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SUMMARY
Inverse kinematics (IK) is a nonlinear problem that may have
multiple solutions. A modified genetic algorithm (GA) for
solving the IK of a serial robotic manipulator is presented.
The algorithm is capable of finding multiple solutions of the
IK through niching methods. Despite the fact that the number
and position of solutions in the search space depends on the
position and orientation of the end-effector as well as the
kinematic configuration (KC) of the robot, the number of GA
parameters that must be set by a user are limited to a minimum
through the use of an adaptive niching method. The only
requirement of the algorithm is the forward kinematics (FK)
equations which can be easily obtained from the Denavit–
Hartenberg link parameters and joint variables of the robot.
For identifying and processing the outputs of the proposed
GA, a modified filtering and clustering phase is also added to
the algorithm. For the postprocessing stage, a numerical IK
solver is used to achieve convergence to the desired accuracy.
The algorithm is validated on three KCs of a modular and
reconfigurable robot (MRR).

KEYWORDS: Pose estimation and registration; Serial mani-
pulator design and kinematics; Motion planning; Modular
robots; Space robotics.

1. Introduction
Path planning and control of robot manipulators require
mapping from end effector cartesian space coordinates into
corresponding joint positions. This mapping is referred to as
the inverse kinematics (IK) of the robot. Finding the position
and orientation of the end-effector from the joint angles is
called the forward kinematics (FK) problem. FK of a robot
manipulator can easily be formulated if the link parameters
and joint variables of a robot are known, while the IK is
a nonlinear configuration-dependent problem that may have
multiple solutions.1

For a handful of robot configurations, closed-form
solutions of the IK exist (e.g. PUMA, FANUC, etc.) .1–4 For
many other serial manipulators, the IK analytical solution
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does not exist. Another approach to the IK problem is to use
numerical methods.5–7 In numerical methods, the algorithm
converges on the solution dependent on the initial starting
point of the algorithm. In ref. [8], an algorithm to numerically
solve the IK for modular and reconfigurable robot (MRR)
was presented. In ref. [9] a method for analytically solving
the IK for a number of MRR kinematic configurations (KCs)
was presented. The algorithm in ref. [9] was based on the
product-of-exponentials formula and was developed with the
intention of finding single solutions of IK. The solver could
cope with IK of all robots with 4 degree-of-freedom (DOF)
or less, 90 % of the 5-DOF robots, and 50 % of the 6-DOF
robots.

To solve IK for a redundant robot, a genetic algorithm
(GA) was used in ref. [10], where the focus was on finding
the solution that minimizes the joint displacements among
all the possible solutions. In ref. [11], the IK problem for
a 12-DOF redundant robot was tackled. According to the
article, even after addition of heuristics to the algorithm, the
results were still not completely satisfactory. In ref. [12],
GA in conjunction with fuzzy systems and hybrid immune
algorithms were used to solve the FK of a Stewart platform.
A GA and a neural network were used in ref. [13] to solve
the IK for the optimal joint motions. In ref. [14], a genetic
programming algorithm was used to produce an estimate
analytical formula for the IK offline. The extracted formula
is then used to solve for an approximate solution to IK with a
high speed. In ref. [18] a GA was used to find the optimized
kinematic structure and the pose of a manipulator capable of
performing a certain task. In ref. [18] the IK was solved in
the same GA that was resolving the kinematic optimization
problem. Hence, finding the optimized structure and pose of
a manipulator for the prescribed task simultaneously.

Most related is research from refs. [15, 16] , where a
fitness sharing niching method was used to find multiple
solutions of the IK for positioning of a 2-DOF planar
robot. A prominent feature of these works is the use of
real-coded GA in conjunction with tournament selection. A
drawback is that they suffer from the need to set numerous
unknown parameters. These parameters depend greatly on
the nature of the search space and are different from one robot
configuration to another. More importantly, in these works
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no considerations has been made for robots with more than
3-DOF, where identification of the solutions among the
output of the GA is not possible with observation anymore.
This is viewed as a major drawback since most articulated
industrial robots use at least a 3-DOF arm for end point
positioning and at least one more DOF for orienting the end-
effector.

In ref. [17] an IK solver based on GA with postprocessing
stages to extract distinct solution regions was presented. In
that paper, the algorithm was validated in solving the IK
for positioning of the end-effector of a 3-DOF PUMA560
robot. Although the mentioned algorithm converged on IK
solutions well, the accuracy and resolutions of the solutions
were not satisfactory for precise control of the end-effector.

In this paper, an adaptive niching method to solve the IK
problem is proposed. The proposed algorithm solves the IK
problem while considering both positioning and orienting of
the end-effector. This algorithm is based on a minimizing GA
to find the joint angles that produce the least positioning and
orientation error of the end effector from those of the desired
values. The contributions of this work can be highlighted as:

• By using a niching method, the algorithm is able to
calculate multiple solutions of the IK problem for both
positioning and orienting the end-effector. Moreover,
unlike the other computational algorithms for solving IK,
this method requires few parameters to be set with the prior
knowledge of the problem. This feature allows for solving
IK of a wide range of robots with distinct kinematics. For
instance, the proposed algorithm can be used to calculate
the IK solutions for MRRs in which the robot can assume
a large range of distinct KCs.

• A real coded simulated binary crossover (SBX)26 is
used. This feature enables the algorithm to search in a
continuous joint space, not a discrete binary one.

• A new formulation for incorporating the joint mechanical
limits in the simulated binary crossover is presented.

• A modified adaptive niching method via coevolutionary
sharing24 was adopted to increase the algorithm speed
without sacrificing the performance.

• A postprocessing stage consisting of filtering, clustering,
and numerical IK is proposed. The filtering and clustering
stages allow for using the algorithm to solve IK for robots
with more than 3-DOF by identifying the solution regions
automatically. Then the numerical IK solver achieves
convergence to any desired joint angle accuracy. The
numerical stage also enables the algorithm to distinguish
the global optimums from the local optimums in the output
of the niching GA.

Performance of the algorithm is validated by solving for
multiple solutions of the IK problem for three distinct KCs.
Because of the capability of MRRs to generate different
kinematic structures, the tested KCs are obtained from an
MRR joint and link modules. The algorithm is applied to
a 4-DOF spatial, a 6-DOF spatial, and a 7-DOF KC with
several GA runs for two different task points.

This paper is divided into six sections. Section 3 explains
the IK problem and the objective function. In Section 4,
the conventional niching methods and the adaptive niching
method are explained. In Section 5 the proposed algorithm

to solve the IK problem is explained. Section 6 describes
how to process the results and details the filtering, clustering
and numerical IK stages of the proposed algorithm. Finally,
the results of running the algorithm for three distinct
manipulators are presented in Section 7.

2. Motivation
Industrial robotic manipulators are designed to perform a
certain task thousands of times during their operational age.
Hence, any change to these manipulators that could cause
an increase in their performance could have huge rewards
in terms of decreasing operations, maintenance and repair
costs, and manufacturing time.

Different approaches and solutions for optimizing the
performance of robotic manipulators exists. The least costly,
in terms of material and time, is probably modifying the robot
trajectory such that a set of operational performance paramet-
ers of the robot will improve. For instance, the trajectory of
the manipulator could be created in order to minimize the
required torque, power consumption, operation’s time, etc.

Having multiple solutions of the IK can lead to more
optimal solutions to the trajectory generation problems. To
demonstrate the effect of considering multiple IK solutions
in trajectory optimization, the results of comparing the
trajectories of a PUMA560 6-DOF spatial manipulator based
on two of distinct IK solutions are presented.

For each task point in the Euclidean space, a 6-DOF
PUMA manipulator shown in Fig. 1 has eight distinct
IK solutions. For the sake of comparison, a task for the
manipulator consisting of moving from task point 1 (T P 1)
in the Euclidean space to task point 2 (T P 2) is assumed.
Figures 1(a) and 1(b) show two out of the eight distinct IK
solutions for T P 1 called elbow-up and elbow-down poses.
Figures 1(c) and 1(d) show the elbow-up and elbow-down
poses for T P 2. It can be observed that four cases could
happen when a trajectory from T P 1 to T P 2 is generated:

(1) The manipulator moves from the elbow-up pose in T P 1
to the elbow-up pose in T P 2.

(2) The manipulator moves from the elbow-down pose in
T P 1 to the elbow-down pose in T P 2.

(3) The manipulator moves from the elbow-up pose in T P 1
to the elbow-down pose in T P 2.

(4) The manipulator moves from the elbow-down pose in
T P 1 to the elbow-up pose in T P 2.

For each of these cases, a 7-degree polynomial trajectory
with 50 intermediate points was created. The required
joint torque and power consumption of each trajectory was
calculated for the PUMA560 manipulator using the Matlab
Robotics Toolbox.19 This toolbox utilizes the recursive
Newton–Euler formulation to solve the inverse dynamics
problem.

Table I and Table II show the maximum and the average
required torque for each joint of the PUMA560 to follow
the produced trajectory. Table III shows the average required
power for each of the joints and the total required power for
the manipulator.

It can be seen that the maximum and average required
torque, and the average required power, change drastically
from case to case. This change in the performance measure
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Fig. 1. Start and end point of a certain task considering two distinct solutions of the IK for a 6-DOF spatial manipulator.

Table I. Average required torque for the PUMA560 to follow the
trajectories (N·m).

Torque
(N·m) Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

Case 1 26.2323 28.0785 10.9776 0.8712 1.8214 1.6948
Case 2 26.2350 25.0806 1.1347 1.9331 0.5412 0.8107
Case 3 26.4836 35.4458 5.2365 2.0909 1.2226 0.8327
Case 4 26.2316 53.9799 12.3313 0.9127 2.6467 1.9210

caused by choosing different IK solutions for a unique task
suggests that the performance of the manipulator can be
improved by a suitable selection of the IK solutions for
each task. The selection of the best IK solutions depends
on the application and whether the goal is minimizing
power, maximizing payload, maximizing speed, identifying
an optimal sequence to pass through intermediate points of
a given task, or a combination of the above. In any scenario,
the dynamic model of the manipulator should be evaluated
and multiple options for path planning should exist, i.e., more
than one solution to the robot IK problem. In general, if the

Table II. Maximum required torque for the PUMA560 to follow
the trajectories (N·m).

Torque
(N·m) Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

Case 1 49.8973 40.4988 12.9466 1.7768 3.4713 3.3710
Case 2 48.5416 39.3951 13.0186 4.1371 1.1043 1.6374
Case 3 55.9225 71.1438 9.9031 4.4306 1.8467 1.2812
Case 4 56.5868 68.1273 24.6538 1.8695 4.7908 3.7374

manipulator has s IK solutions for each of t task point, st

different cases exist. Hence, a search algorithm is required to
examine those cases in order to find the IK solution(s) that
optimize the trajectory for a given set of goals.

For this particular example, since only four different cases
exist, an exhaustive search where all of the cases one by one
are examined is used. If minimizing the power consumption
of the manipulator is the goal, as can be seen from Table
III, by choosing the trajectory made in Case 2 the best
improvement is achieved. Hence, having multiple solutions
of the IK can be seen as a first step in creating trajectories

Table III. Average required power for the PUMA560 to follow the trajectories (W).

Power (W) Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6
∑

Case 1 24.9752 12.3913 2.6832 0.7107 5.3727 3.7535 49.8866
Case 2 26.4819 16.7639 0.1891 4.8971 0.3554 0.6260 49.3135
Case 3 24.1281 73.1677 11.4001 5.4981 0.6969 0.3513 115.2422
Case 4 24.5108 48.0250 37.0315 0.8285 10.9475 4.8569 126.2002
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capable of optimizing the operation of a robotic manipulator.
The proposed IK solver is used for efficient path planning
for the Waterloo Modular and Reconfigurable (WMRR)
Manipulator.31

3. Kinematics and Objective Function

3.1. Forward and inverse kinematics
In Robotics, the problem of calculating the position and
orientation of the end effector of a robot from the joint
space coordinates is called the FK problem. The solution
to this problem can be found by defining the position and
orientation of each link frame with respect to the previous
link frame as a function of the joint variable. This relative
position and orientation of two consecutive links, (according
to the Denavit–Hartenberg convention), is described by the
homogenous transformation of a coordinate frame attached
to the end of the link with respect to a fixed frame that
is connected to the origin of the frame.1 The homogenous
transformation has the form:

Ti−1,i(θi) =

⎛
⎜⎜⎜⎝

Ri−1,i(θi) Pi−1,i(θi)

0 0 0 1

⎞
⎟⎟⎟⎠ , (1)

in this equation Ri−1,i(θi) and Pi−1,i(θi) describe the relative
orientation and position of frame i with respect to frame
i − 1. The parameters of these matrices can be extracted
from the physical shape and KC of a robot.

To calculate the position and orientation of the end-effector
( Toe(θ1, θ2, . . . , θn)) with respect to the base of the robot
for an arbitrary set of joint angles [θ1, θ2, . . . , θn] the
transformation will be

Toe(θ1, θ2, . . . , θn) =
n∏

i=1

Ti−1,i(θi)

=

⎛
⎜⎜⎜⎝

Roe Poe

0 0 0 1

⎞
⎟⎟⎟⎠ . (2)

The inverse problem of the FK, the IK, is the problem of
finding [θ1 θ2 · · · θn] from an arbitrary Toe. This problem
is a mapping from the 3D task space, usually presented
in a Homogenous Transformation, to the joint angle space
and usually has more than one solution. For instance, a 6-
DOF PUMA560 robot may have four or eight IK solutions1

depending on the mechanical limitations of the manipulator
joints.

3.2. Objective function
In this paper, the approach to solving the IK is based on
converting it to a minimization problem and then utilizing
a modified niching GA to calculate the global minimums of
the problem. In the proposed algorithm, each GA individual

consists of a string that represents a joint angle vector of the
robot ([θ1 θ2 · · · θn]). That is, each GA individual represents
a posture of the robot manipulator.

In GAs, a measure of the fitness of each individual, an
objective function, is required to select the most potent
individuals for crossover operation. In the IK solver GA,
this measure can be defined as the difference between the
end-effector position and orientation of each individual and
those of the desired task point. In other words, the positioning
and orienting error of the end-effector produced by the joint
angles of each individuals with reference to the task point in
the cartesian space can be used as the fitness measure. If the
homogenous transformation of the task point in the cartesian
space is represented by

Tt =

⎛
⎜⎜⎜⎝

Rt Pt

0 0 0 1

⎞
⎟⎟⎟⎠ , (3)

and the homogenous transformation of the end effector of
each of the individuals of the GA is represented by

Tind =

⎛
⎜⎜⎜⎝

Rind Pind

0 0 0 1

⎞
⎟⎟⎟⎠ (4)

the Euclidean norm of the difference between the end-
effector position of each individual and that of the desired
point in the cartesian space can be used as a measure of the
positioning error, i.e.,

EP = ‖Pt − Pind‖. (5)

The error in end-effector orientation is defined by the
rotation matrix Rerror that rotates the end-effector of each
individual to the desired orientation. Rerror can be calculated
by

Rerror = Rt . R−1
ind = Rt . RT

ind. (6)

In this work, the quaternion representation of frames
rotation is used for calculations of the orientation error in
the final fitness value of each individual. Unit quaternions
provide a convenient mathematical notation for representing
orientations of objects in three dimensions. Compared to
Euler angles they are simpler to compose, more numerically
stable, and more efficient in some situations.20,21

If the coordinate of a point in the Cartesian space is
represented by V in the quaternion representation, it can be
shown that the quaternion product QVQ−1 yields the vector
V rotated by an angle α around axis of the quaternion vector
U. Where Q is the rotation vector and can be represented as
Q = [ cos(α/2) sin(α/2).U ].

For our application, the rotation matrix needed to rotate
the end-effector homogenous transformation of each GA
individual to the desired location (Rerror) can be conveniently
converted to the quaternion format and its α can then be
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extracted from the quaternion to represent the orientation
error.

If Rerror is shown in the quaternion representation
by [qw qx qy qz]. where [qw qx qy qz] = [ cos(α/2)
sin(α/2).U ]. The orientation error can then be written as

EO = α. (7)

Using Eqs. (5) and (7), the objective function of individual
ind with reference to task point Tt can be written as:

f (ind) = Fobj(Tind, Tt ) = wp EP + wo EO, (8)

where wp and wo are the positioning and orienting weighting
factors. Those weighting factors can be used to normalize
the corresponding values. To guarantee both the orienting
and positioning error contribute equally to the total error
expression in 8, we propose to choose wp and wo as follows:

wp = 1,

(9)

wo =
√

λKC.‖Pd‖
π

,

where λKC is a coefficient that depends on the dimensions of
the robot. We use the total length of all the links of the robot
as λKC. wp and wo are calculated by scaling the orientation
error such that the maximum possible orientation error, which
occurs in α = π , will become large enough to compete with
the positioning error which is a function of the size of the
robot (λKC) and the distance of the task point from the base
of the robot (‖Pd‖).

Our aim in this paper is utilizing a GA for finding
individuals that can minimize f (ind). The individuals consist
of the joint angle vectors of the robot.

4. Background on the Niching Techniques
A GA, through selection, crossover and mutation operations,
finds the individuals that have the best fitness values and
combines them to produce individuals that offer better
fitness values than their parents. This process continues until
the population converges around the single individual that
have the best fitness value. However, in a large number
of applications with multiple global (or local) optimums,
identification of more than just one promising point is
required. For this purpose, niching methods modify the
simple GA by changing the fitness value in a way to
encourage convergence around multiple solutions in the
search space.22 In this section, we will briefly review the
conventional niching techniques. Then the adaptive niching
via coevolutionary sharing technique will be explained in
greater detail.

4.1. Conventional techniques
The sharing method,23 which is probably the most well-
known niching technique, decreases the fitness value of
the individuals in densely populated areas and as a result
decreases their chance of being selected. The sharing
method, with a complexity of O(N2), is computationally

expensive. Also, in sharing methods a priori knowledge of
the problem is required to tune the numerous parameters of
the algorithm including niche radius parameter.22 Moreover,
the algorithm is more suitable for problems with equidistant
niches. The limitation of this technique for our application
is that prior to solving the problem no knowledge about
the relative position of the solutions in the search space
exists. In addition, the number of niches changes for different
configurations of robots. These solutions will also change
with the position of the end-effector and are completely
different from one robot configuration to another. Crowding
methods, another approach to niching includes standard
crowding, deterministic crowding, and restricted crowding.
These methods have a complexity of O(N), however, do not
have the robustness of sharing methods.22

4.2. Adaptive niching via coevolutionary sharing
As mentioned, one of the disadvantages of fitness sharing
is the need to set the niche radius σs as accurately as
possible. This requires a priori knowledge of the proximity
and distances between the solutions of the problem, a luxury
which is not available in IK problems.

To address this drawback in the sharing methods, Goldberg
and Wang introduced an adaptive niching algorithm via
coevolutionary sharing (CSN).24 This algorithm is loosely
based on the economic model of monopolistic competition,
in which businessmen try to position themselves, subject
to a minimum distance, among geographically distributed
customers to maximize their profit. In CSN two populations,
businessmen and customers, work to maximize their separate
interests.

These two populations interact with each other according
to the economic model. Businessmen try to maximize their
profit by finding locations with more customers, while
customers try to shop from businessmen with better service,
i.e., the closest businessman who is least crowded.

For the customer population, fitness function modification
resembles that of the standard fitness sharing. If at any
generation t , customer c is being served by the businessman
b who is the closest businessman, and that b is serving a total
mb,t customers, the shared fitness of c is calculated by

f ′(c) = f (c)

mb ,t

∣∣∣∣∣
c∈Cb

, (10)

where Cb denotes the customer set, whom businessman
b serves. In other words, each customer shares its fitness
value with the other customers of the same businessman.
A stochastic universal selection scheme and single point
crossover has been used in the original paper.24

The tendency of the businessmen is to place themselves
in regions that are more densely populated by customers,
subject to keeping a minimum distance of dmin from the
other businessmen. The fitness value of the businessmen is
simply the sum of the fitness values of its customers:

φ(b) =
∑

c∈Cb ,t

f (c). (11)
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Table IV. The IK algorithm.

Step Description

1 Randomly initialize the customer population
Randomly initialize the businessman population
Initialize dmin with dminstart

2 Customers raw fitness value calculation
Businessmen raw fitness value calculation
Assignment of customers to the closest businessman
Customers shared fitness value calculation

3 Forming the customers parent pool by tournament selection

4 Transferring the elite customers to the next generation

5 Customer crossover

6 Businessmen imprint

7 Updating dmin

8 If the termination criterion is not reached return step 2

In ref. [24], Goldberg and Wang used only a mutation
operation for the businessmen population. If a mutated
individual: (1) is at least dmin far from other businessmen, and
(2) is an improvement over the original businessman, it will
replace the original one. If not, the mutation operation will
be repeated up to a multiple of the businessman population.
An imprint operation was also suggested which chooses new
businessman randomly from the customer population instead
of producing them by mutation. With imprint, the evolution of
the businessman population will benefit from knowledge of
the search space acquired by customers, and will not be com-
pletely random. If the chosen customer could satisfy the
above two conditions it will replace the businessman. To
find out if the selected customer is an improvement, the
assignment of the customers to the businessmen must be
repeated. To accomplish the assignment, the calculation of
the customer distances from the members of the new set of
businessmen is required.

Although this algorithm is not as sensitive to the values
of dmin as the conventional fitness sharing technique is to
σs , choosing an appropriate dmin is still of considerable
importance.

CSN has been applied to a multi-objective softkill-
scheduling problem with the imprint operation.25 Rank-
based selection, elitist recombination, and nondominated
sorting are some of the prominent features of that work.

5. Adaptive Sharing to solve IK problem
To solve the IK problem, the algorithm must be fast enough
to evaluate the solution for a very large space (e.g., A 6D
space for a PUMA or general purpose articulated robots). It
must be able to find multiple solutions for all the possible
poses of the end-effector. This algorithm must also be able
to solve the IK for any robot configuration by the knowledge
of the FK equations. In this section, the proposed algorithm
to solve the IK is explained.

5.1. The algorithm
An overview of the proposed algorithm can be seen in
Table IV. A detailed explanation of each of the steps is
as follows:

(1) Initialization: Two independent populations for Cus-
tomers and Businessmen are randomly created. Each
individual consists of n joint angles corresponding to the
n DOF of the robot:

indi = [q1 q2 · · · qn]T , (12)

where q1, q2, . . . , qn are all real numbers.
To allow more individuals to be associated to the IK
solutions which are close to the reachable joint space
borders, [qmin,qmax], an extended range of permissible
angles,[qmin − ψ ,qmax + ψ], is used. qmin and qmax are the
joints’ rotational limitations which are usually dictated by
the mechanical design and manufacturing.
After the Customer and Businessmen populations are
randomly generated, the initial dmin is calculated using
the following equation:

dminstart = κ( qmax − qmin)

1 + n
√

b
(13)

where n, b, and κ correspond to the DOF (i.e., number
of joints), the number of businessmen, and the fitting
index respectively. Equation (13) uses κ > 1 multiplied
by the distance between businessmen if they are spread
equidistantly over the n dimensional joint space. That is,
dminstart should be greater than the average distance between
businessmen.

(2) Fitness value calculation: The fitness values f (c) and
f (b) of customers and businessmen are calculated using
Eq. (8). Then, customers are assigned to the closest
businessman, where closeness is measured using the
Euclidean distance between customers and businessman.
If at any generation t , customer c is being served by the
businessman b who is the closest businessman, and that
b is serving a total mb,t customers, the shared fitness of c

(f ′(c)) is calculated using the following equation:

f ′(c) = f (c) · mb ,t . (14)

This equation is the counterpart of Eq. (10), in the original
maximization CSN algorithm, which has been modified
for minimization. By using the niched fitness value f ′(c)
in the GA, the tendency of the selection operator will be
towards forming the parent pool from individuals with
smaller mb ,t , i.e., individuals in less dense locations. The
niched selection scheme preserves the diversity of the
individuals and prevents the individuals from converging
on one single solution of the problem.

(3) Selection: Tournament selection is adapted to create the
parent pool, because it does not require a priori knowledge
of the problem.
From the customers, nt individuals are selected at random.
Of this subset, the customer with the least fitness value
(error) is transferred to the parent pool. Choosing nt ≥ 2
individuals encourages faster algorithm convergence.

(4) Elitism: Results in refs. [29, 30] show that elitism can
speed up the performance of the GA significantly. It can
also help prevent the loss of good solutions once they
have been found. In simple GAs the elitism is performed
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by transferring a number of the customers with the best
fitness values to the next generation directly. But in niching
GAs, by applying the same elitism method, there is the
chance of all the elites be chosen from just the few most
developed niches. This, can decrease the diversity of the
population very fast and cause premature convergence of
the algorithm. In our proposed algorithm, to profit from
elitism while avoiding its potential drawbacks, the elitism
is performed as the following; Instead of simply choosing
the best customers from the entire pool of customers,
one customer belonging to each businessman will be
chosen. This customer will be that with the lowest fitness
value over all other customers belonging to the same
businessman. Hence, each businessman will contribute
one Elite unless it does not have any customers. If the
number of the elites was odd, after adding a randomly
selected customer from the customer population to it, the
Elites list is transferred to the next generation population.
The crossover operator will be used to find the rest of the
customers in the next generation population.

(5) Customer crossover: In this step, the new generation of
customers is produced from the parent pool of the previous
step. Simulated Binary Crossover (SBX)26 is used for the
crossover operation. In Section 5.2 SBX and the proposed
modifications that has been applied to it to accommodate
joint angles with physical limits are presented.

(6) Businessmen imprint: Each businessman is compared
with an individual randomly selected from the newly
formed parent pool. If this individual is an improvement
over the businessman and was dmin away from all the
other businessmen, it will replace the corresponding
businessman. For each businessman, the process of
comparison is repeated nlimit times, or until it is replaced
by a better candidate. Here nlimit is a multiple of the
population number of businessmen.

(7) Updating dmin: The value of dmin is closely related to the
accuracy of the end solutions. Lower values of dmin bring
flexibility to the businessmen to locate regions with better
fitness values and more concentrations of solutions. The
drawback of a having a small dmin is an increase in the
probability of losing some niches because of the tendency
of the businessmen to converge around the regions with
high customer concentration.
In initialization of the algorithm, dmin is set at its maximum
value to prevent the GA from converging immaturely on
only one niche. As the iterations continue, the niches begin
to establish themselves around the solution points and the
difference between their fitness values and the number of
individuals in different niches decreases.
In this step of the algorithm, dmin is decremented in small
step sizes until it reaches a certain lower limit. In the GA
proposed here, the following function is used for updating
dmin:

dmin = dminstart

(
1 − λ

t

tmax

)
, (15)

where t and tmax correspond to the current iteration and
maximum iteration number. λ is the coefficient that defines
how small dmin can become.

(8) Checking the termination criterion: In this stage, the
output of the algorithm is checked against a termination
criterion. If the average fitness value of the businessmen
population (f(b)avg,t ) in generation t could satisfy the
following criterion, the algorithm is interrupted and the
results are entered into the postprocessing phase.

f(b)avg,t ≤ μFlimit

(16)
Flimit = Fobj(Tt , I)

where Fobj is defined in Eq. (8). Tt and I are respectively
the Homogenous Transformation of the task point and the
base of the robot which is the Identity matrix. Fobj(Tt , I)
can be considered as an upper bound on the fitness value
f (ind) that depends only on the position and orientation
of the task point. 0 ≤ μ ≤ 1 is a coefficient that represents
how small the average businessmen fitness value should
become before terminating the algorithm. According to
the termination criterion, the algorithm is stopped when
all the businessmen in the GA have produced robot
postures with end-effector positions/orientations that can
reach on average a distance of μFobj(Tt , I) from the task
point.
In the first generations of the algorithm, the businessmen
are randomly spread over the search space and their
average fitness value is high. With the progress of the
algorithm and the decrease in dmin, the businessmen
start converging on the locations with better fitness
values while keeping their distance from each other,
resulting in the decrease in their average fitness value.
Further decrease in dmin and discovery of better locations
decreases the average fitness value of the businessmen
even more. Hence, with the termination criterion of
Eq.(16) it is guaranteed that the algorithm stops only when
the businessmen have positioned themselves in the vicinity
of the solutions of the IK problem.

5.2. The continuous crossover operation
Crossover operation randomly selects two parents, P1 and
P2, from the parent pool and produces two children, C1 and
C2, from them. It has been shown that for continuous search
spaces, real coded GAs are more suitable than binary coded
algorithms.26 In this paper, we use a SBX26 to apply the
variable-by-variable crossover. The idea behind SBX is to
create a random distribution of offsprings in the domain of
real numbers. This distribution matches the distribution of
the common binary crossovers. In other words, SBX uses
a randomly generated number, uβ(i) to produce a random
expansion ratio β(i) that defines how similar the offsprings
are to their parents:

β(i) =
∣∣∣∣C2(i) − C1(i)

P2(i) − P1(i)

∣∣∣∣ . (17)

In order to incorporate the joint angle’s mechanical
limitations, the crossover is carried out using the following
steps:
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(1) Of the n joints, l joints ( l ≤ n ) are randomly selected
for the crossover operation. The rest of the joint angles
will be transferred from the parents to the children,
unchanged. In our implementation l = 0.5n.27

(2) For each of the l joint angles selected in the last step, a
random number, uβ(i), is generated. The expansion ratio,
β, is then calculated using:

β(i) =
⎧⎨
⎩

(2uβ(i))
1

η+1 if uβ(i) ≤ 0.5(
1

2(1−uβ (i))

) 1
η+1

otherwise
, (18)

where η denotes the distribution index and can be any
nonnegative real number. For small values of η, points far
away from the parents have higher probability of being
chosen, while with large values of η points closer to
the parents are more likely to be chosen. A value of 2–5
produces a good estimate of the binary coded crossover.27

In our algorithm, η initially has a small value ( 2 ) and
with the progress of the algorithm it will increase(to
around 5) to let the solutions fine tune into the centers of
the solution regions.
When joint angles have physical limits, (as commonly
found in industrial robots), Eq. (18) must be modified
to produce offsprings that are located inside the joint
limits. To accomplish this, the following method has
been proposed. First, the lower and upper bound of
the expansion ratio βL and βH are calculated from the
following equation for each of the joint variables:

βL(i) = 0.5(P1(i) + P2(i)) − qmin

|P1(i) − P2(i)| ,

βH (i) = −0.5(P1(i) + P2(i)) + qmax

|P1(i) − P2(i)| , (19)

where P1(i) and P2(i) denote the ith variable of the two
parents. Value of uβ is then updated as follows:

βlimit(i) =
{

βL(i) if βL ≤ βH

βH (i) otherwise
, (20)

k(i) = 1

1 − 0.5
βlimit(i)η+1

,

uβ(i) = uβ(i)

k(i)
. (21)

This modification, by changing the probability
distribution of β(i), will guaranty that the produced
children are inside the variable range. Since the
expansion ratio of the children to parents is limited by
the joint variable limits, Eq. (19) calculates the maximum
allowable value of this parameter corresponding to each
limit. Equations (20) and (21) modify uβ in a way to set
the probability of choosing a β less than βlimit(i), equal
to one. In other words, for any arbitrary uβ , the produced
children will be in range [qmin,qmax].
Finally, β(i) is calculated from Eq. (18) using the updated
uβ(i).

Fig. 2. Block diagram of the proposed GA postprocessing
algorithm.

(3) In the last step, children are produced from the following
equation:

C1(i) = 0.5[(1 + β(i)) P1(i) + (1 − β(i)) P2(i)], (22)

C2(i) = 0.5[(1 − β(i)) P1(i) + (1 + β(i)) P2(i)], (23)

and are then placed in the new generation population.

6. Processing the Output
The output of the GA is a set of n dimensional vectors,
representing the manipulators joint angles, with high
population density around the regions with high fitness values
and lower concentration in the rest of the search space. Since
the local optimums have higher fitness values compared to the
regions around them, they also attract a concentration of the
individuals. In order to distinguish solution regions from
this output, a mechanism to detect the regions with high
concentration of individuals and low error is required.

If the robot had 2-DOF, identifying these results in the
2D space could be accomplished by observation, which
is not convenient if the GA is supposed to be used as a
block in a larger algorithm or software. For robots with
more DOFs (for example a 6-DOF PUMA), identifying these
solution regions must be done in a 6D space, which is not
possible by visual inspection. Hence, a robust algorithm for
clustering the results is required. Furthermore, a method to
increase the accuracy and resolution of the solutions for
more precise applications is required. When the solutions
converged within the desired tolerance, the global optimums
could easily be identified from the global ones.

In this section, the filtering, clustering, and the numerical
IK postprocessing stage are explained. Figure 2 shows a
block diagram of the proposed postprocessing algorithm.

6.1. Filtering
The fitness function of each individual is the orienta-
tion/position error from the desired value. It is convenient
to use the fitness function as a measure of filtering the results
before the clustering.

In the filtering phase, individuals with high fitness value
(error) are rejected and individuals with lower fitness value
are transferred to the clustering step. The threshold of the
filtering is represented by ε. It should be noted that although
choosing a small ε can lead to selecting fewer more accurate
individuals, some of the less established niches might also
be lost as a result.

6.2. Clustering
Since no priori knowledge of the number of solutions of
IK exists, the number of solution niches or clusters is also
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Fig. 3. Joint modules of the WMRR.

unknown. To deal with this issue, subtractive clustering28 is
utilized to find niches. Subtractive Clustering is a one-pass
algorithm for estimating the number of clusters and their
centers for a set of data when the number of the clusters is
unknown.

Subtractive clustering assumes that every point in the data
set is a potential cluster center. This algorithm measures the
potential of each of the points based on the density of the
data set around it and then assigns the point with the highest
potential a cluster center. It then removes all other points in
the Rcluster from the cluster center, and repeats the process
until all of the points in the data set are within the radius of
a cluster.

Choosing Rcluster has a great effect on the number of
clusters that are detected by the algorithm. The larger Rcluster,
the less clusters detected. Because the GA has filtering and
runs until a relatively good convergence is achieved, Rcluster

can be set to small values to detect all the solution regions
with good precision.

In the GA, all the joint angles are mapped into [−π, π]. If
some of the solutions of the IK are close to the border limits
−π or π two concentrations of the individuals representing
just one solution will form close to both of the border limits.
The reason is that although the angles close to these border
are at the two limits, from a mechanical point of view they
are close to each other. As a result, the clustering stage will
detect two different clusters close to the borders while they
both belong to the same cluster. To overcome this problem,
in the proposed algorithm, first the clustering is applied to the
joint angles when they are mapped into [−π, π]. Then the
solutions of the previous clustering is mapped into [0, 2π]
and will undergo subtractive clustering again.

6.3. Numerical inverse kinematics
The outputs of the previous two stages are the centers of the
niches detected by the clustering algorithm. Although these
centers represent the location of the solutions in the joint
angle space, they might not have the required accuracy and
resolution for a precision control of the robotic manipulator.
Hence, the necessity of improving the accuracy of the
solutions arises.

A quasi-Newton algorithm is utilized in order to increase
the accuracy of the results to any desired value. The numerical
IK uses the outputs of the clustering stage as the initial
search point and then converges to within the desired
positioning/orienting tolerances.

If a solution in the output of the numerical error still causes
an error greater than the admitted tolerances, it could be
identified as a local optimum and eliminated from the final
set of the solutions. However, in the results section, to clarify
the results achieved the local optimums were not eliminated
and were only identified.

Using numerical methods after the GA has the added
benefit that the GA, which is computationally demanding,
can be stopped even when the niches were formed on the
approximate location of the solutions. Meaning that the
GA can be stopped earlier and the responsibility of further
convergence to the solutions can be transferred to the much
faster numerical algorithm. Hence enhancing the overall
speed of convergence of the IK algorithm.

7. Results
Three distinct KCs, each with different number of joints have
been used for validation of the proposed algorithm. These
configurations were created based on the joint module set
of the WMRR.31 MRRs, a breed of industrial manipulators,
are assembled from a variety of modular components and
can be physically configured to meet the requirements of the
workspace and the task at hand. The set of modules may
consist of joints, links, and end-effectors. Different KCs will
be achieved by using different joint, link, and end-effector
modules and by changing their relative assembly orientation.
The number of distinct KCs attainable by a set of modules
can vary with respect to the size of the module set from
several tens to several thousands. Hence, in MRRs to solve
for multiple solutions of the IK a robust algorithm capable
of handling a large set of KCs is required. Furthermore,
the algorithm should perform well, without any change in
parameters even after the robot is reconfigured. Hence, an
MRR is an ideal platform for testing the functionality and
practicality of the proposed algorithm. Figure 3 shows the
kinematic schematic of the joint modules of the WMRR.

In the rest of this section, the results of running the
algorithm for the tested KCs are presented. First, the results
of running the algorithm for a 4-DOF and a 6-DOF PUMA
robot for two different task points are presented. Then, the
solutions that were found by the algorithm for a 7-DOF robot
has been shown and discussed in the rest of this section.
The results were achieved on Matlab on a 2GHz AMD64
processor.
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Table V. Parameters used in the GA.

Parameter Value

Businessman population (b) 2n.2n−2

Customer population (c) 2n.b

κ 1.2
λ 0.5

qmin −π

qmax π

ψ π

η 2-5
Rcluster 0.0796

ε μFlimit

nlimit 3.b

nt 2
μ 0.5

tmax 500

GA is a stochastic method, therefore numerous runs of the
algorithm are required in order to examine the performance
and the repeatability of the algorithm. Hence, for each of the
selected task points the algorithm was executed five times.
The parameters that were used in the algorithm were kept
fixed for all the runs and all of the configurations. The
parameters are shown in Table V. It should be noted that
the expression for the population size of the Businessmen
and the Customers represent an approximate upper bound.
Therefore, the algorithm performs as well even with smaller
sizes of the population in most of the cases. In the table, n

represent the number of the joints of the robot.

7.1. 4-DOF spatial manipulator
The tested 4-DOF KC has two distinct IK solutions for any
reachable task point. The 4-DOF manipulator is essentially
a spatial manipulator that is attached to a rotational joint
and can produce spatial movements. Figures 4(a) and 4(b)
show the 4-DOF spatial manipulator when it reaches task
point 1 with the two distinct IK solutions, while Fig. 4(c)
and Fig. 4(d) show the distinct solutions for task point 2.
Table VI and Table VII shows the results of 5 runs of the
algorithm for each of the task points. In the tables, NGA and
NNM are the number of solutions before and after numerical
IK respectively. EP

GA and EP
NM are the minimum positioning

error (cm) before and after numerical IK, while EO
GA and EO

NM
are the minimum orientation error(degrees) before and after
numerical IK, respectively. EJ is the per joint difference of
the joint angles before numerical IK to the respective value
after applying the numerical method and reaching a solution.

For the first task point, the algorithm ran for an average
82 iteration and 40 s before convergence. The corresponding
values for the second task point were 24 iterations and 19 s.
As can be seen, in all of the runs all the solutions of the IK
have been found. The GA usually ends up with more niches
than the actual number of the solutions. After undergoing
the numerical method, more than one of these niche centers
converge on the same solution. Hence, at the output of the
numerical stage the final number of the solutions is typically
less than the number of niche centers.

7.2. 6-DOF PUMA
A 6-DOF manipulator resembling the KC of a PUMA
manipulator is chosen as the next test bed of the algorithm.

Fig. 4. Solutions of the 4-DOF spatial KC.
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Table VI. Output of the algorithm in reaching task point 1 for the
4-DOF spatial. N represents the number of niches. EP , EO , and
EJ represent the positioning error, orienting error, and error in the
joint angle space, respectively. Parameters with GA and NM as the
subscript represent the values after the clustering phase and after
the numerical method respectively. t represents the run time of the

algorithm in each case.

Run 1 Run 2 Run 3 Run 4 Run 5

NGA 18 30 15 17 21
NNM 2 2 2 2 2
EP

GA(cm) 1.2184 10.4490 12.5175 15.5401 23.3084
EO

GA(degree) 1.9098 0.4613 0.3554 1.0181 1.9905
EP

NM(cm) 0.0000 0.0001 0.0001 0.0001 0.0000
EO

NM(degree) 0.0001 0.0001 0.0001 0.0000 0.0000
EJ (degree) 3.7007 3.5954 3.2532 1.9500 7.1817
t(s) 39 30 45 36 48

Table VII. Output of the algorithm in reaching task point 2 for the
4-DOF spatial. N represents the number of niches. EP , EO , and
EJ represent the positioning error, orienting error, and error in the
joint angle space respectively. Parameters with GA and NM as the
subscript represent the values after the clustering phase and after
the numerical method, respectively. t represents the run time of the

algorithm in each case.

Run 1 Run 2 Run 3 Run 4 Run 5

NGA 47 17 30 19 10
NNM 2 2 2 2 2
EP

GA(cm) 17.6113 7.0731 4.0406 1.0563 34.3000
EO

GA(degree) 0.6621 5.0517 0.5007 2.3897 1.3140
EP

NM (cm) 0.0002 0.0001 0.0002 0.0001 0.0001
EO

NM (degree) 0.0002 0.0001 0.0003 0.0001 0.0000
EJ (degree) 7.8336 3.8397 3.6875 4.8561 10.3207
t(s) 18 14 21 27 16

Figures 5 and 6 show all the solutions of the IK when the robot
reaches the two task points. In the figures, visual handles are
attached to links connected to output of joints 1, 4 and 6 to
differentiate between the two possible values of joint angles
q1, q4 and q6 in producing multiple IK solutions. As can be
seen from Fig. 5, since the only aim of running the algorithm
was finding multiple solutions of the IK, all of the solutions
of IK, regardless of self collision, are shown. The results of
five runs of the algorithm have been summarized in Table
VIII and Table IX. The algorithm reached these results after
61 and 86 iterations (36 and 42 minutes) for task points 1
and 2, respectively.

For the first task point, while the correct number of the
solutions for the IK is eight, the algorithm reports nine
distinct solutions in one of the runs. Further investigations
reveals that two of the solutions are the same where in one
the third joint angle is θ3 = 0 while in the other θ3 = 2π .

7.3. 7-DOF spatial robot
A 7-dof spatial manipulator was chosen for further test of the
algorithm in finding multiple solutions of IK. As can be seen
from Fig. 7, the KC of the robot closely resembles that of the
Canada Arm 2 of the International Space Station. The length
of the links 1, 2, 5, and 6 are assumed to be zero, meaning

Table VIII. Output of the algorithm in reaching task point 1 for the
6-DOF PUMA. N represents the number of niches. EP , EO , and
EJ represent the positioning error, orienting error, and error in the
joint angle space respectively. Parameters with GA and NM as the
subscript represent the values after the clustering phase and after
the numerical method, respectively. t represents the run time of the

algorithm in each case.

Run 1 Run 2 Run 3 Run 4 Run 5

NGA 216 214 214 219 229
NNM 8 9 8 8 8
EP

GA(cm) 6.2119 9.4829 9.3211 7.6261 12.0384
EO

GA(degree) 3.3087 3.9755 3.9423 3.4848 1.8421
EP

NM (cm) 0.0001 0.0000 0.0000 0.0001 0.0000
EO

NM (degree) 0.0000 0.0001 0.0001 0.0001 0.0000
EJ (degree) 7.2211 4.7227 7.6433 9.7832 5.5340
t(s) 1638 2240 2295 3263 1536

Table IX. Output of the algorithm in reaching task point 2 for the
6-DOF PUMA. N represents the number of niches. EP , EO , and
EJ represent the positioning error, orienting error, and error in the
joint angle space respectively. Parameters with GA and NM as the
subscript represent the values after the clustering phase and after
the numerical method respectively. t represents the run time of the

algorithm in each case.

Run 1 Run 2 Run 3 Run 4 Run 5

NGA 107 154 146 59 124
NNM 8 8 8 8 8
EP

GA(cm) 3.9693 3.6407 3.1639 4.1705 4.8595
EO

GA(degree) 2.4588 6.8048 3.8925 1.7206 3.0407
EP

NM (cm) 0.0000 0.0006 0.0000 0.0001 0.0004
EO

NM (degree) 0.0000 0.0001 0.0001 0.0001 0.0001
EJ (degree) 1.4597 3.9952 4.7653 5.8982 6.4299
t(s) 5421 5453 5276 5381 5695

the joints are directly connected without any links between
them. The algorithm reached the termination criterion in
iteration 530 after running for about 42 h. The algorithm
converged slowly in this example due to the fact that the
7-DOF spatial manipulator is a redundant robot. Hence, the
objective function has numerous local and global optima.
Furthermore, the complexity of searching the solution space
of 7-DOF manipulator increases exponentially compared to
that of the 6-DOF system presented in the previous example.

The output of the algorithm after the numerical stage
consisted of 28 niches. From these 28 niches, 16 were local
solutions of the problem and 12 were the global and correct
solutions of the IK. The summary of the results of the run for
the 7-DOF KC is shown in Table X.

8. Conclusion and Discussion
An adaptive niching strategy was proposed and used to
extract multiple solutions of the IK problem for spatial robots.
Since this algorithm uses few preset parameters, it can be
generalized to solve IK of a robot with an unknown number
of degrees of freedom and manipulator configuration. The
algorithm combines real coding, adaptive minimum distance
setting of businessmen, elitism, and adaptive real coding
distribution index. To process the results, a subtractive



504 Adaptive niching genetic algorithm for generating multiple solutions of inverse kinematics

Fig. 5. Solutions of the 6-DOF PUMA KC for task point 1.
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Fig. 6. Solutions of the 6-DOF PUMA KC for task point 2.
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Table X. Output of the algorithm in reaching the task point for the 7-DOF Spatial Robot. N represents the
number of niches. EP , EO , and EJ represent the positioning error, orienting error, and error in the joint angle
space respectively. Parameters with GA and NM as the subscript represent the values after the clustering

phase and after the numerical method, respectively. t represents the run time of the algorithm.

NGA NNM EP
GA(cm) EO

GA(degree) EP
NM (cm) EO

NM (degree) EJ (degree) t(h)

69 28 2.87 1.33 0.0003 0.0000 7.79 42

Fig. 7. 7-DOF spatial robot.

clustering algorithm was also modified for the application. It
was shown that the algorithm performs with good precision
for random task points independent of the KC of the robot.

By using the GA niching algorithm in conjunction with
a numerical method the resolution and precision of the
results were improved drastically. The niche centers that
were detected in the GA were used in the numerical method
as the initial search points and the numerical method was
then invoked to achieve the convergence of the result to the
required precision.

All the experiments were run on Matlab. The speed of the
algorithm can drastically be improved by implementing the
algorithm with lower level programming languages such as
C/C++.

With the proposed algorithm, multiple solutions of the IK
can be assessed with the purpose of finding the optimized
trajectory for performing a task. In other words, instead of
using just one of the solutions of the IK in trajectory planning,
different IK solutions are compared and the one that satisfies
a set of optimization measures better than the rest is used in
the trajectory planning. For instance, IK solutions that can
minimize joint torques, required electrical energy, or required
time to perform a task can be selected for performing a
task from the pool of solutions identified by the proposed
algorithm.
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