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Abstract

This paper describes the problem of mapping with robots, especially underwater
robots, and presents a system to solve that problem. It begins with a mathematical
definition of the problem of Simultaneous Localization and Mapping, and details
several popular approaches used to solve the problem including Kalman Filters
and particle filters. Furthermore, these approaches are applied to the domain of
underwater robotics, and existing work in two-dimensional underwater robotics is
extended to the third dimension through the use of different models and equip-
ment. The algorithms developed are then applied to an actual three-dimensional
underwater environment, and the results are shown.
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1 Introduction

In this paper, we develop a system that integrates robot sensor measurements from an

ROV (remotely operated underwater vehicle) as well as measurements from a KCF Smart

Tether, a tether with sensor nodes for accurately determining the location of the ROV to

create accurate maps of underwater environments. The problem of accurately mapping an

unknown environment using a robot is a difficult one. Through the use of sophisticated

algorithms and sensors, however, we are able to create accurate maps of underwater

environments that are potentially useful for fields outside of robotics.

1.1 ICEX 2012: The Maltese Mapping Project

The International Computer Engineering Experience Program, or ICEX, was started at

California Polytechnic State University to allow students of computer science, computer

engineering, and other related fields to apply their technical knowledge to real-world prob-

lems in an international context, as well as increase their cultural understanding. This

year ICEX consisted of four students from Princeton, including myself, seven students

from Cal Poly, and Profs. Jane Lehr and Zoe Wood of Cal Poly, and Prof. Chris Clark of

Princeton University and Cal Poly. In March of 2012 ICEX participants traveled to the

island nation of Malta and worked in collaboration with archaeologists from the Aurora

Special Purpose Trust and the University of Malta to develop a system capable of creat-

ing maps of underwater cisterns through the use of a small ROV, sonar, and probabilistic

SLAM algorithms.

Underwater cisterns, tunnel-like systems that are usually found in fortresses, churches,

and even some private homes in Malta, historically provided a relatively clean and efficient

water capture and storage system in a dry country with limited seasonal rainfall. Several

of the cisterns that were visited by ICEX date back to 300 B.C., and the survey of such

systems provides archaeologists with key insight into the origins of such tunnels and wells

as well as information as to how they were integrated with modern water management

systems. Previous attempts at human exploration of these cisterns have proven too
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expensive and difficult, and the small size constraints as well as the possibility of damaging

the cisterns makes this exploration method undesirable. However, through the use of

small underwater robots, we are able to efficiently create maps of these environments in

a non-damaging manner [4].

Previous trips to Malta have focused solely on creating better maps of new as well as

previously explored cisterns. The most recent trip however, has extended the techniques

used in cistern mapping to creating maps of other underwater environments, such as

marine caves and shipwrecks. This application has special implications for the fields of

marine biology and maritime archaeology. In this way, the field of robotics can greatly

simplify the data collection and analysis process for seemingly unrelated fields of research.

1.2 Motivation

The application of previously developed mapping techniques to new underwater environ-

ments has implications for the fields aforementioned, and it also provides new technical

challenges to solve. The process of mapping these new underwater environments is in

many ways much more complicated than mapping underwater cisterns. Previous software

for mapping cistern environments operated in two dimensions, as the third dimension was

easily extrapolated by “growing” walls upwards from the base of the cistern. The cis-

terns also provided a static environment for exploration, with no current that would

increase variation in localization measurements. Marine caves, however, possess irregular

geometry as well as dynamic currents that add noise to our measurements.

1.3 Contributions

We were able to modify the previous cistern mapping software so that is creates three-

dimensional maps. For this purpose, the ROV used was deployed in two configurations:

one with a sonar mounted on top of the ROV scanning horizontally, and one with the

sonar mounted on the front scanning vertically. These horizontal and vertical scans were

then used to create a 3D map of the environment using a highly accurate KCF Smart

Tether to provide location data and a particle filter to refine the observation estimates.
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2 Background and Related Work

2.1 History and Overview of SLAM

Creating a map of an unknown environment requires the robot to move throughout

the environment while simultaneously integrating its sensor measurements to update its

hypothesis of what the map looks like. This process requires the robot to keep track of its

current location within the area at all stages of the process in order to build a consistent

map. Known as the SLAM problem, or Simultaneous Localization and Mapping, it

essentially requires the robot to answer two questions without any a priori knowledge:

“Where am I?”, and “What does the world look like?” The solution to SLAM incorporates

the processes used to answer these questions into a feedback loop, where the answer to

one question is used to more accurately answer the other question. The combination

of accumulative errors in localization as well as noisy environments make this problem

especially difficult.

The Simultaneous Localization and Mapping problem has, in fact, only recently been

solved within the past two decades. It originated in 1986 at the IEEE Robotics and

Automation Conference with work by Randall C. Smith and Peter Cheeseman on the

estimation of spatial uncertainty [2] and later with work by Hugh Durrant-Whyte [3]

on describing relationships between objects in a map and manipulating geometric un-

certainty. The key contributions of these works were that they showed there must be

a high degree of correlation between location estimates of different objects in a map

and they proved that these correlations would increase with the number of successive

observations[1].

Today, the SLAM problem is formulated probabilistically, where an observation model

characterizes the probability of making a specific observation when the robot’s location

as well as the location of landmarks in the map are known, and where a motion model

describes the probability of a state transition to another location given some control

inputs. The SLAM algorithm uses sequential prediction steps, which offer a hypothesis

of the location given the motion model, and correction steps, which refine the hypothesis
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by determining how well this location estimation fits the observation model. These two

steps are bound in a loop, and the algorithm is usually implemented using Kalman filters

or sequential Monte Carlo methods known as particle filters.

2.2 Probabilistic SLAM

SLAM is intended to be used with a mobile robot that moves through an environment

while making observations about the surrounding area using sensors (whether they be

sonar, laser, visual etc.). The high amount of uncertainty and sensor noise associated

with robot mapping necessitates the use of probabilistic algorithms for mapping. Prob-

abilistic algorithms model explicitly different source of sensor noise and their effects on

measurements and their uncertainty [6]. Therefore, we introduce the following proba-

bilistic formulation of SLAM as described in Durrant-Whyte & Bailey (2006). At time t,

we define the following:

• xt : The state vector of the robot which describes its position and orientation.

• ut : The control input vector consisting of the robot control inputs at time t − 1
used to drive the robot to state xt at time t.

• mk : The vector of describing the true location of landmark k, which can be thought
of as a point in the plane for our purposes.

• ztk : An observation taken by the robot at time t of the location of landmark k.
This is abbreviated as zt when referring to a set of multiple landmark observations.

• X0:t : The history of robot locations.

• U0:t : The history of control inputs.

• M = {m1,m2, · · · ,mK}: The set of all landmark location vectors, i.e. the map.

• Z0:t : The set of all landmark observations.

A solution to the SLAM problem involves, for all times t, computing the joint posterior

density of the set of landmark locations and the robot state at time t conditioned on initial

robot state, the history of observations up to and including time k, and the history of

control inputs up to and including time t:

Pr(xt ,M | Z0:t ,U0:t ,x0) (1)
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If we start with an estimate of the joint posterior at time t − 1, we can calculate

the joint posterior at time t recursively using Bayes Theorem. First, we describe an

observation model, the probability of observing zt when the robot location and landmark

locations are known:

Pr(zt | xt ,M) (2)

We can assume that the observations are conditionally independent of each other given

a robot location and map. Next we describe a motion model, a probability distribution

of state transitions which are assumed to be Markov processes in which the next state

only depends on its previous state and control input, and which are independent of

observations and the map:

Pr(xt | xt−1,ut) (3)

The SLAM algorithm consists of a two-step recursive procedure with a prediction step

that uses the motion model to predict our next state, and a correction step that uses the

observation model to refine our state estimate:

Prediction Step

Pr(xt ,m | Z0:t−1,U0:t−1,x0)

=

∫
Pr(xt | xt−1,ut)Pr(xt−1,M | Z0:t−1,U0:t−1,x0)dxt−1

(4)

Correction Step

Pr(xt ,M | Z0:t ,U0:t ,xt)

=
Pr(zt | xt ,M)Pr(xt ,M | Z0:t−1,U0:t ,xt)

Pr(zt | Z0:t−1,U0:t)

(5)
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Figure 1: The SLAM problem. Triangles are robot positions and rectangles are landmark
positions.

The key to SLAM is that the relative location between any two landmarks increases

monotonically with the number of observations made [1]. This fact was determined by

Newman et al. who proved that the estimated map converges monotonically to a

relative map with zero uncertainty and that the absolute accuracy of the map and robot

location approach a lower bound that is defined solely by the initial robot location

uncertainty [5]. Their paper effectively proved the existence and convergence of a

solution to the SLAM problem, which consequently means that it is possible to start at

unknown location in an environment with no a priori information about the map of the

environment, and incrementally construct a perfect map of the environment using only

relative locations of landmark observations while at the same time achieving a bounded

estimate of the robot location. Observations made by the robot are of the relative

locations between landmarks, and these observations are ’nearly independent’ because

the observation errors will be correlated between movements of the robot [1].

In Figure 1, observe the robot at location xt−1. The robot makes observations of

landmarks mi and mj. When the robot moves to location xt, the robot makes an

observation measurement of mj again. We can now update the estimated location of
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the robot and the estimated location of the landmark observed relative to the robot’s

position at xt. Because the relative locations of landmarks mi and mj are well known,

the estimated locations at xt back-propagate to update the position of mi. As we

observe new landmarks, these also become effectively ’linked’ in the map with all other

measurements by their relative positions. Successive observations only increase the

accuracy of the relative locations, and thus the accuracy is bounded only by how

accurate our starting position is.

2.3 Solutions to SLAM

So far we have described the SLAM problem and have noted that a solution is possible,

but we have not yet discussed how to implement a solution to SLAM. The Extended

Kalman Filter (EKF) and the Particle Filter are two of the most popular algorithms

used to solve the SLAM problem. Each has their advantages, and the two methods are

related as the particle filter is based on the Kalman Filter. While we chose to use a

particle filter implementation for the mapping project, it is useful to briefly discuss the

Extended Kalman Filter to note the particle filter’s advantages over it.

2.3.1 Extended Kalman Filter SLAM

The Kalman filter is a type of Bayes filter, a recursive online algorithm which can be

used to update a robot’s belief state about its position from incoming sensor

information. The Kalman filter uses Gaussian distributions to represent the motion

model of the robot as well as the observation model. The filter is very efficient because

it only has to update the Gaussian’s mean and covariance during each prediction and

correction step. The downside is that the assumptions made by the Kalman filter

require that the initial belief state (of the robot location) be a Gaussian. This means

that the robot’s initial location must be known (to a degree of accuracy), or the robot

will not be able to localize itself if it gets lost [7]. This is known as the “kidnapped

robot problem.” Besides the Gaussian assumptions that the Kalman filter makes, it also

assumes that the models linear. However, in real-world applications this is often an
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incorrect assumption. The Extended Kalman Filter is like the Kalman filter in that it

assumes Gaussian error, but it is more attractive in the sense that its models need not

be linear.

The EKF approximates the nonlinear models through a linear function obtained from

first degree Taylor series expansions [6]. As in Durrant (2006)[1], the EKF describes the

vehicles motion model as follows:

xt = f(xt−1,ut) + wt (6)

where f is determined by the robot’s kinematics and wt are additive, zero mean

Gaussian random variables with covariance Qt. These Gaussians represent disturbances

in the robot’s motion, and are used to model uncertainty.

The observation model in the EKF is described as follows:

zt = h(xt,M) + vt (7)

where h represents the observation measurements and vt are additive, zero mean

Gaussian random variables with covariance Rt. They are also used to represent

measurement error.

With the Extended Kalman filter, we can compute the mean (our estimated state) and

covariance of the joint posterior distribution Pr(xt ,M | Z0:t ,U0:t ,x0) seen in

section 2.2. Let yt be the extended state vector comprised of

xt |t

m

 and let the

observable state estimate ŷt be

x̂t |t

m̂t

. The mean is computed as:

ŷt = E
[
yt | Z0:t

]
(8)

Recall that Z0:t is the set of all measurements taken up to and including time t. Also,

we define error in the estimate to be et = ŷt − yt The covariance matrix of the state is

computed as follows:
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Pt |t =

[
Pxx PxM

PxM PMM

]
t |t

(9)

= E
[
ete

T
t | Z0:t

]
(10)

In the covariance matrix, Pxx is the error covariance matrix associated with the robot

state estimate, PMM is the covariance matrix of the map associated with landmark

state estimates, and PxM is the cross-covariance matrix between the robot and

landmark states [5]. The Extended Kalman Filter is comprised of a prediction step and

a correction step, as in our SLAM formulation. Given an estimate x̂t−1|t−1 of the state

xt−1 at time k − 1 and an estimate of the covariance Pt |t , the prediction step updates

the following:

x̂t |t−1 = f(x̂t−1|t−1,ut) (11)

Pxx ,t |t−1 = Ft−1Pxx ,t−1|t−1F
T
t−1 + Qt (12)

where Ft−1 is the Jacobian of f evaluated at x̂t−1|t−1. The correction step using the

object measurements is accomplished as follows:

Let St = HPt |t−1H
T + Rt , and let Wt = Pt |t−1H

TS−1t , where HT is the Jacobian of h

evaluated at x̂t |t−1 and mt−1

Then the mean and covariance are updated:

ŷt =

[
x̂t |t−1
m̂t−1

]
+ Wt [zt − h(x̂t |t−1, m̂t−1)] (13)

Pt |t = Pt |t−1 −WtStW
T
t (14)

The EKF possesses several desirable properties. One property is that the map

converges, meaning that the error in relative position between landmarks decreases to a

lower bound determined by the initial state accuracy, as proved in [5]. The fact that it

can estimate non-linear models is another beneficial trait.. However, non-linearity is
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only approximated by linear functions in EKF and can lead to inconsistent solutions as

shown in Julier & Uhlmann (2001) [8]. It also assumes a Gaussian distribution in the

models, a characteristic that is usually not found in real-world robotics [6]. The EKF is

also limited in that it is very sensitive to incorrect data associations of landmarks. This

happens when the robot incorrectly matches landmark mi with landmark mj [7]. This

is very counterproductive in the context of SLAM, because SLAM depends on high

correlations between landmarks. An additional restriction is computational complexity.

In the correction step, all landmark locations and the joint covariance matrix must be

updated every time an observation is made, which means that the time complexity is

O(|M |2) where |M | is the number of landmarks. In the original EKF approach, this

means that the size of the map is usually limited to less than a thousand features [7].

However, efficient variations of the EKF SLAM algorithm have been created which

allow for many thousands of map features [9] [10] [11].

Figure 2: The standard deviation of landmark location estimates decreases monotonically to

a lower bound. The spikes in standard deviation are due to the acquisition of new landmarks

(from [5]).
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2.3.2 Particle Filter

Another popular algorithm used in solving the SLAM problem is the particle filter.

Whereas EKF SLAM represents the probability distribution of the robot state with a

two-dimensional Gaussian, the particle filter implementation of SLAM represents the

distribution as a set of samples, or particles, that are drawn from this distribution [7].

A particle filter is known as a sequential Monte Carlo method. Originally used in

statistics and other related fields, the particle filter was made applicable to the SLAM

problem by Murphy and Russell [14] using a type of particle filter called the

Rao-Blackwell particle filter based on the works of Rao and Blackwell [12][13].

Rao-Blackwell particle filtering was made very efficient in the FastSLAM algorithm by

Montemerlo et al.[15], a filter from which the particle filter we use is derived.

The FastSLAM algorithm[15] recursively estimates the full posterior distribution over

robot states and landmark locations, but it does so much more efficiently than the

EKF, taking only time logarithmic in the number of landmarks. The algorithm achieves

this by exact factorization of the posterior distribution into a product of a distribution

over robot paths and the conditional landmark distributions. Exact factorization is

possible because of the fact that observations are conditionally independent of each

other given a robot location and map.

In FastSLAM, the posterior is factored as follows:

Pr(X0:t ,M | Z0:t ,U0:t ,N0:t) = Pr(xt | Z0:t ,U0:t ,N0:t)
∏
k

Pr(mk | Z0:t ,X0:tU0:t ,N0:t)

(15)

where there are K landmarks, and N0:t is set of correspondences, or the indices of the

landmarks perceived at times t, and k represents the index of a landmark. The

FastSLAM algorithm uses a modified particle filter to estimate the path and estimates

the landmark positions using a separate Kalman filter for each landmark. Each particle

has its own path estimation and local landmark estimates (because these estimates
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depend on the path estimation). Thus, for M particles and K landmarks, there are

KM Kalman filters, each with dimension equal to the number of dimensions for

landmark locations [15].

2.3.3 Path Estimation

The particle filter in FastSLAM has a fixed number of particles, M , and each particle m

represents a guess of the robot’s path. We obtain the most recent set of particles, Xt

from the last set, Xt−1, the control input to the robot ut , and a measurement zt . First,

for each particle m at time t (xt,m), a motion model is used to predict a robot’s state

given ut and the most recent set of particles Xt−1:

xt ,m ∼ Pr(xt | ut ,xt−1,m) (16)

Each of these estimates is then added to a temporary set of particles, X′t . Each particle

is given a weight, or importance factor, wt ,m . It is assumed that St−1 is distributed

according to Pr(xt−1 | zt−1,ut−1,nt−1), and then the new particle is distributed

according to Pr(xt−1 | zt−1,ut ,nt−1). This distribution is known as the proposal

distribution of particle filtering [15]. We thus define the weight to be:

wt ,m =
targetdistribution

proposaldistribution
=

Pr(xt | zt ,ut ,nt)

Pr(xt | zt−1,ut ,nt−1)
(17)

The new set of particles Xt is formed by drawing M particles, with replacement, from

X′t with probability proportional to wt ,m . Because the new particles only depend on the

previous robot state, each particle’s size is independent of time.

2.3.4 Landmark Location Estimation

Each landmark estimate in a particle is represented by a Kalman filter, and each is

attached to a particle in Xt . The contents of the set Xt are defined as the following for
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every particle m:

Xt = {xt ,m , µ1,m ,Σ1,m , · · · , µK,m ,ΣK,m}m (18)

where µk ,m is the mean of the m-th particle’s k-th landmark’s Gaussian, and Σk ,m is its

covariance. In a two-dimensional map, the mean is a two-dimensional vector and the

covariance is a 2x2 matrix; in a three-dimensional map, the mean is a three-dimensional

vector and the covariance is a 3x3 matrix. To find the posterior over Pr(mk), the

position of the k-th landmark, we first need to know if the landmark was observed at

time t. If it was not, the Gaussian does not change in the update step:

Pr(mk | X0:t ,Z0:t ,U0:t ,N0:t) = Pr(mk | X0:t−1,Z0:t−1,U0:t−1,N0:t−1) (19)

If the landmark is observed at time t, we modify the following as in [15]:

Pr(mk | X0:t ,Z0:t ,U0:t ,N0:t) ∝

Pr(zt |mk ,X0:t ,Z0:t−1,U0:t ,N0:t)Pr(mk | X0:t ,Z0:t−1,U0:t ,N0:t)[Bayes Rule]

= Pr(zt |mk ,X0:t ,Z0:t−1,N0:t)Pr(mk | X0:t−1,Z0:t−1,U0:t−1,N0:t−1[Markov Assumption]

(20)

FastSLAM uses an EKF for the update step, equation (20). Like other EKF SLAM

implementations, it approximates the observation measurements with a linear Gaussian

model. However, unlike the Extended Kalman Filter, FastSLAM’s Gaussian is of

dimension two or three as opposed to size (dK + 3), with d dimensions, K landmarks,

and 3 (or 4 if in 3D) elements of the robot state. Vanilla FastSLAM runs in O(MK)

time, but the version described in Montemerlo et al. runs in O(M logK) time by

representing the set of Gaussians as a balanced binary tree. Additionally, FastSLAM is

more likely to recover from data association failures than EKF SLAM is because it is

able to pursue multiple data associations at the same time (through the use of

particles). According to Montemerlo et al., the FastSLAM algorithm is able to create
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accurate maps with a fixed number of particles, e.g. 100 particles. It has also been able

to achieve this on maps with 50,000 features, a feat not possible for original

implementations of EKF. FastSLAM’s low time complexity and its ability to make

accurate maps of complex environments make it a perfect choice to use in our

underwater mapping.

2.4 Maltese Cistern Mapping Project

For our mapping project, we are building on an existing code base built by Prof. Clark

and Billy McVicker as well as previous students at California Polytechnic State

University. The previous code used the FastSLAM algorithm as specified in White et al.

(2010) [4]. This version of FastSLAM uses a particle filter to construct occupancy grids

and consists of a collection of M particles denoted as Xt that model the belief state.

Each particle has an occupancy grid mt with cells 0.20m by 0.20m in size, the robot’s

state xkt , and a weight wk
t that represents the likelihood that the kth particle represents

the true state. zt represents that sensor measurements at time t, and ut represents the

control inputs to the robot at time t.

Algorithm 1 FastSLAM(Xt−1, ut, zt) from White et al. (2010)

X ′t = Xt = 0
for k = 1→M do
xkt ← sample motion model(ut, x

k
t−1)

wk
t ←measurement model map(zsonar,t, ut,m

k
t−1)

wk
t ←measurement smart tether(ztether,t, ut,m

k
t−1,w

k
t )

mk
t ← updated occupancy grid(zsonar,t, ut,m

k
t−1)

X ′t ← X ′t + {xkt ,mk
t , w

k
t }

end for
for k = 1→M do

draw i with probability ∼ wi
t from X ′t

add {xit,mi
t} to Xt

end for
return Xt

In order to account for tether snags and collisions with walls, the sample motion model

is as modified as follows:
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xkt = f [xkt−1, ut(1 + r1)− εut(1 + r2)] (21)

ε =

 0 if r3 < λ

1 else
(22)

In the above equation, r1 and r2 are normally distributed random variables, r3 is a

uniformly distributed random variable, λ is the probability of a tether snag or collision,

and ε is an indicator random variable that takes the value 0 if there is no snag or

collision and 1 if there is.

Given the robot state xt and the map mt−1, an expected sonar measurement is

calculated and compared to the actual sonar measurement zsonar. If the two

measurements are similar, a high weight is returned. If the two measurements are far

apart, a low weight is returned. The weights for each particle based on the sonar

measurements is calculated in measurement model map according to a Gaussian

model as follows:

wk =
B∑
i=1

1

σz
√

2π
exp

[
−(pkm − pz)2

2σ2
z

]
(23)

where B is the number of sonar measurement locations, and σz is the standard

deviation of the model with expected probability pkm.

The expected smart tether measurement is the particle position xk, and the

measurement smart tether function strengthens the weight wk calculated in the

previous step if the xk is similar to the actual smart tether measurement ztether.

Otherwise it decreases wk. The weight is calculated according to the following Gaussian

model:

wk = wk 1

σtether
√

2π
exp

[
−(xk − ztether)T (xk − zst)

2σ2
tether

]
(24)

The last function, updated occupancy grid, uses the new sonar measurements to

update the map, with higher sonar signal return strengths associated with a higher
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likelihood of a particular cell being occupied.

The last five lines of the algorithm are the resampling phase, where a new collection of

particles Xt is generated by randomly selecting particles from X ′t to add, giving higher

probability of selection to particles with higher weights (weights which have been

normalized according to the sum of the particle weights).

While operating the ROV, sonar scans were taken so that they overlapped. This

allowed for proper localization with the particle filter as it caused the relative locations

of walls to be observed. Several different mapping techniques were used. First, sonar

mosaics were created by manually stitching together raw sonar scans taken while the

robot was stationary. This technique had the benefit of quickly being able to obtain a

high quality map of an area, but was subject to human error:

Figure 3: Scans from a monastery in Mdina, Malta. Seven overlapping scans were rotated

to obtain a full map of the cistern, shown on the right. From White et al. [4]

Below is the result of running the mapping program on previously recorded sonar data

in a cistern in Malta:
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Figure 4: Map from sonar data

Other techniques involved stationary sonar mosaics using the Smart Tether for robot

localization data, running SLAM with the ROV in motion, SLAM with stationary

scans, and SLAM with smart tether data. It was determined that stationary SLAM was

the most accurate method followed closely by manual sonar scan mosaics. SLAM while

in motion was the least accurate because scanning while moving prevents one from

obtaining full scans for any given location. This reduces the amount of overlap between

features, hence lessening the accuracy of the relative locations of features.

20



Figure 5: In (a), the robot is at its initial state and its location is ambiguous, as the particles

(red) are spread out randomly. After several sonar scans (b), the robot converges to its actual

location (blue square). The error as a function of time is plotted in (c). From White et al.(2010)

[4]

Even though there was no knowledge of the initial state of the robot, the FastSLAM

algorithm used while the robot was stationary always allowed the robot to converge to

within 0.5 m of its actual location [4]. Its localization accuracy was determined by

flying the robot to directly below the access point for the cistern and observing the

difference between estimated and true position.

21



3 Methods

The goal of this project was to apply the SLAM techniques to the mapping of

underwater environments. The cisterns mapped in previous years have had relatively

predictable geometries, and it is easy to obtain a three-dimensional map from a

two-dimensional map by simply extrapolating the walls upward using the depth

measurements from the ROV. Therefore, the two-dimensional SLAM algorithm used

was perfect for those situations as it reduced the computational and coding complexity

of adding a third dimension. However, the third dimension is essential to mapping

complex environments such as marine caves. We used an underwater sonar for mapping

data as well as a KCF Smart Tether and ROV sensors for localization data.

3.1 Equipment & Data Collection

We used a small VideoRay Pro 3 ROV as our robot of choice. Its small size makes it

easily maneuverable, and it is equipped with horizontal thrusters, a vertical thruster for

depth control, two front-facing halogen lights, a rear-facing LED light array, a forward

facing camera, and a rear facing camera. The ROV is connected to a control box by a

tether that sends control signals from the control box to the robot, and sends back

depth and heading information. The control box contains a joystick for piloting the

robot, knobs for depth control and lights, a video screen, and an LCD display showing

time, depth gauge readings, compass direction, and time. The control box can connect

to a laptop computer via USB and serial ports. In this way it is possible to interface

with the robot directly from one’s computer, allowing for autonomous control. However,

none of the mapping was done autonomously for the sites we visited. A Tritech

SeaSprite sonar was mounted to the top of the ROV to allow for scanning in the

horizontal direction. In certain instances, the sonar was also mounted to the robot so

that it scanned in the vertical direction. This allowed for the possibility of creating

three-dimensional maps. The sonar was connected through the ROV to the tether,

which sent signals to the control box which were then fed into a Panasonic Toughbook
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computer. The SeaSprite software showed real time scans from the sonar, and provided

the ability to save scans to .csv log files. The software also made it possible to change

the sonar range, frequency, and gain.

Figure 6: Model of the VideoRay Micro ROV. ROV is shown with the sonar mounted horizon-

tally, with a head that rotates the sonar beam 360 degrees around the horizontal scan plane.

XR, YR, and ZR represent the axes of the robot’s local coordinate frame, while XI represents

the x-axis of the global (inertial) coordinate frame. θ is the robot’s compass heading, with 0

degrees facing magnetic north. β is the angle between the scan beam and the robot’s local

x-axis. From White et al. (2010).

For certain sites, such as the marine cave and shipwreck site we visited, the underwater

environment was too large to rely on motion models and observation models of the

surrounding features alone. With such large areas, a position determined by the motion

model would have accumulated a high amount of error over time, and the observation

model may not be able to correct it if there are not enough overlapping features.

Therefore, we decided to use the Smart Tether, manufactured by KCF, to enhance the

localization accuracy of the ROV. The 40 meter long Smart Tether uses acceleration,

magnetic, and rate-gyro sensors to track the position and measure the orientation of the

ROV in real time. These sensors are embedded in six nodes along the length of the

tether. Each node is six meters apart, except for the first two. The first node is

attached to the top of the ROV and the second node is about a meter from the first
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node. The smart tether comes with a GPS system that allows the operator to obtain

absolute coordinates rather than coordinates relative to the base of the tether. This is

especially important when the tether base is not stationary. In the case of the marine

cave and shipwreck, we deployed the ROV from a 25-foot survey boat. We were

fortunate enough to obtain a GPS fix which kept track of the base’s position, because

the boat kept drifting and our skipper had to constantly correct our position through

adjustments to the throttle. The Smart Tether’s control box connects to the ROV’s

control box as a normal tether does, and also has a USB port to connect to a computer.

KCF’s Smart Tether software was used on a Panasonic Toughbook to observe the

location of the ROV in real time. The measurements were logged continuously while the

robot was in the water, at the rate of about 5 Hz, and the measurements were saved

into a .csv log file for use in the FastSLAM algorithm. In addition to sonar data and

smart tether data, video from the ROV’s front camera was also recorded. This was only

used for archival purposes, however. It was not used in the SLAM algorithm.

Our team began logging smart tether data when the robot entered the water. The

smart tether software requires the operator to keep track of how many nodes are

currently in the water as well as the length of tether in between nodes that is in the

water (to the nearest meter). Therefore, human error is a factor in the accuracy of the

smart tether measurements. In normal usage, however, the smart tether is able to

obtain accuracy better than 5 ft (1.5 m)[16]. Each team member was responsible for a

certain task during the mapping process. These tasks included handling the tether and

keeping track of the number of nodes and the extra length in between nodes currently

in the water. Another student would sit at the Toughbook computer and operate the

Smart Tether and sonar software while another student would drive the robot. We

made decisions to record and save sonar scans based on the clarity of the image

produced. For the case of the marine cave, scans were usually taken starting from the

mouth of the cave and then subsequent scans were taken while going deeper into the

cave. When it was time to take a scan, the computer operator would start recording a
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Figure 7: Toughbook computer displaying sonar information on the right side and smart tether
information on the left side. Note that the smart tether gave depth and bearing information,
but these values were not considered as accurate as the values from the ROV, so they were not
used. The shape of the tether is displayed in real-time in the upper left-hand box.

sonar scan and stop recording a little over one rotation through. The ROV pilot would

either have the ROV parked at the bottom of the cave so as to reduce variation in

motion, or hover at a fixed position. Another student would add a sketch of the sonar

scan to a rough hand-drawn map of the environment for later comparison, and record

the compass heading, time, and depth reading of the ROV. This information was later

turned into a log file for use in the localization part of the algorithm.

3.2 Occupancy grid

An occupancy grid approach was used to map our environments. We extended the

occupancy grid approach used in the mapping of cisterns to three-dimensions, where the
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map of the environment is discretized into of cubed cells, or voxels, of equal dimensions.

We used 0.3m as the length, width, and height of each cell as it was determined that

our measurements were not more accurate than that. An occupancy grid approach was

used instead of other methods because no assumptions could be made about the

geometric properties of the environments we were mapping beforehand. The occupancy

grid is useful because it provides the flexibility needed to map to an arbitrary level of

detail. If our measurements were more accurate, we could have simply decreased the

size of each cell. The robot’s position is kept track of in terms of real coordinates

(which are more precise), not cell coordinates. The robot’s state is represented as a

vector Xt = [x y z θ]. x, y, and z are the xyz-coordinates of the robot in the occupancy

grid (with z increasing with depth) and θ is the angle between the robot and the robot’s

vertical axis and the global vertical axis.

Attached to each cell is a probability that the cell is occupied. Higher probability cells

show up on the map as lighter than lower probability cells. Each cell’s probability is

determined by the particle filter when sonar scans and localization data are taken into

account by the FastSLAM algorithm. Because of memory requirements, naively storing

each cell in memory leads to inefficient results. Each particle that the particle filter uses

stores its own map, and we would quickly run out of memory when using a higher

number of particles if we just stored the full occupancy grid each time. Instead, Austin

Walker, a member of the Princeton ICEX team, developed a hybrid octree data

structure that stores the map, similar to the one in Fairfield et al. [17]. Octrees are

trees in which every node has exactly eight children. They recursively subdivide a

three-dimensional space into eight octants. They can be used to form a multi-resolution

grid, meaning it is not necessary to store every cell in the grid. We can represent areas

of the maps that are empty or sparsely populated by larger cells than the standard size.

If we obtain data from a scan in this area, we can recursively divide the space into as

many voxels as we need to obtain the proper resolution. In this way, our memory

management becomes much more efficient and allows a particle filter to be run with a
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higher number of particles (which usually increases its accuracy).

3.3 Particle filter

The particle filter used in this project is based on the FastSLAM variant given in White

et al. (see section 2.4). It has been modified for use in our primary mapping

environment, underwater marine caves. We have dispensed with the motion model in

the prediction step, as we only take scans while stationary within the cave. We have

also removed the step which weights the particle based on the data from the smart

tether. Instead, for each scan we initialize the particles’s XY location to the location

given by the smart tether. We then distribute the particles around the initial position

using a 4D Gaussian (in x, y, z, and θ), with standard deviation for the X-direction and

Y-direction Gaussians equivalent to the tether accuracy of 1.5 m, and standard

deviation for the Z-direction equal to the depth accuracy on the ROV. After some

measurements of depth sensor error were taken in the DeNunzio Pool at Princeton, it

was decided to use 0.2 m for the standard deviation of the depth sensor. The compass is

assumed to be highly accurate, and the orientation Gaussian for θ was set to a standard

deviation of 0.01 radians, or about 0.5 degrees. All Gaussians have zero mean.

The measurement model function that weights based on the sonar data has also been

changed. Since we are now operating in a 3D environment while still only using 2D

sonar, it is unlikely that we will achieve many scans that overlap. Indeed, we did not

even try to attain overlap while taking scans in the cave, and our results confirm that

scans do not overlap. However, because we have taken scans in the horizontal direction

as well as vertical direction, it is possible that some of our horizontal and vertical scans

intersect. If this is the case, it should result in a high weight for a particle. If it is not

the case, the weight for the particle should not change. To determine intersections, a

map of horizontal scans and a separate map of vertical scans are stored for each

particle. We process horizontal and vertical scans in alternating order. At the particle

weighting stage of the algorithm, it is determined whether the scan being processed is
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horizontal or vertical.

If the scan is is horizontal, we look at the particle’s map of vertical scans (referred to as

the vMap). From the depth of the robot according to the particle, we extend a ray

outwards in the XY plane for every value of the sonar bearing in the scan (we just

rotate the ray clockwise around the vertical axis of the ROV in the XY plane as the ).

If this ray intersects a filled cell in the vMap (one that exceeds the probability for being

a wall), we calculate the distance from the particle to this cell. This is our expected

distance dexpi at angle αi. For every dexpi we have, we return to the horizontal scan and

for every angle αi, we calculate the distance to the point where the sonar receives a high

enough signal return strength for a wall to exist. This is our dactuali . For every i, we

take the squared difference between dactuali and dexpi and return a weight from a

Gaussian function:

wi =
1

σz
√

2π
exp

[
−(dexpi − dactuali)2

2σ2
z

]
(25)

where σz is the standard deviation. σz can be taken as 2∗cellSize in this case, or 0.6. To

compute the weight for a scan, we can average these weights wi. If the weight w is

greater than 0, then add it to the current particle weight.

We can follow a similar procedure for a vertical scan, but instead we look at the

particle’s map of horizontal scans (its hMap). For this, we must consider rays that are

in the plane defined by the ROV’s horizontal and Z-axis. Again, we calculate the

expected distances to cells in this plane using the data from hMap, and for every angle

α that we find a distance to a cell, we look at this angle α in the vertical scan and

determined the actual distance to a wall from the scan. The weights are calculated in

the same manner as before.

The algorithm that we actually use is slightly different , although in effect the same.

For each iteration of its loop, the mapping software gets a chunk of data from a sonar

scan file. This corresponds to one bearing in the scan. Therefore, FastSLAM only runs

for a single sonar bearing, meaning we only have to check along the ray cast out by that
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sonar bearing in each iteration of FastSLAM. If there is an expected distance found for

this bearing, we look at the chunk of sonar data for an actual distance. If there is no

expected distance found (i.e. none of the cells along the ray returned a high enough

probability to be a wall) we exit the FastSLAM function, do nothing with the particle

weight, and go to the next particle. In this way, most particles will have a weight of

zero (because most won’t have intersections), but those that do return a high weight,

and because particle weights are normalized when they are resampled, particles for

which an intersection exist have a very high probability of propagating throughout the

algorithm. After we have gone through all the scans, the vMap and hMap of the highest

weighted particle are combined into one map, and this is displayed as our final map.

Below is the pseudocode for the new FastSLAM algorithm:

Algorithm 2 Mapping with FastSLAM

for each sonar scan s do
for Particle p : Particles do

Initialize p’s position to Smart Tether/ROV Location Data + randomness
end for
for each sonar bearing βi in s do

if i mod resample rate = 0, RESAMPLE
FASTSLAM: {
X ′t = Xt = 0
for k = 1→M do
wk

t ←measurement model map(sonardata, particlemap)
mk

t ← updated occupancy grid(sonardata, localizationdata)
X ′t ← X ′t + {ROVstate xk

t ,ParticleMaps mk
t ,Weight wk

t }
end for}

end for
end for
RESAMPLE: {
for k = 1→M do

draw i with probability ∼ wi
t from X ′t

add {xit,mi
t} to Xt

end for
return Xt }
Combine Horizontal/Vertical Maps of Highest Weighted Particle
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3.4 Smart Tether Modeling

The smart tether gives location data in the form of a NMEA GPGGA String, a

standard GPS string [18]. This gives lat/long coordinates that we wish to convert to X,

Y coordinates in our local frame of reference (relative to the base). We can use

Vincenty’s formulae, which are used to obtain the distance between two points on the

surface of a spheroid (the assumed shape of Earth), to obtain these relative coordinates.

A detailed formulation is found is given by C. Veness [19].

The length of the smart tether is only 40 m, and therefore our ROV’s range is quite

limited. To extend the range, we added an 80 m long extension tether to the smart

tether. However, the extension tether has no nodes and doesn’t give us any position

data. That means our only localization data once we put the extension in the water

comes from the ROV depth sensor and compass. For this reason, the smart tether

extension is usually used to drive the ROV deeper than what would be possible with

the smart tether. This way, the X and Y coordinates are known from the Smart Tether,

and the Z coordinate is known from the ROV depth sensor.

We did not use the extension for this purpose. Instead we used it to go further into the

cave. This caused our scans in the deep sections of the cave to be drawn on top of the

other scans because the smart tether had reached its maximum range and thus was

placing scans at the same coordinates. We try to clean up the scans further into the

cave by predicting the location of the ROV based on the ROV sensors and the extension

tether length alone. The amount of extended tether in the water was kept track of by a

team member, and this amount was generally accurate to 5 m. Note that we do not use

the particle filter in this prediction.

The Smart Tether, according to its patent, can be modeled as a catenary curve. This

holds for freshwater, where the smart tether is neutrally buoyant. The smart tether

extension is negatively buoyant in fresh water, but we will assume that it can be
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modeled as a catenary curve in saltwater.

The following is an example of a catenary curve:

Figure 8: The catenary curve can be used to model the smart tether. In this drawing, s is the

length of the curve (tether), x is the horizontal distance we are trying to find, and y is the vertical

distance (difference in depth).Picture from http://en.wikipedia.org/wiki/File:Catenary.PNG

The equation of the catenary is y = a cosh x
a

= a
2
(ex/a + e−x/a).

We are given the length l of the catenary curve (smart tether extension). Let v be the

vertical distance from the base of the tether to the end, and let h be the horizontal

distance. v is simply the new depth minus the previous depth and we are trying to find

h. a is related to the tension in the tether. Experiments were conducted at DeNunzio

pool with a tether, and the values of a range from 0.3 to 0.5. We will use 0.5 as a. We

are trying to find k, the distance traveled between the previous position and the new

position, and this can be calculated from the following formula [20]:
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√
l2 − k2 = 2a sinh

h

2a
(26)

k = l2 − 4a2 sinh2 h

2a
(27)

Once we know k, we can calculate the translation in position. Let ∆θ be the difference

between the old ROV bearing and the new ROV bearing, ∆y be the difference in

vertical position, and ∆x be the difference in horizontal position, and ∆z be the

difference in depth:

∆y = k sin ∆θ (28)

∆x = k cos ∆θ (29)

If (xt, yt, zt) is the new position and (xt−1, yt−1, zt−1) is the old position, then:

xt = xt−1 + ∆x (30)

yt = yt−1 + ∆y (31)

zt = zt−1 + ∆z (32)

4 Results

The smart tether was a great tool to have while mapping. The scans near the mouth of

the cave appear to be the cleanest, while the scans further in tend to become messier as

errors in location accumulate. The vertical scans especially turned out nicely, and they

give a good feel for the vastness of the cave. The vertical scans form a skeleton of the

cave as they were taken relatively far apart from each other.

Unfortunately the particle filter did not perform as well as we had hoped. The fact that

there were few intersections between scans limits the particle filter’s effectiveness. One
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Figure 9: A map of the cave using only vertical scans. The scans form what look like ribs
of a skeleton. Using these scans it is possible to extrapolate a solid wall between them.
Note that this does not use the particle filter.

Figure 10: The map becomes much less clear when the horizontal and vertical scans are both
drawn.
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problem is with the scattered distribution of cells for each wall. If a wall-finding

algorithm were used to connect nearby cells to form a wall, perhaps the particle filter

could then find the intersections between horizontal and vertical scans. Perhaps more

data would also help improve its effectiveness.

Figure 11: A top down view of the map when the particle filter is run (using 10 particles)

Figure 12: Another view of the same map after the particle filter (using 10 particles)

Even though the addition of horizontal scans produced a less than optimal map, we

were able to extrapolate the walls of the cave from the vertical scans. Austin Walker

wrote a grow walls function in the code that fits a wall through scans, the results of

which are below:
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Figure 13: View from mouth of cave with walls filled in

The data from this map was sent to Jeff Forrester at Cal Poly who used his

visualization software to create a realistic looking cave map with textures:

Figure 14: Visualization of the cave map with textures applied to walls
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5 Conclusion

The use of the smart tether greatly helped simplify the mapping process. By not having

to rely on motion models for the prediction step of the particle filter, we were able to

reduce a lot of the error associated with such models. The smart tether was especially

useful in the three-dimensional environments we mapped, because there was not much

overlap between scans. We were able to produce good looking maps for the beginning of

the cave, but this relied on hand-selecting the best scans to use. The results of the

particle filter were less than optimal, but theoretically it is the correct approach given

the constraints we had to deal with. Hopefully it can be developed further. Even

though the maps were far from perfect, we were successfully able to accomplish our goal

of extending the mapping algorithm for cisterns into three-dimensional environments.

6 Future Work

In the future, a side scanning sonar module will be mounted to the robot so that

horizontal and vertical scans are produced at the same time, creating more accurate 3D

maps.

Future work will also include rigorous testing of the Smart Tether to develop a better

model for the error. Smart Tether extensions with sensor nodes can also be used to

obtain more accurate localization data as the robot travels deeper into an environment.

One improvement in the SLAM algorithm that could be made is in determining the

best order to process the sonar scans. By running the algorithm multiple times and

comparing the standard deviation of the particles, we can pick the order of scans that

produces the smallest standard deviation of particles, which should produce better

scans.
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