tangent linear model, is run forward to T . This model is sampled at the same

6



Figure 2.1: ROMS data assimilation process

time and place as the actual observations. It is then run backwards in the adjoint

model to see what initial conditions would have resulted in the z at the end of

time T , as determined by iteration. The observations are compared to the sample

points at the appropriate time in the model. A method similar to least squares

is used to fit the model as it moves backwards. The adjoint model will arrive at

t = 0 with slightly different initial conditions than the previous tangent linear

model. These initial conditions are integrated into another tangent linear run;

the whole process (tangent linear + adjoint) is then repeated until convergence.
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2.3 Autonomous underwater vehicles

Autonomous underwater vehicles, or AUVs, are part of a larger group of

unmanned underwater vehicles, whose applications extend from commercial (e.g.,

oil and gas surveying), to military (e.g., mine countermeasures or anti-submarine

warfare) and scientific (e.g., oceanographic surveying) [7].

Figure 2.2: The REMUS, Iver2, and Slocum Glider AUVs

These underwater vehicles have come into existence in only the last 50 years or

so, and the designs of these vehicles are numerous. AUVs typically come equipped

with a number of sensors, communication equipment, navigational abilities, a

power system, and a propulsion system. For minimal drag underwater, AUVs are

often designed in the shape of a rounded cylinder, like a torpedo, or biomimetic

(life-like) so that they may blend in with other animals in their surroundings [6].

Examples of different types of AUVs can be seen in Figure 2.2.

Examples of scientific payloads (sensors) that may be found attached to an

underwater vehicle include but are not limited to Acoustic Doppler Current Pro-

filers (ADCPs) - a sonar used to measure current velocities [30] - temperature

and salinity sensors, and oxygen sensors [8]. Acoustic modems, global positioning

systems, digital compasses, 802.11 wireless transceivers, sonar transceivers, and

satellite phones are common technologies or instruments used to communicate

with and localize the AUV [5, 4]. The AUVs are often powered by rechargeable

8



batteries (lithium ion, alkaline, silver-zinc, etc. [3]), though non-rechargeable

batteries can be found in use for extended missions.

Underwater vehicles are primarily propelled in one of two ways. The most

common method is through one or more propellers located at or near the end of

the vehicle’s chassis. The propeller may be uncovered, as in most boats, or it may

be surrounded by a sheath like the Iver2 as in Figure 6.1 below. The propeller is

used for forward and backward motion; an AUV will often include fins to control

its roll, pitch, and yaw. Another method of propulsion, utilized by some AUVs

(e.g., [24]), is “gliding”. An underwater glider uses small changes in its buoyancy

in combination with its wings to convert vertical motion (floating and sinking in

the water) to horizontal movement. The key advantage of this type of propulsion

is the endurance provided (months of travel), which comes at the cost of speed

(.2-.4 m/s) [14]. (The Iver2 AUV used in the experiments for this thesis travels

at 1.3 m/s.)
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Chapter 3

Related work

This chapter discusses work and research in the area of marine data collection,

including the use of stationary observatories as well as AUVs. It also discusses

AUV path planning.

3.1 Marine data collection

The first global marine research exercise was undertaken by the British war-

ship HMS Challenger only 125 years ago; the expedition gathered temperature

data, water chemistry, bathymetry measurements, and other data from across

the world in its four year journey [10, 27]. Since then, the field of oceanogra-

phy has enjoyed a flux of interest - educational institutions, governments and

militaries, and corporations have invested time and money into being able to

better understand the ocean. The reasons for this interest are many-fold - com-

mercial, military, or just curiosity - but the overall goal is the same: a better

understanding of the ocean.
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As in any other empirical field, observations are required in order to better

understand the subject being studied. Oceanography, unlike many other sciences,

faces the problem of the sheer enormity of the space being studied. Though there

is continuous observation of the seas by satellite as well as thousands of free-

drifting profiling floats (buoys with scientific instrumentation), the ocean remains

under-sampled, including coastal regions where the water is shallow and ocean

movement faster [29, 18]. For this reason, it is important to take measurements

in places and/or ways that will offer the best information. Best information, of

course, is subjective to the goal that one is trying to accomplish.

For this thesis, the best information are the ocean temperature measurements

that reduce the variability in the ocean model discussed in Section 6.1.7. This

section discusses related work in the area of marine data collection.

3.1.1 Optimizing fixed observational assets in a coastal

observatory

In [16], Frolov et al. discuss the optimal placement of fixed (stationary)

observatories in the Columbia River estuary and plume. Utilizing a statistical

method called the Best Linear Unbiased Estimator (BLUE), they propose an

optimal experiment design method, and then apply this method to design an

optimal observational array for the area. They verified their proposed array

designs by answering questions regarding theoretical limitations and the model

of the Columbia River estuary and plume. In their conclusion, they showed that

they could improve data assimilation accuracy with the appropriate placement

of a single salinity sensor.

11



3.1.2 Autonomous Ocean Sampling Network

In Summer 2003, researchers met in Monterey Bay, CA with the obervational

goal of developing “a capability to coordinate a diverse collection of manned and

unmanned observing platforms within the context of data-assimilating models

to form a powerful and efficient observing system. . . ” [13]. Dozens of AUVs,

research vessels, satellites, and moorings collected temperature, nitrate, chloro-

phyll, particulates, and salinity data from Monterey Bay. The emphasis of the

project was on adaptive sampling so as to provide data for ROMS forecasting

models.

3.2 AUV path planning

Research in path planning, localization, navigation, dynamics, and kinemat-

ics for AUVs is not uncommon. Path planning for AUVs is unique from path

planning for traditional wheeled robots in that an AUV’s environment - a body

of water - is explicitly three-dimensional. The water environment in which they

operate also introduces forces - i.e., currents - onto the robot that wheeled robots

will almost never experience. Water also makes communication with a robot low

bandwidth at the very least - offloading path planning coordination to a more

powerful computer becomes a difficult task that terrestrial robots do not have

to worry about. In short, path planning for AUVs is a significantly different

problem from traditional methods. This section discusses approaches that take

on the task of path planning for AUVs.

In his Ph.D thesis, Wang desires to collect ocean data in order to reduce

underwater acoustic prediction uncertainties [29]. He proposes a solution to op-

12



timize “the location of in-situ measurements in an adaptive manner.” Like the

experiments in this thesis, an AUV follows a predetermined path created by

searching a simplified graph in order to collect in-situ conductivity, temperature,

and depth data. Additional work is done by allowing the AUV to adaptively

generate its path on-board using Dynamic Programming.

In [23], Pêtrès et al. acknowledge the low bandwidth and current-prone sit-

uation of an AUV. They present an algorithm called Fast-Marching* that can

efficiently extract a continuous 2-D path from a discrete, gridded environment.

This algorithm takes advantage of the efficiency of A* search and the accuracy

of an image processing algorithm to discover a continuous path in a discretized

world. They also discuss a multiresolution solution in which the explored region

is triangulated.

Lastly, there are a number of algorithms that can work or be extended to work

independent of the medium in which the robot operates. Alvarez et al. [2] discuss

the use of genetic algorithms to find low-energy paths for AUVs. The Focussed

D* algorithm [26] allows for dynamic (in-route) replanning as more information

about the environment is gathered. Multiresolution grids [9], potential fields [17],

and probabalistic methods have also been used for robot path planning [25].
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Chapter 4

Problem statement

The goal of this thesis is to design a ROMS-based ocean modeling system

that intelligently plans for and assimilates AUV measurements in attempts to

minimize the standard deviation of the assimilated ROMS model.

4.1 Problem definition

The problem - the minimization of standard deviation - and the formal defi-

nitions of the problem space are illustrated in detail in this section.

Let grid L be the three-dimensional lattice of nodes spanning the coastal area

of interest:

L = {χi,j,k | i ε [0, I], j ε [0, J ], k ε [0, K]} (4.1)

Each node χi,j,k in the lattice is specified by its 3-D location within the georefer-
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enced global coordinate frame:

χi,j,k = [xi,j,k, yi,j,k, zi,j,k] (4.2)

where x is longitude, y is latitude, and z is depth.

The model M is defined as the ocean parameter estimates for each node in

the lattice grid L:

M = {mi,j,k| i ε [0, I], j ε [0, J ], k ε [0, K]} (4.3)

mi,j,k = [χi,j,k, Si,j,k, σS, Ti,j,k, σT , ui,j,k, σu, vi,j,k, σv] (4.4)

where χ is the three-dimensional point in Equation 4.2, and S, T , u, and v are

the salinity, temperature, and latitudinal and longitudinal current velocities at

χ, respectively. The σ values represent the standard deviation of each S, T , u,

or v value at χ.

The cost function is then:

JL(χ) =
∑
χi ε L

σT (χi) (4.5)

That is, JL is the sum of the temperature standard deviation over all points in

the domain. This problem can be formally written as:

min
M

JL(χ) (4.6)
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Chapter 5

Proposed solution

Standard deviation is one indicator of uncertainty. In this thesis, it is hy-

pothesized that the cost function in Equation 4.5 above can be minimized by

collecting temperature data at points at or near the surface where standard devi-

ation is highest in the original model. Further, gathering temperature data from

areas of higher standard deviation in the original model will most reduce the

standard deviation in the assimilated model. The model mentioned hereafter has

been reduced to a two-dimensional horizontal cross-section of the original model

taken at the surface (so as to prevent the need for the Iver2 to dive to unsafe

depths as well as making paths easier to develop). A system to address and test

this solution is proposed here. A formal definition of the proposed solution is then

described. Finally, an algorithm used to create optimal paths to maximize the

acquisition of data in high temperature standard deviation locations is presented.

5.1 System diagram

An illustration of the proposed system is seen below in Figure 5.1.
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Figure 5.1: System diagram

In the first step of the system, initial conditions are introduced into ROMS’

prediction component. Estimates of the resulting ocean model’s standard devia-

tions (σB, or background) are given to a path planner (described in Section 5.3

below). An AUV path is produced (X) and downloaded to the Iver2 AUV. The

AUV is then deployed to gather temperature data (T ) along the waypoints of

that path. The temperature data is then post-processed so that it can be as-

similated into the ROMS model. Finally, a new estimation of the the model’s

standard deviation is produced (σA, or analysis). Ideally, σA will be smaller than

σB, indicating a reduction in standard deviation. To note, σA can be fed into

ROMS prediction component (as shown in Figure 5.1) and the entire procedure

repeated.
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5.2 Solution definition

The goal of reducing the standard deviation of a model M by minimizing the

cost function JL is thought to be accomplished by gathering data where the stan-

dard deviation is greatest. This is formally described here, using nomenclature

from the problem statement above.

The AUV’s trajectory is defined by the sequence of lattice points visited along

its path of length n:

X = [χ0 χ1 χ2 · · · χn] (5.1)

The problem is to construct a trajectory that visits the lattice points of L,

where temperature standard deviation, σT , is greatest in M . Hence the cost

function to “maximize” is:

J(X) =
n∑
i=0

σT (χn) (5.2)

This problem can be formally written as:

max
X

J(X) (5.3)

subject to:

∀ i ε χi,j,k : i = 0 (5.4)
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X l ε L ∀ l ε [0, n] (5.5)

|X t −X t−1| = Wm (5.6)

where | • | is the Euclidean distance function, and Wm is the constant distance

between consecutive lattice nodes in L.

More succinctly, the goal is to maximize J(X) by searching model M to

identify a path X on the surface (i = 0) that contains consecutive adjacent points

χ0
i,j,k · · ·χni,j,k whose sum of σT (χt) (temperature standard deviation) is greater

than any other path X.

5.3 Path planner

The Iver2 has limited computing capabilities and it is not computationally

realistic to do an exhaustive search on a high-resolution (128 x 128) grid for long

range paths. However, if the resolution of the model is reduced below a certain

threshold, an exhaustive search becomes trivial.

A hybrid algorithm that combines model resolution-reduction techniques and

a standard breadth-first algorithm was developed and used to plan paths for the

Iver2. The algorithm was developed with the idea that it could eventually be

adapted for use on the robot and utilized in real-time.

The path planning algorithm addresses the problem statement (Equations

4.5 and 4.6) by looking at every path returned by the breadth-first algorithm,

thereby ensuring that the path with the greatest J(X) (maximizing 5.2) is found.
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The resolution reduction algorithm is introduced in Section 5.3.1, and the

custom breadth-first algorithm in Section 5.3.2. They are combined into the path

planning algorithm in Section 5.3.3. Visual examples of the resolution reduction

are given in Section 5.3.4.

5.3.1 Resolution-reduction algorithm

This algorithm takes a square, two-dimensional model M1 whose sides are of

length 2n and returns another square model M2 whose sides are of length 2n−1.

The data in each adjacent 2 × 2 square in the original model is averaged and

assigned to the respective grid cell in the lower resolution model. A pseudocode

implementation of the algorithm can be found in Algorithm 1 below.

Algorithm 1 ReduceResolution(model)

Require: A model M1 whose dimensions are a power of 2
1: M2 = An empty (M1.edgeLength/2×M1.edgeLength/2) array
2: for newRowIndex in M2.edgeLength do
3: for newColIndex in M2.edgeLength do
4: newV al = 0
5: for oldRowIndex in range(newRowIndex, newRowIndex+1) do
6: for oldColIndex in range(newColIndex, newColIndex+1) do
7: newV al+ = M1[oldRowIndex][oldColIndex]
8: end for
9: end for
10: M2[newRowIndex][newColIndex] = newV al/4
11: end for
12: end for
13: return M2
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5.3.2 Breadth-first algorithm

The algorithm described in Algorithm 2 is an adaptation of the classical

breadth-first search algorithm [19, 35]. The algorithm searches any 2-D model

and returns all paths connecting the start and end points, given a distance con-

straint. This algorithm forces the distance contraint to be exhausted - that is,

no paths between the start and end points that are shorter (or longer) than the

maximum distance are accepted. The algorithm will return without any paths if

the search space is too large.
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Algorithm 2 BreadthF irstSearch(model, start, end,maxDistance)

Require: start and end points whose coordinates are within model M1

Require: A 2-D model M1

Require: A maxDistance that the robot can travel
1: GRID PT RES = distance between any two adjacent points
2: paths = empty List() {a list to hold all final paths}
3: queue = empty Queue()
4: startNode = Node(start, distLeft = maxDistance, parent = None)
5: queue.push(startNode)
6: while queue not empty do
7: node = queue.next()
8: if node.numParents > MAX NUM PARENTS then
9: return {search space is too large (grid resolution too high)}
10: end if
11: adjacentPoints = getAdjacentPoints(node,M1)
12: for legalP t in adjacentPoints do
13: if legalP t 6= end and node.pathContains(legalP t) then
14: continue
15: end if
16: cNode = newNode(legalP t) {create a child node}
17: cNode.error = node.error + errorAt(legalP t)
18: cNode.distLeft = node.distLeft - distBtwn(legalP t, node.pt)
19: cNode.parent = node
20: if legalP t == end then
21: if (cNode.distTo−maxDistance) ≤ GRID PT RES then
22: paths.append(cNode)
23: end if
24: else {can still visit more points}
25: queue.push(cNode)
26: end if
27: end for
28: end while
29: return paths

22



5.3.3 Path planning algorithm

The two supporting algorithms in Sections 5.3.1 and 5.3.2 above are combined

in this algorithm to produce a hybrid algorithm that allows for rapid, optimal

path planning.

Algorithm 3 PathP lanningAlgorithm(start, end,model,maxDistance)

Require: start and end points whose coordinates are within model M1

Require: A model M1 whose dimensions are a power of 2
Require: A maxDistance that the robot can travel
1: origModel = M1 {keep a copy of the original model}
2: while M1 cannot be searched exhaustively do
3: M1 = ReduceResolution(M1)
4: end while
5: allPaths = BreadthF irstSearch(M1, start, end,maxDistance)
6: bestPath = findBestPath(allPaths)
{increase the model resolution until a path is found from start to end at the
highest resolution}

7: while M1 not at highest resolution do
8: M1 = origModel
9: while a higher-res path can’t be found between points in bestPath do
10: M1 = ReduceResolution(M1)
11: end while
12: bestHigherResPath = empty List()
13: for each pt in bestPath do
14: maxDistance = distBtwn(pt, nextP t)
15: allPaths = BreadthF irstSearch(M1, pt, nextP t,maxDistance)
16: bestHigherResPath.append(findBestPath(allPaths))
17: end for
18: bestPath = bestHigherResPath
19: end while
20: return bestPath

This algorithm takes as a parameter a square 2-D, high resolution model,

start and end points, and a maximum distance that the robot can travel. The

model is reduced in resolution until it can be searched quickly by a breadth-first

algorithm. Once reduced appropriately, a number of low-resolution paths are

found in seconds. A simple function identifies the best of these paths by choosing
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the one that has maximized the cost function J(X), as in Equation 4.5.

The algorithm then builds the final path by creating higher-resolution paths

between adjacent lower-resolution points. The above process is essentially re-

peated with a smaller maximum distance until a path has been found at the

highest resolution. The maxDistance assignment above can be increased by a

multiplier to allow for “play” in the path creation between the lower resolution

points.
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5.3.4 Examples

The figures below are visualizations of the model that the path planning

algorithm “sees” at various resolutions. Figure 5.2 shows the model at its highest

resolution - a 128 x 128 model. A full breadth-first search of this model would

take a significant amount of time on a typical desktop computer. Figures 5.3

and 5.4 show 32- and 16- square models, respectively. These models are searched

much more easily.

Figure 5.2: High resolution ROMS model - 128 x 128
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Figure 5.3: Lower resolution ROMS model - 32 x 32
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Figure 5.4: Lowest resolution ROMS model - 16 x 16
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Chapter 6

Implementation

A path planning algorithm was developed as part of a solution to the problem

statement. Though this algorithm is critical in exploring the differences between

optimized and unoptimized missions, it cannot act alone. This section discusses

the implementation details of the experiment and system, including the hardware

and software components necessary for its completion.

6.1 Components

There were a number of hardware and software components critical to the

completion of this experiment. The Iver2 AUV and attached temperature sensor

were used to gather the in situ temperature measurements used as inputs to the

ROMS models; a laptop computer and mobile wireless access point (a router)

were required to communicate with the Iver2. The path planning algorithm and

visualizations thereof were developed in Python, and proprietary OceanServer

software was used to create and deploy these missions. ROMS was used to as-

similate the temperature data and produce a model that can be used by the path
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planning algorithm. This section discusses each component in more detail.

6.1.1 Iver2 AUV

The Iver2 AUV is the vehicle through which temperature measurements in

San Luis Obispo Bay were taken. The Iver2 followed a pre-determined trajectory

- made up of a number of GPS waypoints - created before each mission, gathering

temperature measurements between and at each of these waypoints.

The Iver2 is designed and manufactured by OceanServer Technology, Inc. It

is a a smaller (approximately 20 kg), 1-person-portable AUV made for rapid de-

ployment and everyday use. It has a claimed battery life of 24 hours at 2.5 knots.

The Iver2 is equipped with a number of integrated sensors (depth, pressure, com-

pass, etc.) and can easily be fitted with additional sensors. For the experiments

in this thesis, the Iver2 was equipped with a temperature sensor. An image of

Cal Poly’s Iver2 AUV can be seen in Figure 6.1.

The Iver2’s processing power is supported by two embedded AMD Geode

processors running on two different mini-ITX boards. The primary processor

runs an installation of Windows XP Embedded specially suited for the Iver2’s

hardware, while the secondary processor runs a generic installation of Windows

XP. The primary processor is only to be used for control and mission execution

via OceanServer’s Underwater Vehicle Console; user programs that access the

Iver2’s motor, fins, or sensors should be placed on the secondary processor. The

temperature sensor was soldered to the serial port pins on the secondary processor

so that the information could be accessed through a program on the secondary

processor.
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Figure 6.1: Cal Poly’s Iver2 AUV

30



6.1.2 Temperature sensor

An Airmar T80 NMEA 0183 temperature sensor was attached to the Iver2

to gather temperature data. The small sensor unit sits on the outside of the

Iver2 and connects to an interface box on the inside of the Iver2 that outputs

NMEA temperature data. This data is transmitted via a serial link to the Iver2’s

secondary processor once per second at 4800 baud. The temperature sensor oper-

ates in waters between 0 and 30 degrees Celcius, is accurate to within 0.2 degrees

[1], and has a resolution of .01 degrees. The temperature sensor is magnified in

Figure 6.1 above.

6.1.3 Laptop and wireless access point

The laptop and access point are necessary to communicate with the Iver2, in

or out of the water. The access point creates a wireless network called “IVER” to

which the Iver2 and laptop connect over an 802.11g connection. The laptop then

uses Windows’ Remote Desktop to log in to the Iver2’s desktop. Once logged in

to the Iver2, a user can manually control the Iver2’s direction and speed. The

user can also copy a mission file that contains a collection of GPS coordinates,

depths, and speeds desired for an autonomous mission; they can then send the

Iver2 on an autonomous mission.

6.1.4 Python modules

The Python modules developed for this thesis provide MATLAB-like visu-

alization of the ROMS models as well as the algorithms used to create mission

trajectories (paths) for the Iver2. This was accomplished by reading ROMS data
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into a two-dimensional Map object that can be easily searched using traditional

graph search algorithms. See Section 5.3 for an in-depth description of the algo-

rithms used for this experiment.

6.1.5 VectorMap software

VectorMap is a software program provided by OceanServer that provides a

GUI through which a user can create missions for the Iver2 AUV. It allows the

user to overlay GPS waypoints on a National Oceanic and Atmospheric Admin-

istration (NOAA) chart that contains bathymetric and topological data of the

coastal area that will be travelled by the Iver2. VectorMap also allows the user

to specify speed, depth, and heading of the Iver2 at each of the waypoints. Once

the waypoints have been entered, VectorMap saves the information to a .mis file

in a format that can be consumed by the Iver2’s Underwater Vehicle Console,

explained below. A screenshot of the VectorMap software can be seen in Figure

6.2.

6.1.6 Underwater Vehicle Console software

The Underwater Vehicle Console, or UVC, is an OceanServer program that

operates on the Iver2’s primary processing board. The UVC controls the motors

and communicates with a variety of peripherals via serial communication. It has

two modes - manual control and mission control. In manual control, the user can

control the Iver2’s speed and direction through a graphical interface. In mission

mode, the Iver2 autonomously navigates to waypoints specified in a .mis file.
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Figure 6.2: VectorMap mission planning software

6.1.7 ROMS San Luis Obispo Bay model

San Luis Obispo Bay, located about 11 miles southwest of Cal Poly, is the

approximate center of the 29.2 x 38.4 kilometer (146 x 192 grid; points are

200m apart) ROMS model used in this experiment. The model was set up

by Dr. Paul Choboter, a mathematics professor at Cal Poly and member of

Cal Poly’s Center for Coastal Marine Science. ROMS was run without data

assimilation to simulate the state of the ocean for the time period of October

and November 2009. It was configured to run on a rectangular area with co-

ordinates (34.866407°N, 120.872460°W) at the bottom left corner of the model,

and (35.271988°N, 120.684721°W) at the upper right corner. The model was

forced with wind stress from NOAA/NCDC blended 6-hourly 0.25-degree sea

surface wind stress (http://www.ncdc.noaa.gov/oa/rsad/blendedseawinds.

html). Initial and boundary conditions were taken from HYCOM 1/12 degree
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global hindcast reanalysis (http://www.hycom.org/, http://hycom.coaps.fsu.

edu:8080/thredds/dodsC/glb_analysis.html).

That two month run was used to calculate the standard deviation of temper-

ature field, shown in Figure 6.3 below. The temperature standard deviation was

used by the path planning algorithm in Section 5.3 to develop paths that opti-

mized the distance travelled. Temperature data acquired from both optimized

and unoptimized missions were assimilated into the original model to produce

new models that are discusssed in the results (Chapter 8).

Figure 6.3: San Luis Obispo Bay model - Temperature standard devi-
ation values from September - October 2009
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Chapter 7

Experiments

The goal of the experiment was to use the Iver2 AUV and attached temper-

ature sensor to gather temperature data in parts of San Luis Obispo Bay. The

mission waypoints visited by the Iver2 were chosen at random in the first week

(unoptimized missions), and by the path planning algorithm above in the sec-

ond week (optimized missions). In both weeks, two shorter missions started and

ended at the Cal Poly Pier, while a third, longer mission was launched from a

boat off of the Pismo Beach dunes. This chapter describes the procedure used to

develop optimized and unoptimized missions in order to test my problem state-

ment. It discusses the nomenclature used throughout the rest of this paper and

provides visualizations of the desired optimized and unoptimized missions.

7.1 Nomenclature and quick reference

For brevity, missions will be referred to as O# and U# for optimized and un-

optimized missions, respectively. Table 7.1 below shows the date of each mission

and the abbreviated name to which it will be referred.
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Date Mission
Abbreviation

Unoptimized
Nov 8 U1
Nov 10 U2
Nov 11 U3

Optimized
Nov 16 O1
Nov 17 O2
Nov 23 O3

Table 7.1: Mission name abbreviations

A quick comparison of the distance, depths, and speeds of the missions can

be seen in Table 7.2 below:

Mission Distance
(m)

Max
Depth (f)

Submerged
speed
(knots)

Surface
speed
(knots)

U1 11500 0 N/A 2.5
U2 23200 15 4 2.5
U3 12700 15 4 2.5
O1 13200 15 4 2.5
O2 19700 10 3.5 2.5
O3 25800 10 3.5 2.5

Table 7.2: Mission dates, lengths, depths, and speeds
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7.2 Week 1: Unoptimized missions

The unoptimized missions were executed on November 8, 10, and 11, 2010

(U1, U2, U3, respectively). Mission U2 was started from the boat approximately

11.5 km south of the Cal Poly Pier. The other two missions were started and

finished at the pier.

The missions were developed by choosing a random but safe (i.e., away from

shore, known kelp beds, and shallow areas) set of points in MATLAB and then

porting these waypoints to VectorMap. An image of the original temperature

deviation model has been overlayed with the unoptimized missions in Figure 7.1

below:
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Figure 7.1: Unoptimized missions overlayed on the original tempera-
ture deviation model
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7.3 Week 2: Optimized missions

The optimized missions were executed on November 16, 17, and 23, 2010 (O1,

O2, O3 respectively). Mission O3 started from the boat near the start of U2. The

other two were started and finished at the pier.

The optimized missions were developed by running the path planning algo-

rithm in Section 5.3.3 on the 2-D standard deviation model in Figure 6.3 above.

Three different maximum distance parameters were supplied to the algorithm so

that the missions would not be too similar, just as the unoptimized missions were

different.

An image of the original temperature deviation model has been overlayed

with the optimized missions in Figure 7.2 below:
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Figure 7.2: Optimized missions overlayed on the original temperature
deviation model
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Chapter 8

Results

Temperature data acquired from the experiments were grouped into a number

of data points that were assimilated into ROMS to produce new San Luis Obispo

Bay simulations with a new estimate of the temperature standard deviation.

For the purposes of the analysis, it is important that the results of the exper-

iment are seen from a few different perspectives. As such, the results have been

divided into a few different sections. Section 8.1 discusses the data assimilated

simulations as they compare to the original model. Section 8.2 compares the

results of optimized and unoptimized pier missions, while 8.3 compares the boat

missions.

It should be noted that data from U2 has been compiled in three different ways

(U2, U2.avg63, and U2.mid63) so as to allow for different comparisons against

O3, which was cut short due to a mechanical failure on the Iver2.
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8.1 Single-day effects of data on original model

The results of the experiment are detailed in the tables and figures below.

Table 8.1 below compiles the most relevant data from each mission. The column

names are explained after the table.

Mission Data
Range
(m)

Data
Points

J(X) JL(χ) JL(χ)orig −
JL(χ)final

%
Reduc-
tion

Original - - - 18083 - -
U1 8342 200 165 15041 3041 16.82%
U2 16293 276 233 14537 3546 19.61%
U2.avg63 15167 63 53 15010 3073 16.99%
U2.mid63 3287 63 53 15633 2450 13.55%
U3 11948 200 163 15115 2968 16.41%
O1 12488 200 164 14616 3467 19.17%
O2 13276 200 167 14503 3579 19.79%
O3 4439 200 58 16065 2018 11.16%

Table 8.1: Individual mission results

• Mission The identifier for the mission date, and whether it is optimized or

unoptimized as in Table 7.1 above.

• Data Range The sum of the distances between each data point in the

mission data. Some data from each mission was stripped at the beginning

and/or end of each to facilitate ROMS processing. This value will be less

than or equal to the planned mission lengths in Table 7.2.

• Data Points The number of data points in the Data Range; data from

these points were assimilated into ROMS.

• J(X) This value represents the sum of the standard deviation values at

each Data Point from the original ROMS model as in Equation 5.2.
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• JL(χ) This value represents the sum of all non-land standard deviation

values in the original or assimilated model as in Equation 4.5.

• JL(χ)orig − JL(χ)final This value is the difference in total temperature

standard deviation between the original model and the assimilated model.

Larger values in this column are better.

• % Reduction This represents the percentage reduction in standard devia-

tion from the original model. Equivalent to (JL(χ)orig−JL(χ)final)/JL(χ)orig.

U2.avg63 and U2.mid63 results are reductions of the U2 data made to allow

for additional comparisons to O3. For U2.avg63, only 63 data points were taken

across the length of the original U2, whose original 276 data points were averaged.

This data was then assimilated to produce the results in the table. U2.mid63

consisted of data from 63 consecutive points from the middle of the original U2

data.

Figures 8.1, 8.2, 8.3, 8.4, and 8.5 show the effects of the unoptimized trajec-

tories on the temperature standard deviation of the San Luis Obispo Bay model.

Figures 8.6, 8.7, and 8.8 show the effects of the optimized trajectories on the tem-

perature standard deviation in San Luis Obispo Bay. In all figures, the section

of the mission from which the temperature data was actually used (Data Range

in Table tab:results-single-day-error above) is overlayed on the model. Note that

the standard deviation scale for these models are the same as in 6.3 above.
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Figure 8.1: Temperature deviation after data assimilated from U1
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Figure 8.2: Temperature deviation after data assimilated from mission
U2
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Figure 8.3: Temperature deviation after data assimilated from
U2.avg63
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Figure 8.4: Temperature deviation after data assimilated from
U2.mid63
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Figure 8.5: Temperature deviation after data assimilated from U3
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Figure 8.6: Temperature deviation after data assimilated from O1
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Figure 8.7: Temperature deviation after data assimilated from O2
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Figure 8.8: Temperature deviation after data assimilated from O3
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The dark blue areas near the middle of each model show that the estimated

standard deviation in that region is at or near zero. This means that if real

temperature data were to be taken from that area in the time frame for which

the model was made, it would be close or equal to the data in the model at the

same data point.

8.1.1 Statistical results

Figure 8.9 below shows a scatter plot comparing the sum of standard deviation

values (J(X) in Table 8.1 above) along each mission from the original model to

the percent reduction in standard deviation of the original model. The best-fit

line, along with equation and correlation coefficient (r) are shown as well.
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Figure 8.9: Scatter plot comparing the sum of standard deviation val-
ues along each mission path (x-axis) to the percent reduction in stan-
dard deviation of the original model (y-axis)
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8.2 Comparison of missions launched from the

pier

Visual and tabular results show that in both cases, the optimized missions

from the pier decrease the model’s standard deviation more than the unopti-

mized missions if measured over the entire model. However, the reduction was

not uniformly better - in certain areas, the reduction in deviation from the un-

optimized missions was greater than the optimized mission. Figures 8.10 and

8.11 below show these differences. In 8.10, the deviation model of U1 (Figure

8.1) was subtracted from O1 (Figure 8.6). The light-green-to-dark-blue colors

show a negative difference - areas where the O1 model’s deviation is smaller than

that of U1. Likewise, the greenish-yellow-to-dark red colors identify places where

deviation in the U1 model is smaller than O1. The black contour line simply

offers a visual aid to identify the boundary between negative and positive values.

Figure 8.11 is a comparison of O2 and U3; the color scale is the same as in 8.10.

Table 8.2 provides a numerical look at the data from Figures 8.10 and 8.11.

The columns show the number of points where the standard deviation was reduced

more by the optimized and unoptimized missions. These numbers are equivalent

to the number of points inside or outside the contour lines in the figures below.

Missions # points
where
optimized > 0

# points
where
optimized < 0

Ratio

U1 vs O1 16233 5522 2.94
U3 vs O2 19186 2585 7.42

Table 8.2: Deviation difference model comparisons
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Figure 8.10: Standard deviation difference model - O1 vs U1
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Figure 8.11: Standard deviation difference model - O2 vs U3
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8.3 Comparison of missions launched from boat

Unlike the pier missions, it was the unoptimized mission that reduced the

model’s standard deviation more than its optimized counterpart. Unfortunately,

the optimized mission completed less than 10% of the intended mission. Because

of this, the unoptimized mission data was additionally manipulated such that

closer comparisons could be made to the optimized mission in terms of mission

length and number of data points used. Table 8.3 details these comparisons as

Table 8.2 did for the pier missions above.

Missions # points
where
optimized > 0

# points
where
optimized < 0

Ratio

U2 vs O3 27 21744 805.33
U2.avg63 vs O3 156 21615 138.56
U2.mid63 vs O3 4396 17375 3.95

Table 8.3: Comparison of missions started from boat

Figures 8.12, 8.13, and 8.14 show the standard deviation difference models

between O3 and U2, U2.avg63, and U2.mid63, respectively. Like above, each of

the assimilated models of U2 data are subtracted from the assimilated O3 model

and plotted on the same scale. The black line indicates the zero-contour.
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Figure 8.12: Standard deviation difference model: O3 - U2, original
data
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Figure 8.13: Standard deviation difference model: O3 - U2, points
spread across range of U2 mission
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Figure 8.14: Standard deviation difference model: O3 - U2, 63 points
in the middle of the U2 mission
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Chapter 9

Analysis

The results of the experiment are many and provide for an interesting anal-

ysis. At a glance, the data does not appear entirely consistent. As one may

expect, the optimized missions from the pier decreased the standard deviation of

the assimilated model more than their unoptimized counterparts. However, the

unoptimized U2 boat mission did better than the optimized O3 boat mission, no

matter how the results (three interpretations) were compared. This section takes

a closer look at the results.

9.1 Analysis of the pier missions

Both optimized pier missions reduced the standard deviation of the assim-

ilated San Luis Obispo Bay model significantly more than their unoptimized

counterparts. In comparing the shortest of optimized and unoptimized missions,

O1 reduces the standard deviation 19.17%, 2.35% more than U1. In the longer

missions, data acquired O2 reduces the deviation 19.79%, 3.38% more than U3.

Even comparing the two missions whose distances are most similar - U3 and O1,
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with 11948 meters of data and 12488 meters, respectively - the optimized mission

is 2.76% better than the unoptimized mission.

It is interesting to note that even though the U3 mission is 3606 meters, or

43% longer than the U1 mission, it actually reduced the standard deviation of

the original model less than U1. This suggests that the U1 mission visited points

that in the original model were of higher standard deviation and therefore “more

valuable” to the assimilated ROMS model than the longer mission.

The sums of the standard deviations from the original model also provide

some interesting results (column J(X) from Table 8.1). The sum of the 200 data

points along U1’s path from the original model (165) is actually higher than O1

(164). It was hypothesized in the problem statement that data gathered from

points of higher standard deviation in the original model would reduce more

effectively the standard deviation in the assimilated model. O1, though, reduced

the deviation in the resulting model by 2.35% more than U1. This fact strongly

suggests that it is more than just standard deviation that determines the output

of a model.

9.2 Analysis of the boat missions

It is important to remember that O3 completed less than 10% of its mission,

so the analyses offered in this section should be read with that in mind.

In this test, the unoptimized mission performed better than the optimized

mission. Data from the U2 mission improved the resulting ROMS model signif-

icantly more than the O3 data - it was 8.45% better. It is necessary to note,

however, that the distance and number of points used in calculating the model
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was significantly larger for U2 than O3. There were 276 points over the 16293

meters for U2, while O3 only had 63 points over 4439 meters; this comparison

could probably be considered not fair.

To make the comparison even in terms of data points, the U2 data was aver-

aged to 63 points across the length of the data. While O3 did better than in the

above comparison, it was still 5.83% worse than U2.avg63.

The data from U2 was adjusted once more so that it had both the same num-

ber of points and a similar distance to the O3 data (U2.mid63). The U2.mid63

data once again reduced the deviation in the resulting model more than O3. This

set of U2 data reduced the deviation 2.39% more than O3.

As in the third paragraph of Section 9.1 above, the sums of temperature stan-

dard deviation from the original model were inverted from the sums of tempera-

ture standard deviation in the resulting models. In U2.mid63, the sum of stan-

dard deviation along the 63 points of the original model (J(X)) were 53, while for

O3, they were 58. From the hypothesis, O3 should have outperformed U2.mid63

because it was significantly higher. Data showed, of course, that U2.mid63 was

2.39% better when comparing the assimilated models. This again suggests that

more than the original model’s standard deviation should be taken into account

when developing missions.

9.3 Overall analysis

Though the results may not be consistent, one thing is very clear: the acqui-

sition of any data helps to reduce the standard deviation, or uncertainty, of an

assimilated San Luis Obispo Bay ROMS model. This is desired and expected,
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but it is not the only conclusion that can be inferred from the data.

9.3.1 Diminishing returns

As Table 8.1 notes, even the shortest and “least effective” mission (O3) re-

duced the standard deviation more than 10%. At the other end, the “most ef-

fective” mission (O2; optimized) reduced the deviation nearly 20%. The longest

and second “most effective” mission (U2) reduced deviation 19.61%. These facts

suggest that “more (data) is better”, but this relationship is not linear - there

is to some extent diminishing returns with regards to the ratio of the sum of

temperature standard deviation from the original model (JL(χ)orig) to standard

deviation reduction in the resulting model (JL(χ)final), as shown in Figure 8.9.

The data acquired from O3 only covered 4439 meters while O2 data covered

13276 meters - 3 times more distance. O3’s model was 11.16% better than the

original model, while O2 was 19.79% better. At three times the distance coverage

of the O3 model, O2 only improved the model deviation by 1.77 times over O3.

This fact suggests that the distance travelled-to-deviation reduction ratio would

look asymptotic: to get a 50% improvement from the original model, data may

need to be gathered over a range of maybe 60 or 70 kilometers or more - more

than five times the distance of the O2 data that was 20% better than the original

model.

The scatter plot in Figure 8.9 supports this analysis. The best-fit line shows a

small positive slope, which indicates that the vertical data (% reduction) is rising

more slowly than the sum of standard deviations.
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9.3.2 Not all data are created equal

In two of the three comparisons, data gathered from optimized missions pro-

duced a better model - to the tune of about 3% - than their unoptimized coun-

terparts. These optimized missions were created from an algorithm that sought

the best path possible given a distance constraint. The metric of “best path”

was decided by that path whose sum of standard deviation from points in the

original model (J(X)) was the highest. Figures 7.1 and 7.2 show clearly that

the optimized missions spent more time in or towards areas of higher standard

deviation.

Of course, the above assertion does not appear to hold true all the time - the

model from O3 performed worse than U2 data, no matter how the U2 data was

cut. Two of the comparisons (U2 vs O3 and U2.avg63 vs O3 ; Figures 8.12 and

8.13 respectively) might be easily explained away based on the sheer difference

of the range over which the data was gathered - more than 3 times. However,

the last comparison - U2.mid63 vs O3; Figure 8.14 - turns the above assertion on

its head. The same number of data points (63) were used across a similar range

to create each model, and the path in the optimized mission was significantly

“better” in terms of the sum of standard deviation from the original model.

There are a few explanations for this. The first could simply be that the

first assertion and hypothesis - that data acquired from missions whose paths

cover areas of higher standard deviation produce a better resulting model - is

not always true. Another could be that data acquired close to shore - as it is in

O3 - could have a shorter “half-life” than data farther from shore because of the

complex dynamics of near-shore systems. Water moves more quickly near shore,

waves kick up sediment, etc., and so it may be reasonable to suspect that data
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collected near shore has a shorter expiration date as far as it affects the model.

Yet another explanation could be the date or time of the data acquisition. The

mathematical models in ROMS move winds, currents, etc. in the model according

to output of deterministic geophysical equations; the ocean (T, S, u, v) may have

been in a significantly different state on O3 than then were on U2.

9.3.3 System design

The system illustrated in Figure 5.1 above was successfully built so as to allow

for the experiments and analysis discussed in this thesis. ROMS provided a model

which was used by the path planner to develop missions for the Iver2. The Iver2

(in all but one case) completed these missions and provided temperature data to

ROMS’ data assimilation component. The data assimilation process produced a

posterior estimate of the ocean model’s standard deviation for each mission.

Every component of the system worked as it was intended. However, the

results and analysis suggest that the system may need to take into account

more than temperature deviation in mission design. This of course would require

changes in output from ROMS, additional functionality in the path planner, ad-

ditional sensors in the Iver2, and capacity for new information (e.g., salinity) in

data assimilation.
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Chapter 10

Conclusions

This thesis sought to develop a system through which one could explore the

benefits of using a path planner over unoptimized missions for temperature data

acquisition in San Luis Obispo Bay. I developed a hybrid path planner that

combined the techniques of grid reduction and breadth-first search to efficiently

explore an otherwise unwieldly model. The path planner was validated by the

output of an Iver2-readable mission file, and its usefulness was tested by sending

the Iver2 out to gather temperature data along that mission path. For compar-

ison, the Iver2 also gathered data along unoptimized mission paths that were

created manually.

The research conducted in this thesis shows, at the very least, that even a

small amount of data collection will positively influence a resulting ROMS model.

The experiments also showed that in two of three cases, optimized missions

were more effective in reducing the temperature standard deviation, or uncer-

tainty, of the original model. In the third case, the Iver2 mission failed to finish

its optimized mission, and so was only able to collect data along less than 10%
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of the original path. That being said, even when this mission was compared to

three different iterations of its unoptimized partner, it was still less effective than

the unoptimized mission.

Lastly, a ROMS-based data assimilation system that intelligently plans for

and integrates AUV measurements with the goal of minimizing model standard

deviation was successfully developed. This system was used to carry out the

experiments in this thesis and facilitated analysis.

I believe that this thesis and included experiments would benefit greatly from

future work. A greater understanding of ROMS, data assimilation, and ocean

processes could aid in the improvement of the designed system and model output.

10.1 Future work

The work presented in this thesis, while relevant and useful, is only the tip

of the iceberg. Research and advances in path planning, data assimilation, and

areas of robotics could be exploited to provide a more thorough, more robust,

and faster exploration of the San Luis Obispo Bay model.

10.1.1 Acquire more and different data

The easiest and most intuitive next step is to “gather more data”. The Iver2

only gathered temperature data, at its farthest, 13 km south of the pier. Near its

southwestern border, the original model (Figure 6.3) has a large area where the

standard deviation is high. In fact, the standard deviation in that area is higher

than any other area in the model.

ROMS is capable of assimilating temperature, salinity, and water densities

68



and velocities. The integration of one or more of these data would certainly

improve the San Luis Obispo Bay model. The Iver2, whose design is such that

sensors and other components can easily be added or removed, could quickly be

fitted with such a sensor and deployed as in the experiments. The missions could

even remain the same.

10.1.2 ROMS research

While the above section may be the quickest and easiest next step, the path

planning and acquired data could be most greatly improved by a better under-

standing of the modeling system that it uses.

The optimized missions were developed by using a year-old, static model

whose data was only constrained by sparse wind data. Though the results were

reasonable as far as where the error was reduced (i.e., in general, around where

the data was taken), they were apparently contradictory as far as magnitude of

standard deviation reduction when comparing the boat and pier missions (the

U2 data outperformed the O3 data in all tests).

ROMS is a very complicated collection of software that uses discretized mod-

els of also-complicated, continuous geophysical equations (fluid dynamics, etc.).

However, it is a software system, so it is implicitly deterministic, even if the sub-

ject of the model is stochastic. As such, there should be a closer look at why the

boat missions did not perform like the pier missions. Depending on the results

of that research, changes to the path planner might be necessary so that it takes

into consideration the effects of the intricacies of ROMS.
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Observation impact and sensitivity

One of ROMS many features is that it can provide an analysis of observation

impact and observation sensitivity [21]. Observation impact refers to how much

each data point contributed to the difference between the original model and the

assimilated one. Observation sensitivity estimates the changes in the assimilated

model as a result of changes in data or observations.

The path planning algorithm presented in this thesis assumed a binary obser-

vation impact - e.g., data gathered at x would reduce the deviation at x - without

any awareness of the sensitivity. As the results show, the observation impact is

in fact not binary - and it is not perfectly clear what the relationship is between

the data and the resulting model. A more in-depth look and understanding of

the observation impact and sensitivity may offer the greatest benefit to future

models.

10.1.3 Real-time data assimilation and path planning

The path planning algorithm developed for this thesis was developed as a

real-time algorithm that could be placed on the Iver2. Given a static model and

end location, the Iver2 could quickly identify the best route to that location and

start its mission.

The results of the experiments show that any amount of data assimilated into

the original ROMS model has a positive effect on the output. It is proposed, then,

that data acquired during the mission could be assimilated in real-time to produce

another model mid-mission. This model could be significantly different than the

original model; the best path through that model may be also be different than
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the one identified with the original model. Real-time data assimilation is not

currently feasible on the Iver2 (or nearly any commercial AUV, for that matter);

this section proposes some solutions to that problem.

Rapid data assimilation using graphics cards

There has been recent research at Cal Poly exploiting NVidia graphics cards

to achieve high levels of parallelization. There have also been discussions about

mounting a graphics card in the Iver2 to take advantage of this parallelization

so that on-board data assimilation could happen. If assimilated in or close to

real-time, the resulting new model could be fed into an existing path planning

algorithm (such as the one in this thesis) to update the “best” path.

Centralized data assimilation and path planning (off-robot)

Another option for real-time data assimilation is the offloading of mission data

to a more powerful computing system (such as that used to create the models

seen in the results). The assimilated model could be uploaded to the Iver2,

which could use a path planning algorithm to update its path. Alternatively,

the centralized computing system could also do the path planning for the Iver2,

uploading only a set a waypoints to which the AUV would navigate.

10.1.4 Multiple robots

The experiments undertaken in this thesis could be greatly improved by ac-

quiring data with multiple robots. A significantly greater area could be explored,

as well as a larger number of data points obtained if more than one robot was

used to acquire data.
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Research in multi-robot systems, especially terrestrial, is a large field. Many

of the algorithms and techniques used to coordinate multi-robot systems are ag-

nostic to the medium in which it works. That is, these techniques can easily

be ported to AUVs. One paper ([12]) discusses robot altruism to optimize task

fulfillment. Another, specific to AUVs, discusses cooperative multi-AUV control

as it was used in the Autonomous Ocean Sampling Network discussed in Section

3.1.2 [15]. There is no lack of research in the area of multi-robot systems; ex-

periments like the ones undertaken in this thesis could benefit greatly from such

systems.
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