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Who should read this paper?
Marine biologists, oceanographers, and other scientists who need to sample 
the ocean environment will be particularly interested in this paper. The ability 
to use multiple AUVs to sample or visit a large number of underwater 
locations within a short period of time so that the sample data are concurrent 
is important for properly capturing the state of the environment without undue 
temporal effects.  
Why is it important?
Autonomous underwater vehicles are typically neutrally buoyant and 
completely rigid, propelled by a thruster at the tail and steered by two 
independent pairs of fins for pitch and yaw control. While they technically 
have six degrees of freedom (surge, sway, heave, pitch, roll and yaw) but only 
three independent actuators, AUVs have limited mobility.

This paper describes how algorithms for constructing an optimal sampling 
route for an AUV must consider the limited mobility of the vehicle, 
particularly when sample points are close together and the vehicle is subject to 
ocean currents. Determining the optimum route is not trivial and must 
incorporate the vehicle state (orientation, velocity) and environmental 
conditions (speed and direction of current) as the vehicle navigates the route. 
The research is innovative in that it considers how the combination of closely 
spaced task points, ocean currents, and the AUVs kinematic constraints affect 
the optimal solution to the task sequencing problem. Minimizing the time 
needed to sample a prescribed set of points saves energy, increases the 
accuracy of sampling, and reduces the risk of AUV loss.

The results of this work are completely disclosed and, as such, the 
methodology is immediately available for use in commercial applications.
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ABSTRACT

This paper addresses the problem of allocating closely spaced targets to multiple autonomous 
underwater vehicles in the presence of constant ocean currents. Targets are considered to be 
geographical locations that the AUVs must visit, ideally in an order that minimizes the path cost. 
The main difficulty of this problem is that the non-holonomic vehicles are constrained to move 
along forward paths with bounded curvatures. To accommodate such constraints, a new method 
for calculating path costs is proposed that considers vehicle kinematics, dynamics, and ocean 
currents. This path cost can be easily evaluated and queried from any general target sequence 
planner. Simulations show that the proposed method is able to create feasible paths with a lower 
cost when compared to solutions whose cost functions are calculated based solely on Euclidean 
distances. Field tests conducted on an Iver2 AUV validate the performance of the proposed 
algorithm in real world environments. Results show that the proposed algorithm generates paths 
that are feasible for an AUV to track closely, even in the presence of ocean currents. 
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NOMENCLATURE

Bi	 =	 bid of vehicle i
   =	 =	 cost
D	 =	 targets
Kprop	 =	 propeller torque
Si	 =	 sequence of targets
t	 =	 time 
u0	 =	 nominal vehicle speed
uc	 =	 ocean current speed
	 =	 input vector
V	 =	 vehicles

Xprop	 =	 surge force
	 =	 state of vehicle i and time t
	 =	 vector state derivative
α	 =	 vehicle orientation
δr	 =	 rudder fin angle
δs	 =	 stern fin angle
ψc	 =	 heading of the ocean 		
		  current
ψi,t	 =	 heading of the vehicle
ω	 =	 bound on the yaw rate
		  of the vehicle
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INTRODUCTION

Autonomous Underwater Vehicles (AUVs) 
have been used successfully in the past to 
solve geological, biological, chemical, and 
physical oceanographic problems. This has 
resulted in a variety of scientific and commercial
AUVs being designed, built, and deployed. 
With the increasing feasibility and decreasing 
expense of AUVs, interest in using them for 
ocean sampling, mapping, surveillance, and
communication is growing and multi-AUV 
operations are beginning to be realized in the 
water. As with any multi-robot system, a 
challenge is to determine which robot should 
perform which task in order to cooperatively 
achieve the global goal in an optimal manner. 

This paper investigates the task allocation 
problem where n vehicles are required to visit 
m task points. The motion of the AUV satisfies 
a non-holonomic constraint (i.e. the yaw rate 
of the vehicle is bounded) which makes the 
costs of going from one point to another non-
Euclidean and asymmetric. Each task point is 
to be visited by one and only one vehicle and 
the problem has been simplified to limit the 
robots to operate in a horizontal plane. Given a 
set of task points and the yaw rate constraints 
on the vehicles, the problem is to assign each 
vehicle a sequence of task points to visit and to 
find a feasible path for each vehicle to follow
so that the vehicle passes through the assigned 
task points. Each task point is a subgoal that is 
necessary for achieving the overall goal of the 
system that can be achieved independently of 
other subgoals. Task independence is assumed, 
where individual task points can be considered 
and assigned independently of each other 
without ordering constraints. The objective 

function to be minimized includes the total 
time to visit all of the task points.

The features that differentiate this research 
from similar problems previously studied are 
the kinematic constraints on the vehicle and 
the presence of a constant ocean current. This 
paper addresses the inability of an AUV to turn 
at any arbitrary yaw rate which becomes a 
problem when target points are close together. 
The Dubins model [Dubins, 1957] is a simple 
but efficient way to handle the kinematic 
characteristics of non-holonomic vehicles. It 
gives complete characterization of the optimal 
paths between two configurations for a vehicle 
with limited turning radius moving in a plane 
at constant speed.

In this paper, Dubins paths are modified to 
include ocean currents, resulting in paths 
defined by curves whose radius of curvature is 
not constant. To determine the time required to 
follow such paths, an approximate dynamic 
model of the AUV is queried. Specifically, a 
lower order model of the REMUS AUV model 
from Prestero [1994] is used so that the 
computational complexity is reduced. 

The remainder of this paper is organized as 
follows: BACKGROUND gives an overview 
of the task allocation problem and describes 
various other techniques that have been used 
to solve related problems. PROBLEM 
STATEMENT begins with the formal problem 
definition. In PATH COST CALCULATION, 
the proposed path cost calculation method is 
introduced. ALGORITHM IMPLEMENTATIONS
describes an implementation of the proposed 
method in Matlab and SIMULATION 
RESULTS discusses the results from 
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simulations to verify that the desired results 
are achieved. Following a satisfactory simulation,
the proposed method was tested in the field at 
the Avila Pier in California as described in 
EXPERIMENTAL RESULTS. The paper 
concludes with a summary of results and future
work in CONCLUSION AND FUTURE WORK. 

BACKGROUND

The goal of the task allocation problem is to 
have robots visit all targets while minimizing 
the total travel time or distance travelled by the 
robots. When targets are known before the mission,
it is possible to build a schedule of targets for 
each robot. Unfortunately, this problem is not 
straightforward because the cost for a robot to 
visit target C depends on whether that robot 
first visits target A or target B. This problem is 
an instance of the multiple travelling salesperson
problem (MTSP), which has been studied 
extensively in combinatorial optimization. Even
in the restricted case of one salesperson, the MTSP
is strongly NP-hard [Korte and Vygen, 2006]. 

Several approaches have been applied to the 
general problem of allocating tasks between 
multiple robots in a team; refer to Gerkey and 
Matarić [2004] for a survey of these. Heuristic 
methods are typically used since optimizing 
the performance is often computationally 
intractable. Parker’s ALLIANCE [Parker, 
1998] is one of the earliest demonstrations of 
behaviour-based architectures for task 
allocation. Another frequently used method is 
based on market mechanisms, such as 
auctions, which have been demonstrated in 
Dias et al. [2006] to be fast and robust on real 
robots. Specific work for AUVs, often called 
mission planning, includes the work by Sariel 

et al. [2008] and vehicles with bounded 
curvature are considered by Jeyaraman et al. 
[2004]. Similar to the mission planning 
problem is the routing problem as investigated 
by Davis et al. [2008] for underwater gliders, 
and the path planning problem as described in 
Kruger et al. [2007] and Alvarez et al. [2004] 
for AUVs operating in an environment with 
complex currents. However, the vehicle 
dynamics are not accounted for in their 
strategies which this paper aims to address.

PROBLEM STATEMENT

This paper considers the allocation of m targets 
to n vehicles. Given a set of vehicles {V1, V2, 
…, Vn} and targets D={d1, d2, …, dm}, the 
problem is to assign a sequence of targets Si to 
each vehicle to visit and a path through the 
sequence Si. The objective is to: 

Minimize

subject to

where u0 denotes the nominal vehicle speed, 
ψi,t the heading of the vehicle,     the ocean 
current speed, ψc the heading of the ocean 
current, and ω represents the bound on the yaw 
rate of the vehicle. In Equation (1), C(Si) is the 
time required for Vi to complete its tour Si. 

(1)

(2)

(3)



60   The Journal of Ocean Technology • Peer-Reviewed Papers Copyright Journal of Ocean Technology 2011 Copyright Journal of Ocean Technology 2011

Note that Equation (2) dictates all tasks to be 
visited and restricts each task to be assigned to 
only one vehicle and Equation (3) considers 
the non-holonomic constraints of the vehicle. 

Regardless of the planner used for solving this 
problem, an efficient and accurate method of 
calculating path costs which considers kinematics, 
dynamics, and ocean currents is required. 
Specifically, determining the cost to travel 
between any two task points is not trivial and 
must incorporate the vehicle state as it passes 
through the task points (e.g. vehicle orientation,
velocities, etc.). Presented below is a method 
for calculating path costs that uses a modified 
Dubins path to incorporate vehicle kinematics, 
and a lower order model to approximate and 
incorporate vehicle dynamics.

PATH COST CALCULATION

To calculate the path and time of travel 
between task points, one must consider the 
dynamics and kinematics of the vehicle. The 
path cost can be calculated in two steps: 1) 
calculating the Dubins path that considers 
ocean currents and 2) calculating the time to 
travel along the paths using a lower order 
dynamic model. Described below is the 
dynamic model used, followed by the two 
main steps used for calculating path cost.

Vehicle Model
Calculating the feasible states of the vehicle in the
presence of ocean current requires knowledge
of the vehicle dynamics. This paper uses the 
REMUS AUV model created by Prestero [1994], 
which readers are referred to for the full 
derivation. The REMUS AUV has a torpedo 
shape with an ellipsoidal nose, a cylindrical 

constant radius mid-section, and a cubic spline 
tail section as illustrated in Figure 1.

 

The vehicle has six degrees of freedom (DOF), 
namely surge, sway, heave, pitch, roll, and 
yaw. The AUV is assumed to be neutrally 
buoyant, completely rigid, and interacting with 
an ideal fluid. The vehicle is propelled by a 
thruster at its tail and steered by two 
independent pairs of fins for pitch and yaw 
control. With 6-DOF and only three 
independent actuators, the system is 
considered to be an underactuated system.

The 6-DOF non-linear model described in 
Prestero [1994] can be used to simulate how 
different control and hydrodynamic forces 
affect the body-fixed velocities and the overall 
change in position and orientation of the 
vehicle. The simulation requires the ability to 
represent the vehicle motion with respect to 
both body-fixed and inertial coordinates. 
Therefore, the twelve states of a vehicle Vi 
consisting of body-fixed velocities and inertial 
coordinates at time t are given by:

Given the complex and highly non-linear 
nature of the problem, numerical integration is 
used to solve for the vehicle position and 
orientation in time. At each time step, the 

(4)

Figure 1: REMUS AUV.

Mark A. Moline/California Polytechnic State University
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vehicle state is updated by the general equation: 

where        is the vehicle state vector,       = [δs 
δr Xprop Kprop]T is the input vector, uc and ψc 
are the magnitude and direction of the ocean 
current respectively. For the input vector, δs is 
the stern fin angle, δr is the rudder fin angle, 
Xprop is the surge force, and Kprop is the 
propeller torque. 

The function f in Equation (5) uses the Euler 
method of numerical integration to yield the 
new vehicle state at each time step as:

where the state vector derivative        is updated 
using the model         = f (        ,      ) from 
Prestero [1994]. With the presence of a fixed 
current, the position of the vehicle relative to 
the inertial-fixed frame is updated as follows:   

Where      and      denote the position of the 
vehicle after the integration step given in 
Equation (6). By combining Equation (6) and 
Equation (7), the function f in Equation (5) is 
realized and can be used to update the general 
state of each vehicle. This full 6-DOF non-
linear model is used to evaluate the final tour 
times of the sequences generated by the 
proposed method.

Dubins Path Calculation
In order to calculate the time required to travel 
between two points, the Dubins shortest path 

problem must first be solved. Dubins’ original 
work [Dubins, 1957] derived conditions that 
characterize the optimal path between two 
points when both the initial and terminal 
orientations were specified and his work has 
been widely studied in path planning [Shkel 
and Lumelsky, 2001]. Dubins’ result shows that,
given any two points, the shortest path that 
considers the constraints expressed in Equation 
(3) consists of exactly three path segments 
consisting of a combination of a straight line 
segment and maximum curvature arcs. 

Graphically, the algorithm starts by drawing 
two maximum curvature circles that are 
tangential to the initial state vector and two 
maximum curvature circles that are tangential 
to the terminal state vector. Dubins’ result 
indicates that the optimal trajectory selects an 
arc on one of the two initial circles, and 
connects tangentially to an arc on one of the 
two terminal circles. If the separation between 
the initial and end points is sufficient, this can 
only be accomplished by a line segment. There 
are at most four such line segments, and 
computation of the travel distances is 
straightforward, as shown in Figure 2 for two 
waypoints with initial and terminal 
orientations, denoted αk and αk+1 respectively. 
Note that α is measured counter-clockwise 
with respect to the positive x-axis.

Finding the shortest path between two points 
requires repetitively solving the shortest time 
algorithm for various entry and exit AUV 
orientations (i.e. αk, αk+1). The added challenge 
here is that there may be a family of paths that 
connects sk to sk+1 with only one being the 
shortest. The multiplicity of paths connecting 
the two points complicates the search for 

(5)

(6)

(7)
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initial and final headings so an exhaustive 
coarse-resolution search is implemented. In 
this paper, a discrete approximation is made so 
that αk and αk+1 are constrained to Λ = {λπ/4 | 
λ= 0, …, 7}. With eight possibilities for αk and 
αk+1 and four ways of connecting them, a total 
of 8 x 8 x 4 = 256 paths is possible for every 
pair of waypoints, with one of them being the 
shortest path. Increasing the resolution of the 
discretization would result in better 
approximations but at a cost of increasing the 
computational complexity. Figure 3 shows 
three paths connecting sk to sk+1. Note that 
there are additional paths connecting the same 
points which are not shown and that different 
values for αk and αk+1 yield different costs.

In the presence of ocean currents, the shortest 
path between two points given αk and αk+1 
consists of arcs that are no longer circular but 
elliptic. These ellipses will have different 
curvatures depending on the magnitude and 
direction of the current (Figure 4). The shape 
of the ellipse depends on the vehicle’s orientation
at the start of the turn and is calculated using 

the difference between the vehicle’s heading ψ 
and the direction of the current ψc. 
   
To determine the shape of the ellipse, Equation 
(5) was used to determine the state of the 
vehicle at each time step with      = [1.15 0 0 0 
0 0 0 0 0 0 0 0]T, and       = [0 1.75 5.16 0]T, 
where 1.15 m/s is the nominal speed of the 
AUV, 1.75 rad is the rudder fin angle, and 5.16 
N is the propeller surge force. Note that 
finding the maximum curvature for the ellipse 
requires running the simulation using a 
maximum rudder fin angle of 1.75 radians. 
AUV powering was not taken into account and 
the vehicle was running at the nominal speed 
for the duration of the simulation. Data was 
obtained for discrete cases of uc = {0.1, 0.2, 
0.3, 0.4, 0.5}, and ψc = {κπ/8 for κ = 1, ..., 16} 
and the vehicle’s position was recorded at Δψ 
= {κπ/8 for κ = 1, …, 16}, where Δψ is the 
fraction of a complete circumnavigation of the 
ellipse the vehicle travels (Figure 5). The 
minimum turning radius of the REMUS AUV 
from running the simulation was calculated to 
be 3.3 metres.
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αk+1 = 3π/4. (b)-(e) Four ways of connecting two waypoints using 
Dubins curves.

Figure 3: Multiple paths for different initial and final orientations. (a) 
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Figure 4a: Dubins Curves between two waypoints with ocean currents 
uc = 0.25 m/s (a) ψc = 0. 

Figure 4b: ψc = π/2.

Figure 4c: ψc = π. Figure 4d: ψc = -π/2.

Using this data, a lower order model     was 
created to determine the position of the vehicle 
given the change in the vehicle’s heading, and 
the magnitude and velocity of the current.

The next step is to find the fraction of a 
complete circumnavigation of the ellipse to 
travel before and after the straight line 

segment. Finding a line segment tangent to 
two curves is solved by using an iterative 
process. As a starting point, the slope of the 
tangent line to two circular arcs of minimum 
radius (when uc = 0) is calculated (Figure 6a). 
Using that value, Pa and Pb are found on the 
respective ellipses whose slope is equal to the 
slope of the tangent (Figure 6b). The positions 
of Pa and Pb are determined by using     from 
Equation (8). The slope of the line segment 

(8)
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Figure 5a: Vehicle position for various values of Δψ as the vehicle 
moves along the maximum curvature ellipse. (a) Δψ = π/4

Figure 5b: Δψ = 3π/4.

Figure 5c: Δψ = 5π/4. Figure 6a: Illustration of the iterative process used to find a tangent to 
two curves.

Figure 6b Figure 6c
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from Pa and Pb is calculated and becomes the 
new slope for the next iteration (Figure 6c). 
The process continues until convergence 
(Figure 6d).

Note that Figure 6d depicts the desired path 
for the AUV to follow in the presence of ocean 
currents. In order for the vehicle to stay on the 
desired path, the vehicle heading ψ must be 
calculated to compensate for the effect of 
ocean currents. 

Time Calculation
The cost of traversing the sequence S is 
calculated as:

To calculate the time Δt(sk,αk)→(sk+1,αk+1) in 
Equation (9), a lower order model     is created 
based on the full model f from (5) as:

For arcs, the lower order model is a piecewise 
linear function built from sampling the full 
model. Using the full model, the vehicle 
orientation can be determined at a certain time 
t. In order to find the time required to obtain a 
specific heading, linear interpolation is used on 
the data obtained from the full model at 
various fractions of a complete circumnavigation
of the ellipse (κπ/8 for κ = 1, …, 16).
 
For straight line segments, consider a vehicle 
moving at speed u and heading ψ through the 
water with current velocity uc and direction ψc. 
The vehicle’s velocity along the desired path 
has magnitude udesired and direction ψdesired. 
These velocities are illustrated in Figure 7. 
Let  ucψdesired = uccos(ψc – ψdesired) be the 
current component assisting motion along the 
desired direction and  ucN = ucsin(ψc – ψdesired) 
be the current component π/2 radians to the 
left of the desired direction. Staying on the 
desired path requires the perpendicular 
component of the vehicle velocity usin(ψ – 
ψdesired) to cancel the perpendicular component 
of the current ucN. The heading ψ and speed 
udesired along the desired vehicle motion 

Figure 6d

(9)

(10)

Figure 7: Illustration of the relative velocities.
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direction are:

 
As long as |ucN| < u, the vehicle can stay on the 
desired path, but the velocity decreases as |ucN| 
→ u. Keeping the vehicle on the desired path 
is critical because making measurements at the 
right location requires the vehicle to stay on 
track in the presence of ocean currents.

The time required to travel from Pa to Pb can 
then be calculated as follows:

Combining these results in

ALGORITHM IMPLEMENTATIONS

This paper addresses the task allocation 
problem which is not possible to solve in 
polynomial time. The problem combines the 
exponential complexity of integer assignment 
decisions with non-linear, non-convex 
differential equation constraints, making it a 
Mixed Integer Non-linear Program with 
exponential growth in computational time. The 
focus of this paper is to illustrate the 
effectiveness of calculating C(S) in reducing 
path costs, as described in detail in PATH 
COST CALCULATION, which can be used 
with any planner. To demonstrate the performance
of the proposed path cost calculation method, 
this paper implements an exhaustive search 

which yields the optimal solution but can only 
be used for a small number of tasks, and a 
market-based planner that returns only an 
approximately optimal allocation but is 
tractable for a large number of tasks. 
 
Breadth First Search Planner
One method of task allocation is to do an 
exhaustive search through all possible 
combinations. One implementation of an 
exhaustive search is to use a Breadth First 
Search (BFS) which finds the shortest-path 
between two nodes by exploring all vertices 
and edges of the graph systematically. The 
algorithm starts at one node and explores all 
the neighbouring nodes that have not been 
visited. From there, it explores their 
unexplored neighbouring nodes until all of the 
nodes have been visited. 

The BFS planner is implemented using the 
proposed path cost calculation as described in 
PATH COST CALCULATION, which is 
referred to as the “BFS-Dubins Planner.” As a 
baseline for comparison, the BFS planner is 
also implemented using Euclidean distances 
for path cost calculation. The tours are then 
post processed such that the order of task 
points is preserved but the paths through the 
task points incorporated Dubins’ paths. This is 
referred to as the “BFS-Euclidean Planner.”

Auction-Based Planner
Another method of task allocation is using a 
market-based approach as follows. Consider 
one particular trial with n = 3 and m = 20. 
Using k-means [Hartigan and Wong, 1979], the 
20 task points are partitioned into three 
clusters as shown in Figure 8. The k-means 
algorithm partitions the m points into n clusters 

(11)

(12)

(13)
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by minimizing the total intra-cluster variance, 
or the squared error function. For this 
implementation, k-means is minimized with 
respect to the squared Euclidean distance with 
the initial cluster centroid positions selected 
uniformly at random from the range of x. 
Depending on the clusters created, the planner 
will produce local minimum solutions and, 
therefore, the k-means algorithm is repeated 
three times, each with a new set of initial 
centroids. If a cluster loses all of its member 
observations during the iterative process, a 
new cluster consisting of the one observation 
furthest from its centroid is created. It should 
be noted that Matlab uses a two-phase iterative 
algorithm for k-means clustering that only 
converges to a local minimum. The problem of 
finding the global minimum can only be 
solved in general by an exhaustive choice of 
starting points. Therefore, Matlab produces 
different clusters using the same dataset 
depending on the starting points chosen and 
Figure 8 is one of many solutions. 

After partitioning all task points into clusters, 
the centroid of all task points is calculated. For 
all i = 1, 2, ..., n clusters, the three task points 
in each cluster i that are farthest from the 
centroid are assigned to the ith vehicle (tasks 
with circle around them in Figure 8). The 
number of initial task assignments is chosen to 
be three because for three tasks forming a 
loop, the ordering of the tasks does not matter 
and always produces the same loop. 

Once each vehicle has three task points 
assigned to it, the remaining m – 3n tasks are 
auctioned off using a first-price one-round 
mechanism similar to the work by Lagoudakis 
et al. [2004]. The unassigned tasks are first 
ordered according to their distance from the 
centroid, with higher priority given to tasks 
that are farther from the centroid (auctioning 
order is indicated in Figure 8). Following this 
order, each task is auctioned off. 

Each vehicle i can bid on the task j, where the 
bid Bi is equal to the cost of travelling a path 
that consists of all previously won tasks and 
the current task being auctioned. Each vehicle 
considers the insertion of the new task at every 
point in the current sequence Si = (s1, s2, s3, ..., 
sl) where l is the number of previously won 
tasks by vehicle i. When a vehicle bids for task 
dj, the vehicle must try every value of Λ = 
{λπ/4 | λ = 0, …, 7} for the orientation at task 
dj. With the insertion of task dj in between sk 
and sk+1, the optimal orientations αk and αk+1 
also have to be recalculated with all values of 
Λ. The orientations at all other task points in 
the sequence S is kept from the previous round 
of bidding since the addition of task dj has 
minimal effect on the rest of the tour. Because 
the sequence S and the values for the

Figure 8: Results from clustering using k-means. Tasks with a circle 
around it are assigned to the vehicle responsible for that cluster.
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optimal orientation at each task point with the
exception of αk and αk+1 are kept from the 
previous round of bidding, Equation (10) only 
needs to be calculated between tasks (sk-1, sk), 
(sk, dj), (dj, sk+1), and (sk+1, sk+2). This
simplifies the computational complexity and 
significantly decreases the processing time.

Each vehicle submits a bid as the lowest cost 
(i.e. time) to complete the new tour as:

The ith vehicle with the lowest Bi wins target dj 
and updates its sequence of targets with                     	
	                        The auctioning process 
continues with the next round of bidding
until all tasks are allocated. A benefit of an 
auctioning task allocation system is that it has 
the potential to be decentralized, online, handle 
asynchronous bidding, and allows for auctioning
by any agent. However, the implementation 
described here is offline and centralized. Several
issues (e.g. two AUVs requesting simultaneous 
auctions) must be addressed before such 
potential capabilities can be realized.

The auction-based planner is implemented 
using the proposed path cost calculation and
is referred to as the “Auction-based Proposed 
Planner.” As a baseline for comparison, the 
auction-based planner is also implemented using
Euclidean distances for path cost calculation. The
tours are then post processed using the 
“alternating algorithm” and is referred to as 
the “Alternating Algorithm Planner.”

The “alternating algorithm” as described by 
Savla et al. [2008] solves the MTSP by 
creating Dubins TSP tours (i.e. sequences from 

applying Dubins’ model) with an asymptotic 
bound on the worst-case length. It is used to 
determine Dubins’ tours for datasets that are 
too large to run an exhaustive search on. It works
as follows: given a set of n points, the optimal 
Euclidean MTSP tours (i.e. that do not consider
path curvature) are computed using auctions 
(Figure 9). Then, it is necessary to obtain a 
feasible path through these ordered points using
the method in Savla et al. [2008] which includes
the curvature constraints of the vehicle.

SIMULATION RESULTS

To demonstrate the performance of the proposed
method, computer simulations were carried out 
with a model of the REMUS AUV using Matlab
on an Intel 1.66 GHz Core 2 Duo processor T5500
with 2GB RAM and running Windows XP SP3. 

Comparison using BFS Planners
The first set of simulations compared the BFS-
Dubins Planner with the BFS-Euclidean 
Planner using a dataset with 16 task points that 
were arranged into a grid with equal spacing 

(14)

Figure 9: Auction-based Euclidean MTSP solution for allocating 20 
tasks to three robots.
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between the task points. The number of task 
points was limited to 16 because the complexity
of the search space for the problem grows rapidly
with the number of task points. The results of 
the task allocation for three robots using the BFS-
Euclidean Planner are shown in Figure 10. Using
the optimal task ordering from Figure 10, Dubins
TSP tours were created to find feasible paths 
through the task points. Simulations were conducted
on this dataset with various distance between 
task points. Task points were spaced from 1 
metre to 10 metres apart, in 1 metre increments.

The total mission time and average mission 
time for the two planners are plotted in Figure 
11. From the graphs, it can be seen that the 
BFS-Dubins Planner creates shorter paths 
when the task points are closer than 5 metres 
apart. This is because extra loops are required 
when the vehicle changes orientation as shown 
in Figure 12. Recall that the turning radius of 
the REMUS AUV is 3.3 metres.

For a sufficiently dense set of points, it 
becomes clear that the ordering of the 
Euclidean tours is not optimal in the case of 
the Dubins MTSP. This is due to the fact that 
there is little relationship between the 
Euclidean and Dubins metrics, especially when 
the Euclidean distances are small with respect 
to the turning radius. An algorithm for the 
Euclidean problem will tend to schedule very 
close points in a successive order, which can 
imply long manoeuvres for the AUV. This was 
clearly demonstrated by the numerous loops 
that become problematic with dense sets of 
points. The path calculation method proposed 
in this paper does not rely on the Euclidean 
solution and, therefore, can create paths that 
are feasible for curvature bound vehicles.

Figure 10: Optimal task allocation for 16 task points assigned to three 
robots using BFS-Euclidean.

Figure 11a: Graphs comparing the performance of the BFS-Dubins 
Planner to the BFS-Euclidean Planner: (a) total mission time vs. 
spacing between task points.

Figure 11b: Average mission time of three robots vs. spacing between 
task points.
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Comparison using Auction-Based Planners
The next set of simulations was conducted on 
50 datasets, each set containing between six 
and 20 task points. The task points were 
distributed randomly with a uniform probability
distribution inside a square with side lengths 
of 25 metres. The task points were generated 
close together to highlight the necessity for 
considering the curvature constraints. 

The results from running the simulation on 50 
different datasets are summarized in Table 1 
using the following criteria: 

Csim is the cost calculated by running the 
planned tours Si through the full dynamic 
model in Equation (5). On average, the 

Auction-Based Proposed Planner reduced Tmax 
by 43% over the Auction-Based Alternating 
Algorithm Planner in the absence of currents 
and 45% in the presence of currents.

Consider one particular trial illustrated in 
Figure 13 and Figure 14 whose results are 
presented in Table 2. For the case with no 
ocean currents, the Auction-Based Alternating 
Algorithm Planner creates paths with 
numerous loops when two successive points 
are close together and the vehicle orientation 
does not allow for the second point to be 
reached without long manoeuvres (Figure 
13a). This is avoided when using the Auction-
Based Proposed Planner by generating 
sequences that are feasible but limit the 
number of additional loops (Figure 13b).
Similar results are obtained with the presence 
of ocean currents as shown in Figure 14a and 

Figure 14b.

Note that the Auction-Based Proposed 
Planner produced different sequences for 
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Figure 12: Dubins paths through task points: (a) order determined 
using the BFS-Euclidean Planner. 	

Figure 12b: Order determined using the BFS-Dubins Planner.

Table 1: Percentage improvement of Tmax and Tavg
using n = {1, 2, 3, 4, 5} and m = {6, 7, 8, …, 20}.	
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the case with no ocean currents and the case 
with ocean currents. This is because the 
proposed path cost calculation method 
considers the possibility that two successive 
points that were reachable in the absence of 
ocean currents may no longer be reachable 
without extra loops due to an increase in 
turning radius from the ocean currents. Also 
the Auction-Based Proposed Planner attempts 
to avoid paths that force the vehicles to drive 

against the ocean current. Instead paths that 
allow the ocean current to aid the vehicle in 
the direction of travel are favoured.

EXPERIMENTAL RESULTS

Experiments were conducted at the Avila Pier 
in California using the Iver2 AUV as shown in 
Figure 15. The Iver2 is a small, low cost AUV 
developed by Ocean Server Technology Inc. It 

Figure 13a: Sequences generated by the Auction-Based Alternating 
Algorithm Planner using the dataset in Figure 8 with n = 3, m = 20, 
and uc = 0. 	

Figure 13b: Sequences generated by the Auction-Based Proposed 
Planner using the dataset in Figure 8 with n = 3, m = 20, and uc = 0.
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Figure 14a: Sequences generated by the Auction-Based Alternating 
Algorithm Planner using the dataset in Figure 8 with n = 3, m = 20, 
uc = 25 m/s, and ψc = 0. 	

Figure 14b: Sequences generated by the Auction-Based Proposed 
Planner using the dataset in Figure 8 with n = 3, m = 20, uc = 25 m/s, 
and ψc = 0.
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is 4 feet long, 6 inches in diameter, and weighs 
less than 50 pounds. It has independent control 
of all four control surfaces, a wireless network 
interface, a simple user interface, and a robust 
mechanical design. The Iver2 AUV is similar 
to the REMUS AUV in many aspects and, 
therefore, the governing equations of motion 
described above for the REMUS AUV also 
apply to the Iver2 AUV. 

Missions were created based on the sequences 
generated by the simulations using Matlab and 
were tested on the Iver2 AUV. The results 
from running the experiments were analyzed 
based on the following criteria:

where Cexp is the time taken by the Iver2 AUV 
to traverse the sequence Si during a mission 

and Dmin is the minimum distance between a 
task point and the line indicating the actual 
position of the AUV during the mission. 

Control Architecture
Before describing the results from field tests, 
the limitations on the control architecture of 
the Iver2 AUV must be addressed. The Iver2 
AUV control architecture is based on the 
Underwater Vehicle Console (UVC) developed 
by Ocean Server Technology Inc. The UVC 
provides an interface to the Iver2 AUV’s 
sensors, motors, and control processes through 
a remote desktop connection. However, the 
UVC declares victory on the approaching 
waypoint and will move to the next waypoint 
when it has reached the “waypoint success 
radius” which was set to 4 metres (minimum 
allowed value on the UVC).

Task Allocation for Multiple AUVs
To analyze the performance of the proposed 
path cost calculation method, experiments 
were conducted on three datasets, each containing
20 task points generated randomly with a 
uniform probability distribution inside a square 
with side lengths of 35 metres. These task 
points were allocated to three vehicles, similar 
to the multiple travelling salesmen problem. 

The first method solves the multiple travelling 
salesman problem without considering the 
curvature constraints of the vehicle (Figure 16) 
and is referred to as the “MTSP Euclidean 
Planner.” The second method tries to find 
feasible paths for each vehicle using the 

Table 2: Summary of path costs for the dataset in Figure 8 
with n = 3 and m = 20.	

Figure 15: Iver2 AUV.

Beverley Chow
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Figure 16a: Paths generated using the MTSP Euclidean Planner from 
MatLab.	

Figure 16b: Field test results for vehicle 1

Figure 16c: Field test results for vehicle 2.	 Figure 16d: Field test results 
for vehicle 3.

Figure 16e: Legend for (b), (c), and (d).
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Figure 17a: Paths generated using the Auction-Based Alternating 
Algorithm Planner from MatLab.

Figure 17b: Field test results for vehicle 1.
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Figure 17d: Field test results for vehicle 3.

Figure 17e: Legend for (b), (c), and (d).	
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Figure 18d: Field test results for vehicle 3.	 Figure 18e: Legend for (b), (c), and (d).

Figure 18a: Paths generated using the Auction-Based Proposed 
Planner from MatLab.

−5 0 5 10 15 20 25 30 35 40 45

−5

0

5

10

15

20

25

30

35

40

45 (a)
vehicle 1

vehicle 2

vehicle 3

(b)

(c) (d)

intermediate waypoint

planned path

traversed path

task point(e)Figure 17c: Field test results for vehicle 2.	

−5 0 5 10 15 20 25 30 35 40 45

−5

0

5

10

15

20

25

30

35

40

45 (a)
vehicle 1

vehicle 2

vehicle 3

(b)

(c) (d)

intermediate waypoint

planned path

traversed path

task point(e)

−5 0 5 10 15 20 25 30 35 40 45

−5

0

5

10

15

20

25

30

35

40

45 (a)
vehicle 1

vehicle 2

vehicle 3

(b)

(c) (d)

intermediate waypoint

planned path

traversed path

task point(e)

−5 0 5 10 15 20 25 30 35 40 45

−5

0

5

10

15

20

25

30

35

40

45 (a)
vehicle 1

vehicle 2 vehicle 3

(b)

(c) (d)

intermediate waypoint

planned path

traversed path

task point(e)

−5 0 5 10 15 20 25 30 35 40 45

−5

0

5

10

15

20

25

30

35

40

45 (a)
vehicle 1

vehicle 2 vehicle 3

(b)

(c) (d)

intermediate waypoint

planned path

traversed path

task point(e)Figure 18c: Field test results for vehicle 2.

−5 0 5 10 15 20 25 30 35 40 45

−5

0

5

10

15

20

25

30

35

40

45 (a)
vehicle 1

vehicle 2 vehicle 3

(b)

(c) (d)

intermediate waypoint

planned path

traversed path

task point(e)

−5 0 5 10 15 20 25 30 35 40 45

−5

0

5

10

15

20

25

30

35

40

45 (a)
vehicle 1

vehicle 2 vehicle 3

(b)

(c) (d)

intermediate waypoint

planned path

traversed path

task point(e)



Copyright Journal of Ocean Technology 2011 Subsea Oil and Gas, Vol. 6, No. 1, 2011  75Copyright Journal of Ocean Technology 2011

Auction-Based Alternating Algorithm Planner 
(Figure 17). The third method uses the 
Auction-Based Proposed Planner which 
considers the curvature constraints of the 
vehicle in generating the sequence for the 
vehicle (Figure 18). Results from field tests are 
summarized in Table 3.

On average, the Auction-Based Proposed 
Planner reduced Tmax by 47% and reduced 
Davg by 34% over the Auction-Based 
Alternating Algorithm Planner. Although the 
MTSP Euclidean Planner solution was 39% 
faster than the Auction-Based Proposed 
Planner solution, the average distance to task 
point was 49% larger since the paths generated 
were not feasible for the Iver2 AUV which had 
a turning radius of 6 metres. This resulted in 
the Iver2 only getting within 1.65 metres of 
the desired task point on average. At worst, the 
AUV only travelled to within 7.11 metres of 
one task point using the MTSP Euclidean 
Planner’s sequence of points. The largest 
distance the AUV got to a task point was 3.53 
metres using the Auction-Based Alternating 
Algorithm Planner and 2.71 metres using the 
Auction-Based Proposed Planner. 

The Auction-Based Proposed Planner also 
performed better with respect to overall 
mission time when compared to the Auction-
Based Alternating Algorithm Planner because 
paths were in general simpler with less loops. 
The Auction-Based Alternating Algorithm 
Planner is based on the sequence of points 

generated by the solving the Euclidean TSP 
which tends to schedule closely spaced points 
in a successive order. Similar to simulation 
results from Matlab, the Iver2 AUV was not 
able to drive from one point to another point 
nearby without long manoeuvres when the 
orientation of the vehicle was not “ideal.” This 
resulted in additional loops which are harder to 
execute on the Iver2 AUV than straight paths, 
leading to longer mission times.

CONCLUSION AND FUTURE WORK

This paper addresses the task allocation of 
closely spaced targets for vehicles that follow 
paths of bounded curvature in the presence of 
constant ocean currents. The proposed path 
cost calculation method uses a modified 
Dubins set that considers the kinematics, 
dynamics, and ocean currents. Path costs are 
calculated using a lower order model created 
from the 6-DOF non-linear model to reduce 
the complexity of the computations. 

The proposed method for path cost calculation 
was developed in Matlab and tested in 
simulations. Simulations using the full non-
linear model of the REMUS AUV indicate that 
the BFS-Dubins Planner yielded better 
performance for a dense set of points when 
compared to the optimal Euclidean MTSP 
tours generated by the BFS-Euclidean Planner. 
For greater than 16 task points, the Auction-
Based Proposed Planner was compared to the 
Auction-Based Alternating Algorithm Planner. 
It was shown that solutions based on 
computing Euclidean tours that do not have 
curvature constraints have extra loops when 
task points are close together relative to the 
turning radius of the vehicle. 

Table 3: Field test results from three randomly generated datasets of 
20 task points for three vehicles.	
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To validate the proposed method for path cost 
calculation in a real world application, the 
Iver2 AUV was used for testing at the Avila 
Pier in California. Analysis of the log files 
indicated that the Auction-Based Proposed 
Planner outperformed the Auction-Based 
Alternating Algorithm Planner with respect to 
the overall mission time as well as the average 
distance to task points. The Auction-Based 
Proposed Planner produced paths through a
set of task points that were feasible for the 
Iver2 AUV to track closely, even in the 
presence of ocean currents. From the results,
it has been demonstrated that considering the 
kinematic constraints and ocean currents is 
essential for minimizing path costs when 
targets are closely spaced.

Future work will consist of an algorithm 
capable of generating paths for AUVs to track 
in a dynamically evolving ocean utilizing 
ocean model predictions. It will also 
incorporate underwater obstacles or 
instantaneous events for dynamic task 
allocation. Another extension is to perform 
trajectory planning (i.e. path parameterized by 
time). With a trajectory planner, the algorithm 
should be capable of performing collision 
checks with other vehicles as well as handle 
time-indexed waypoints. This will make the 
optimization problem more complex as AUV 
powering would have to be considered. 
However, it will allow multiple AUVs to 
operate safely in an environment with highly 
varying currents. 
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