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Abstract: A solution to the state estimation problem of systems with unmeasurable non-zero mean inputs/disturbances, 

which do not satisfy the disturbance decoupling conditions, is given using the Kalman filtering and Bayesian estimation 

theory. The proposed estimation algorithm, named Supervisory Kalman Filter (SKF), consists of a Kalman filter with an 

extra update step which is inspired by the particle filtering technique. The extra step, called supervisory layer, numerically 

solves the measurement equations for the portion of the state vector that cannot be estimated by the Kalman filter. First, it 

produces N randomly generated state vectors, the particles, which are distributed based on the Kalman filter’s last updated 

estimate. Then, the estimated measurement vector associated with each particle is compared to the actual measurement 

vector to identify the particle’s probability to be a solution. Finally, a so-called resampling stage is implemented to refine 

the particles with higher likelihoods. The effectiveness of the SKF is demonstrated by comparing its estimation perform-

ance with that of the standard Kalman Filter and the particle filter for a vehicle state estimation problem. The estimation 

results confirm that the SKF precisely estimates those states of the vehicle that cannot be estimated by either the Kalman 

filter or the particle filter, regardless of the unknown disturbances from the road. The filtering methodology offered in the 

article has a potential to improve performance of the systems presented in the patents WO2011115960, WO2010024751, 

US8073528, and US20110299730. 

Keywords: Bayesian state estimation, disturbance decoupling conditions, inputs/disturbances, particle filtering, state estima-
tion, systems with unknown kalman filtering, unscented kalman filtering. 

I. INTRODUCTION  

 For many real estimation applications, some of the inputs 
to the system are inaccessible or the system is subjected to 
non-zero mean non-Gaussian disturbances. For example, 
consider aerodynamic parameters estimation of an aerial 
vehicle where some of the control surface deflections can not 
be measured or state estimation problem of a terrain vehicle 
suspension system which is disturbed by unknown non-zero 
mean non-Gaussian inputs from the road irregularities such 
as bumps. 

 In these cases, conventional estimation schemes such as 
Luenberger observer [1] or Kalman Filter (KF) [2, 3] fail to 
efficiently estimate a portion of the system states, since the 
fundamental assumption of having all the inputs (to the sys-
tem) available for the model-based estimator is violated. A 
similar argument remains valid for Extended Kalman Filter 
(EKF) [4], Mixture Kalman Filter [5], and Unscented Kal-
man Filter (UKF) [6]. Particle Filters (PF) [7-9] can offer a 
more robust estimation performance compare to the Kalman-
based filters by sampling and refining a number of hypothe-
sized states. However, it is shown that for high-dimensional 
estimation practices, the PF capability is degraded  
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significantly if it is not computationally too expensive to be 
implemented in real-time [10, 11].  

 One approach consists essentially of modeling and aug-
menting the unmeasurable input dynamics to the system 
model and to try to estimate the input states simultaneously 
[4, 11, 12]. This approach, however, increases dimension of 
the observer considerably which in turn, if still remains rea-
sonable in terms of processing burden, may jeopardize Ob-
servability of the filter. Another approach is to utilize a suit-
able coordinate transformation to reduce order of the system 
and then to choose a reduced-order Luenberger observer gain 
to decouple the system states from the unmeasurable inputs 
[13-16]. The observer gain must also guarantee asymptotic 
stability of the estimation error. The required existence con-
ditions for such a Luenberger observer (gain), referred to 
disturbance decoupling conditions, are extracted in [17-19]. 
One of the decoupling conditions needs the triple of the 
measurement matrix, state matrix and the unknown input 
matrix to not have an unstable invariant zero (i.e., no zero on 
or outside the unit circle). This condition, for some applica-
tions, is not satisfied [11]. 

 This article presents a systematic estimation scheme for 
systems with unmeasurable non-zero mean non-Gaussian 
inputs/disturbances, which do not satisfy the disturbance 
decoupling conditions. The proposed algorithm, named Su-
pervisory Kalman Filter (SKF), is a modified Kalman filter 
with an extra update layer inspired by the Bayesian estima-
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tion theory and particle filtering technique. The extra layer, 
called the supervisory layer, numerically solves the meas-
urement equations for the portion of the state vector that can-
not be estimated by the Kalman filter due to the lack of input 
information. First, it produces N  randomly-generated state 
vectors, the particles, which are distributed based on the 
Kalman filter’s last updated probability distribution function 
(pdf) of the states. The other portion of the state vector that 
is accurately estimated by the Kalman filter remains un-
changed in the particles. Then, each particle is assigned a 
weighting based on the relative distance between the corre-
sponding estimated measurement vector and the actual 
measurement vector. Finally, particles with higher belief are 
selected and refined into a new particle set.  

 The filtering methodology offered in the article has a 
potential to improve performance of the systems presented in 
the patents WO2011115960, WO2010024751, US8073528, 
and US20110299730. Patent WO2011115960 [20] develops 
a control system for mobile robot path planning. The control 
system includes one or more models embedded in a Kalman 
filter to time-propagate all tracked objects states and multiple 
robot motion hypothesis. The predicted states are then fused 
with sensors measurement of spatial locations of at least one 
object and a priori map data and the robots information for 
object avoidance and trajectory planning. For outdoor appli-
cations where the robots can be exposed to unknown non-
zero mean disturbances from an uneven terrain, the Kalman 
filter fails to estimate all or a portion of states of the robots. 
The proposed filter in the article, SKF, may be deployed to 
provide accurate estimates of the robots states in the pres-
ence of input uncertainties. The SKF can be also considered 
as an effective candidate for the tracking filter of the colli-
sion avoidance system developed in WO2010024751 [21]. 

 In patent US8073528 [22], a surgical tool tracking sys-
tem is outlined which utilizes a filter to generate the se-
quence of states of corrected kinematics information for the 
robotic instrument. The filter takes advantage of position 
information provided by a local camera system to correct the 
position information from an embedded robot kinematic 
model. Processing images of the cameras video frames are 
computationally extensive and using the SKF can help to 
effectively reduce the processor computational burden with-
out compromising the estimation performance. The same 
argument remains valid for the patent US20110299730 [23].  

 Next section describes the estimation problem from a 
mathematical point of view. Section III develops structure of 
the SKF for linear systems with unknown inputs. Section IV 
is devoted to demonstration of the proposed filter perform-
ance in a benchmarked state estimation problem with un-
known non-zero mean disturbances. The SKF is applied for 
the state estimation of a test vehicle suspension system, a 
Cadillac SRX 2005, which is driven on a road with a bump. 
Both off-line computer simulations and real-time estimation 
results are presented, and effectiveness of the SKF is con-
firmed through comparing its estimates with that of the KF, 
UKF and PF. Finally, section VII concludes the manuscript.  

II. PROBLEM DESCRIPTION 

 Consider a dynamical system modeled by the following 

linear difference equation: 

  
xk+1 = k xk +Guk + Edudk

+ Lwk
; 

  
E[udk

] 0, E[wk ] = 0.   

(1)  

 In Eq. (1), the subscript k  refers to the time-step, 

 x Rn
 is the state vector,  u Rm

 is the input vector con-

taining m -known deterministic control inputs to the system, 

 
ud Rq  is the 

 
q -dimensional unknown input vector of non-

zero mean non-Gaussian disturbances, and also those control 

inputs which are inaccessible, and finally 
 
wk Rn  , process 

noise, is a zero-mean Gaussian white sequence with a power 

spectral density (covariance) of 
 
Qk  representing the uncer-

tainties associated with the analytical model.  

 The measurement system is modeled as a linear combina-

tion of the states:  

 
zk = Hk xk + vk ; 

  
E[vk ] = 0.                                                (2) 

 In the measurement model, Eq. (2),  z R p
 is the meas-

urement vector, and 
 
vk R p  is the Gaussian white meas-

urement noise with a power spectral density of 
 
Rk . It is as-

sumed that the matrix pair 
  
(Hk , k )  is observable (i.e., has 

full rank). Also, the following initial conditions are given: 

  
x̂0 = E[x0]

 

  
P0 = E[(x x̂0 )(x x̂0 )T ] .                       (3)

 
 The problem consists of designing an estimator to as-

ymptotically estimate the state vector 
 
xk  over time with no 

knowledge of the input vector 
 
ud .  

 In the absence of 
 
ud , the KF is the optimal solution to 

the above estimation problem [2, 4, 10]. However, when the 

non-zero mean unknown input 
 
ud  is acting on the system, 

the KF theory is violated since the estimation errors dynamic 

becomes 
 
ud -dependent: 

  
ek+1 = ( k k KHk )ek + Edudk

; 
  
E[udk

] 0                  (4) 

 Where  e  is the estimation error vector and  K  is the 

steady-state Kalman gain. If KF is implemented for state 

estimation of such a system, as Eq. (4) confirms, some of the 

states are not estimated precisely. Suppose that the estima-

tion quality associated with 
  
n1 < n  states of the state vector 

 
xk becomes unacceptable in that the corresponding estima-

tion error is biased and is not in agreement with the covari-

ance bounds calculated by the KF. This is determined by 

analyzing Eq. (4) and/or computer simulation results.  

 

 For instance, the UKF estimation errors of the absolute 

vertical position of the test vehicle’s Center of Gravity (CG) 

are plotted in Fig. (1) [11]. The results are obtained by using 

Monte Carlo simulations. It is shown that the estimation er-
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rors between   t = 1 and   t = 1.5  sec, during the period that the 

Cadillac SRX front wheel passes over the bump 

(
  
E[udk

] 0 ), are biased, and also do not remain inside the 

covariance bounds reported by the UKF.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). The UKF estimation errors [red] of the CG position ob-

tained by the Monte Carlo simulations. 

 

 The remaining 
  
n2 < n  states are assumed to be estimated 

with acceptable quality. By rearranging the states, the state 

vector kx  is rewritten as the following partitioned form
1
:  

  

xk =

x1n1 1

x2n2 1

; 
  
n1 + n2 = n ,                                                (5) 

 Where 
  
x1  portion contains the 

  
n1  states whose KF esti-

mates have unacceptable quality, and the 
  
x2  portion in-

cludes the rest of the states which are precisely estimated by 

the KF. Section III develops an estimation scheme which 

benefits from accurate estimates of 2x , provided by KF, to 

improve estimation quality of the 1x  portion, without any 

information of the disturbance input vector 
 
ud .  

III. STRUCTURE OF THE SUPERVISORY KALMAN 

FILTER 

 As illustrated in the previous section, due to the lack of 

information of the non-zero mean non-Gaussian in-

put/disturbance 
 
ud  to the system, the KF (and also Kalman-

based estimators) is not able to provide accurate estimates of 

1n  element of the state vector kx , partitioned in 
  
x1 . The 

SKF is a KF with an additional update layer, called the su-

pervisory layer, which operates on the 
  
x

1
 portion to enhance 

                                                
1 It is always possible to rearrange the elements of the state vector such that those 
states, which are not accurately estimated by the KF, are placed as the first n1 elements 

of the state vector. 

its estimation accuracy. The supervisory layer is either trig-

gered from the initial time or activated when the input vector 

du  is introduced to the system, and detected by a responsive 

sensor. A responsive sensor is a sensor with the fastest reac-

tion to 
 
ud . For instance, in the case of vehicle state estima-

tion, a front wheel-hub accelerometer can instantly sense the 

presence of a significant (non-zero mean) disturbance input 

from a bump or a hole in the road
2
. The next sub-section 

explains how the supervisory layer is initialized. 

A. Initialization of the Supervisory Layer 

 Suppose that 
  
p(xk | zk )  is the KF estimated pdf of the 

state vector kx  right after the supervisory layer is activated 

(
  
E[ud ] 0 ). Mean and covariance of the 

  
p(xk | zk )  is cal-

culated by updating a priori pdf 
  
p(xk | zk 1)  with the latest 

sensor readings kz , as [2, 15]:  

  
x̂k
+
= x̂k + Kk [zk Hk x̂k ] ,                                                 (6) 

  
Pk
+
= (I Kk Hk )Pk (I Kk Hk )T

+ Kk Rk Kk
T ,                 (7) 

where 
  
x̂k

 and 
 
P

k
 are the mean and covariance of the a pri-

ori pdf 
  
p(xk | zk 1) , and ˆ

kx+
 and 

 
P

k

+
 are the mean and co-

variance of the updated pdf 
  
p(xk | zk ) , respectively. In the 

above equations, 
 
Kk  is the Kalman gain which determines 

weightings to blend the a priori estimate with the measure-

ment data: 

  
Kk = Pk Hk

T [Hk Pk Hk
T
+ Rk ] 1 .                                        (8) 

 Furthermore, ˆ
kx+

 is rewritten in the partitioned form 

given by Equation (5):  

  

x̂k
+
=

x̂1k

+

x̂2k

+
.                                                                         (9) 

 Since 1̂k
x+

 is not accurate, given the accurate 2
ˆ

k
x+

 esti-

mates, the supervisory layer solves the measurement model 

Eq. (2) for the 
11

1n
x ; a set of 

 
p  stochastic equations 

( z R p
) with reduced 1n  unknowns (

  
n1 < n ). To numeri-

cally solve the equations, the supervisory layer first gener-

ates  N  random state vector 
  
x̂k ,i
+ (i = 1,2,..., N ) , hereafter 

referred to as particles
3
, where the first 1n  elements, 

  
x̂+1k ,i

( j) 's 
  
( j = 1,...,n1) , are normally distributed based on 

the KF updated pdf, that is: 

                                                
2 Acceleration has 90 degrees phase-advance relative to velocity and 180 relative to 
displacement. 
3 Inspired by Particle Filtering technique. 
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E[x̂+1k ,i

( j)] = mean[ p(xk ( j) | zk )] = x̂1k

+ ( j) ;   i = 1,..., N ,  (10) 

  

1

N
( x̂1k ,i

+

i=1

N
( j) x̂1k

+ ( j))( x̂1k ,i

+ ( j) x̂1k

+ ( j))

= cov[ p(xk ( j) | zk )] = Pk
+ ( j, j)

,                       (11) 

 Where ˆ
kx+

 and 
 
Pk
+  are given by Eqs. (6) and (7), respec-

tively. Also,  is a design parameter which is selected so 

that the particles are spread throughout variation ranges of 

the first 1n  state. It guarantees that the randomly generated 

particles are widely spread throughout the state space. In the 

other word, the bigger the proportion coefficient  be, the 

wider the area of the state space that the random particles are 

chosen from is. Since the 2x  portion of the state vector is 

accurately estimated by the KF, the remaining 2n  element 

of each particle, 
   
x̂+2k ,i

( ) 's 
   
( = 1,...,n2 ) , are set equal to the 

latest KF estimate 2
ˆ

k
x+

: 

   
x̂+2k ,i

( ) = x̂2k

+ ( ) ;   i = 1,..., N .                                          (12) 

 In the next step, particles which might be a possible solu-

tion are identified. This is achieved by evaluating relative 

distances between the actual measurement, kz , and esti-

mated measurements associated with the particles, i.e., 

  
Hk x̂k ,i

+
’s. The closer the estimated measurement to the ac-

tual measurement is, the higher the weighting is assigned to 

the corresponding particle. Given the probabilistic properties 

of the measurement noise, such a weighting can be calcu-

lated as follows: 

 
  
qi

k
= p[vk = (zk Hk x̂k ,i

+ )] ;   i = 1,..., N .                         (13) 

 Next, particles with higher likelihoods 
 
qi  are selected to 

create a new set of  N refined particle 
  
x̂k ,i
+r (i = 1,2,..., N ) . 

Either of the resampling algorithms presented in [8, 9] can 

be utilized. A simple algorithm is given by the following two 

steps [8, 10]:  

For   i = 1,2,..., N , 

 Pick a random number  from a uniform distribution on 

 
[0,1] . 

Find  such that, 

   

qm
k

m=1

1
< , but 

   

qm
k

m=1

>  . Select the 

old particle ,
ˆ
kx+

 to be in the resampled particles set, i.e., 

, ,
ˆ ˆr
k i kx x+ +

= .  

 A solution to the measurement equations, for the 1x  por-

tion of the state vector, can then be approximated by calcu-

lating the expectation of the resampled particles: 

  

x̂1k

+S ( j) =
1

N
x̂1k ,i

+r ( j)
i=1

N
 ; 

  
( j = 1,...,n1) .                            (14) 

 Subsequently, the SKF estimate of the state vector at 

time kt t=  is written as: 

  

x̂k
+S

=

x̂1k

+S

x̂2k

+
,                                                                    (15) 

 Where, 
  
x̂2k

+  is the outcome of the KF-type update, 

whereas 1̂k

Sx+
 is the output of the supervisory layer (PF-type 

update). If the resampling is performed efficiently, it can be 

shown that the ensemble pdf of the new particles 
  
x̂k ,i
+r

 con-

verges to the conditional pdf 
  
p(xk | zk ) [10] (

  
x̂k
+S  approxi-

mates the expectation
  
E[xk | zk ] ), and therefore the error 

covariance associated with the SKF estimate ˆ S
kx+

 can be 

approximated by 
 
Pk
+ . Initialization process of the supervi-

sory layer is summarized in block III of the SKF sequence 

block diagram in Fig. (2)). The current SKF estimate is now 

propagated to the next time frame and updated as outlines in 

sub-section B.  

B. SKF Propagation and Update 

 After the initialization of the supervisory layer, either the 

latest SKF estimate ˆ S
kx+

 or the refined particles ,
ˆ r
k ix+

 can be 

propagated and updated (by the both update methods) to 

obtain the next estimates. In either case, since the estimation 

quality of the 1x  portion of the state vector is degraded due 

to the lack of information of the disturbance input du , esti-

mates of this portion are propagated with the process noise 

kw . This is to partially compensate for the effect of the un-

known disturbance input. If the resampled particles are 

used
4
, the first 1n  element of each particle is propagated as: 

  
x̂1k+1,i

( j) = k ( j)x̂k ,i
+r

+ g( j)uk + L( j)wk ,i
; 

  
j = 1,...,n1 ,  (16) 

where 
  k ( j) , 

  
g( j) , and 

  
L( j)  are the j th

 rows of the state 

transition matrix 
 k , the input matrix  G , and the process 

noise matrix  L , respectively. However, estimates of the 2x  

portion are propagated without the noise, similar to the KF 

propagation method: 

   
x̂2k+1,i

( ) = k ( + n1)x̂k ,i
+r

+ g( + n1)uk
; 
   
= 1,...,n2 .      (17) 

                                                
4 In the case of using the latest SKF estimate ˆ S

kx+ , the estimate is propagated to the 

next time frame and updated upon receiving the new measurements by implementing 
Eqs. (6) and (7), i.e., the KF-type update method. Since, the x1 portion estimate is not 

accurate, the supervisory layer steps, given by Equations (9) to (15), are then repeated.  
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 In addition, the error covariance corresponding to each 

state estimate is propagated by including the system model 

uncertainty, i.e., covariance of the process noise. In the com-

pact form, the propagated covariance matrix 
  
Pk+1

 is calcu-

lated by [4]:  

  
Pk+1 = k Pk

+

k
T
+ LQk LT

,                                          (18) 

 Where 
 
Pk
+  is the last updated covariance given by Eq. 

(7). Again, the process noise covariance term, 
 
LQk LT , can 

be adjusted to compensate for the uncertainty contributed by 

the unknown disturbance input, 
  
Ed E[udk

udk

T ]Ed
T . 

 Upon receiving new measurements 1kz
+

, each particle is 

updated according to the KF update method, Equations (6), 

(7) and (8): 

  

x̂1k+1,i

+

x̂2k+1,i

+
=

x̂1k+1,i

x̂2k+1,i

+ Kk+1(zk+1 Hk x̂k+1,i ) ,   i = 1,..., N .  

(19) 

 A summary of the SKF propagation and (KF-type) up-

date procedure are given in block IV of the SKF block dia-

gram (see Fig. (2)). Finally, the Supervisory layer (PF-type 

update) is implemented to solve for the 1x  portion.  

C. Supervisory Layer 

 Since 
  
x̂1k+1,i

+ ’s are not reliable, the 
  
x1  portions of the 

updated particles are regenerated first. To do so, element 

  
x̂+1k+1,i

( j)  
  
( j = 1,...,n1)  of each particle is replaced by a 

number picked up from a normal distribution with the mean 

value of 
  
x̂+1k+1,i

( j)  itself and the covariance of 
  

Pk+1
+ ( j, j)  

given by Eqs. (10) and (11) where 
  
Pk+1
+  is the current up-

dated error covariance which is calculated by Eq. (7). 

  
x̂2k+1,i

+ ’s remain unchanged. After collecting the particles 

with higher belief, by using Eq. (13) and the resampling, the 

next SKF estimate is given by averaging the particles as fol-

lows: 

  

x̂k+1
+S

=
1

N
x̂k+1,i
+r

i=1

N
.                                                          (20) 

 The above-mentioned steps in sub-sections B and C, i.e., 

propagation followed by the two update steps are recursively 

implemented until the supervisory layer function is termi-

nated as a result of diminishing the disturbance input 
 
ud  

(
  
E[ud ] = 0 ). This is also sensed by the responsive sensor.  

 

 

After turning off the supervisory layer, the SKF is again a 

regular KF initiated by the latest SKF estimate, given by Eq. 

(20). The SKF algorithm is summarized in block diagram of 

Fig. (2). The same algorithm can be utilized for a nonlinear 

state estimation problem. However, instead of the KF as the 

preliminary estimator, a nonlinear estimator like the EKF or 

UKF is employed. Next section applies the SKF algorithm 

for state estimation of a Cadillac SRX test vehicle which is 

subjected to unknown non-zero mean disturbances from the 

road.  

IV. KF PERFORMANCE DEMONSTRATION 

 Consider state estimation problem of a terrain vehicle, 

e.g., a Cadillac SRX test vehicle equipped with controllable 

dampers. Vehicle states are necessary for an active or a semi-

active suspension control system, which is implemented to 

enhance ride comfort, road handling and stability of the ve-

hicle. Figure 3 shows typical suspension control system ar-

chitecture [24]. 

 In the block diagram, the vehicle model is presented in 

the form of Eq. (1), where x  is the state vector, u  is the 

vector of control commands to the dampers, du  is the vector 

of non-zero mean non-Gaussian disturbances from the road, 

and w  is the vector of zero-mean Gaussian disturbances 

(also representing the model uncertainties). Vehicle motion 

of interest for this particular application consists of heave, 

roll, and pitch of the vehicle body, as well as bounce of the 

wheels. Therefore, a candidate for state vector x contains 16 

states of the vehicle including relative displacement and ve-

locity of each damper, and deflection and absolute (vertical) 

velocity of each wheel [11]. The vehicle model is verified 

and fine-tuned experimentally to match the desired modes of 

the vehicle dynamics (heave, roll, pitch and wheel bounces). 

Figure 4 depicts a 4-poster test facility where the fully in-

strumented test vehicle is excited by sweeping frequency 

(chirp) excitations of the base shakers. 

 z  is the measurement vector in the block diagram of Fig. 

(3). The measurement system is usually a combination of 

accelerometers, gyroscopes and displacement sensors which 

are strategically distributed throughout the vehicle [11]. In-

formation sent by the sensors is processed in the filtering 

unit. Output from the filtering unit are the vehicle states re-

quired by the control laws N . The controller assigns proper 

force or damping command to actuators for the current time-

step. 

 Sensors are also modeled in the form of Eq. (2), by con-

sidering their noise characteristics [11]. For this practice, 

Analog Devices MEMS accelerometers ADXL202E and 

gyroscopes ADXRS401 [25] are utilized. The displacement 

sensors are non-contact rotary position sensors from Delphi 

[26]. Figures 5 & 6 show an accelerometer and a displace-

ment sensor installed to measure acceleration of the wheel-

hub and deflection across the shock, respectively. 
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Fig. (2). Block diagram of the Supervisory Kalman Filter (SKF). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Block diagram of vehicles suspension control system. 
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Fig. (4). The Cadillac SRX test vehicle in the 4-posters test facility.  
 

 

 

 

 

 

 

 

 

 

Fig. (5). An accelerometer mounted close to the wheel end of the 

shock. 

Fig. (6). The Cadillac SRX left front damper displacement sensor. 
 

 A software simulation and real-time processing platform 

developed on VC++ are used for off-line computer simula-

tions and real-time implementation of the filters (KF, UKF, 

PF and SKF). The onboard computer is a Pentium 4 proces-

sor with 3.4GHz computational power (CPU) and 1GB 

RAM. The estimation algorithm is executed at a rate of 

500Hz, which is the rate that accelerometers and gyros signal 

are sampled. Displacement sensors are sampled at approxi-

mately 200Hz.  

 The fully-instrumented test vehicle is driven on a se-

lected segment of the University of Waterloo’s ring road 

where there are two consecutive bumps. Figures 7 & 8 re-

flect the satellite picture of the ring road and the two bumps. 

The experiment is conducted at a speed of 40 km/hr.  

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Satellite picture of UW’s ring road with two bumps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). The first bump on the ring road. 
 

 By choosing proper sensor suite, i.e., an appropriate 

combination of sensors type and location, it is demonstrated 

that KF is capable of providing high quality estimates of the 

relative velocity and relative displacement states [11]. Fig-

ures 9 & 10 show typical KF estimation results for the rela-

tive velocity and displacement across the Left Front (LF) 

shock of the test vehicle over the first bump.  

 However, it is shown that the KF fails to estimate the 

absolute wheel-hub velocity states [11]. Figures 11 & 12 

compare measured velocity of the LF wheel-hub with the KF 

estimate. As it is illustrated by the figures, as soon as the 

non-zero mean disturbance due to the bump is introduced to 

the front wheels (at approximately t = 3.7 sec), the KF esti-

mate deviates from the actual signal and travels in the oppo-

site direction. 

 Figure 13 plots the PF estimate of the Cadillac LF wheel-

hub velocity [11] obtained by computer simulations. Simula-

tions are performed with the same on board processor. It is 

assumed that the vehicle is driven over the same road and 

bumps. The PF is initiated by 10,000 randomly generated 

particles. Despite the high computational burden associated 

with the PF implementation, it is illustrated that it cannot 

provide accurate estimates of the wheel-hub velocity. The 
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Fig. (9). The graph compares the actual relative displacement of the 

LF damper with its estimate zoomed on the first bump. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (10). The graph relates actual relative velocity across the LF 

damper and the real-time KF estimate on the first bump. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (11). The graph compares the actual velocity of the LF wheel-

hub with its estimate on the first bump. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (12). The graph compares the actual velocity of the LF wheel-

hub with its KF estimate zoomed right on the bump. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (13). Comparison of the PF and KF estimation performance for 

the absolute velocity of the LF wheel-hub. 

 

KF estimation result for the same scenario is also given in 

the figure. 

 If the disturbance decoupling conditions are examined for 

the current estimation problem, it appears that regardless of 

the sensor configuration, the conditions are not satisfied [11].  

 Figure 14 demonstrates the SKF effectiveness in estimat-

ing the wheel-hub velocity state; the state that neither KF nor 

PF can accurately estimate. For the SKF implementation, 
  
x1  

includes the four wheel absolute velocity states and the rest 

of the states are partitioned in 2x [11]. It is shown that the 

SKF estimate perfectly matches the actual velocity data dur-

ing the period when the unknown non-zero mean disturbance 

is acting on the wheels. For the same period, the KF estimate 

does not remain reliable.  

 As illustrated in the figure, prior to the bump disturbance 

(before 
  
t = 1 sec ), the SKF and the KF estimation results are 
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identical since the SKF works similar to the KF. As soon as 

the wheel-accelerometer triggers the supervisory layer, ran-

dom particles, the green stars in Fig. (14), are generated 

based on the latest estimate (see Eqs. (9) and (10)). The 

magnifying coefficient  in Eq. (10) is selected to be   3 n , 

where   n = 16  is the dimension of the state vector.  should 

be big enough to assure that the particles are distributed all 

over the working space. Afterward, the particles are recur-

sively processed by the three consecutive steps of the SKF 

algorithm until the accelerometers turns off the supervisory 

layer (end of the bump disturbance). Then, the SKF works 

again similar to a KF initialized by the latest SKF estimate. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (14). Effectiveness of the SKF in estimating absolute vertical 

velocity of the LF wheel-hub. 
 

 The supervisory layer allows the SKF to explore wider 

regions of the state space than an ordinary KF to find the 

best estimates of the state vector. However, compared to the 

PF, the SKF spreads the particles more intelligently based on 

the updated estimates of a base filter such as a KF, EKF or 

UKF. In addition, since the search is accomplished only for 

the portion of the state vector which is not accurately pro-

vided by the base estimator
5
, a fewer number of particles is 

required to guarantee the SKF convergence. This reduces the 

computational burden of the SKF significantly and makes it 

suitable for real-time applications. For instance, the accurate 

estimate for the wheel-hub velocity in Fig. (11) is obtained 

by a SKF which uses 200 particles
6
. With this number of 

particles, sample impoverishment [8-10], happens only after 

a few steps of the PF implementation. 

 The SKF estimate of the states in the 2x  portion, which 

are accurately estimated by the KF, is also maintained accu-

rate. The estimation results are compared in Figs. (15-17). 

Figure 15 compares the SKF and KF estimates of the relative 

displacement across the LF damper. The comparison on the 

LF relative velocity state is given in Fig. (16). And finally, 

                                                
5 The Supervisory layer numerically solves a set of p stochastic equations for n1 re-

duced unknowns whereas PF deals with n> n1 unknowns. 
6 Even with only 20 particles, the experiments showed that the SKF estimation results 

remain sufficiently accurate. 

the tire deflection estimates are plotted in Fig. (17). Table 1 

details the estimation error Root Mean Square (RMS) values 

for the two filters. Other than for the relative displacement 

estimate, which is slightly degraded, the SKF outperforms 

the KF in the presence of the unknown non-zero mean dis-

turbance. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (15). Performance of the SKF in estimating the relative dis-

placement of the LF damper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (16). Performance of the SKF in estimating the relative veloc-

ity across the LF shock. 
 

 Real-data estimation performance of the SKF is illus-

trated in Fig. (18). The estimation algorithm runs at a slower 

rate of 100 Hz with the same processor using the sensor data, 

logged during the real-time road experiments with the test 

vehicle. It uses 50 particles to initialize the supervisory layer. 

It is demonstrated that the SKF estimate of the LF wheel 

velocity remains reliable on the bump. 

V. CURRENT & FUTURE DEVELOPMENTS 

 A solution has been given for the state estimation prob-

lem of systems with unmeasurable non-zero mean in-

puts/disturbances which do not satisfy the disturbance  
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Fig. (17). Performance of the SKF in estimating the LF tire deflec-

tion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (18). The graph compares the actual vertical velocity of the LF 

wheel-hub with the SKF estimate on the first bump. 

 

Table 1. Comparison of the Estimation Error RMS for the 

SKF and the KF Estimates of the LF Wheel/Suspen-

sion States. 

State KF Error SKF Error 

Relative displacement 0.0033 0.0039 

Relative velocity 0.0962 0.0235 

Absolute velocity 0.4851 0.0734 

Tire deflection 0.0017 0.0008 

 

decoupling conditions. Due to the lack of information of the 

non-zero mean disturbances, the conventional estimation 

techniques such as the Kalman filter fail to provide accurate 

estimates of the states. More robust estimators, such as the 

particle filter, also fail as a result of the system’s high-

dimensional structure. The proposed estimation algorithm, 

called Supervisory Kalman Filter (SKF), consists of a Kal-

man filter with an extra update step. The extra step, called 

supervisory layer, numerically solves the measurement equa-

tions at each time-step for the portion of the state vector that 

cannot be estimated by the Kalman filter.  

 Effectiveness of the SKF is demonstrated in estimating 

states of a Cadillac SRX suspension system which is sub-

jected to unknown road disturbances. The estimation results 

confirm that the SKF precisely estimates states of the vehicle 

that cannot be estimated by either the Kalman filter or the 

particle filter in the presence of non-zero road bump distur-

bances. Although the filtering algorithm has been developed 

for linear systems, the same scheme can be utilized for non-

linear state estimation problems. However, instead of the 

Kalman filter as the preliminary estimator, a nonlinear esti-

mator like the extended Kalman filter or unscented Kalman 

filter is employed. 

 Future development of the work involves mathematically 

proving the stability and convergence of the SKF. Also, 

derivation of the filter algorithm for a nonlinear case would 

be discussed in detail.  
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