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Abstract— Presented is a method for estimating the planar
position, velocity, and orientation states of a tagged shark.
The method is designed for implementation on an Autonomous
Underwater Vehicle (AUV) equipped with a stereo-hydrophone
and receiver system that detects acoustic signals transmitted by
a tag. The particular hydrophone system used here provides a
measurement of relative bearing angle to the tag, but does not
provide the sign (+ or -) of the bearing angle. A particle filter
was used for fusing these measurements over time to produce a
state estimate of the tag location. The particle filter combined
with an active control system allowed the system to overcome
the ambiguity in the sign of the bearing angle. This state estima-
tor was validated by tracking both a stationary tag and moving
tag with known positions. These experiments revealed state
estimate errors were on par with those obtained by manually
driven boat based tracking systems, the current method used for
tracking fish and sharks over long distances. Final experiments
involved the catching, releasing, and autonomous AUV tracking
of a 1 meter leopard shark (Triakis semifasciata) in SeaPlane
Lagoon, Los Angeles, California.

I. INTRODUCTION

Though sharks have been widely researched, there is
much to be discovered about shark behavior and movement
patterns. In order to increase this knowledge, an autonomous
mobile tracking system has been created which will provide
researchers with the long term data that has been missing.

Current methods for tracking sharks include remote sens-
ing GPS tags, manual active tracking, and stationary re-
ceivers (passive tracking). GPS tags provide accurate po-
sitional data, however, these data can only be transmitted
when the shark is at the surface [13]. This leaves a gap
in information on the location of the shark while not at
the surface. Researchers can actively follow sharks with a
boat using a mounted receiver; however, this requires human
operation to navigate the boat to maintain a signal reading of
the tag, and the position of the shark [9] so tracks are limited
on temporal scales of hours to days. Finally, stationary
acoustic receivers can gather data on the movement of sharks
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in a localized area. However, these are cumbersome to set up,
and when the sharks move out of the range of the stationary
receivers, data can no longer be recorded.

(a)

(b)

Fig. 1: The Iver2 AUV equipped with a stereo-hydrophone
system is shown in (a). The species of interest, a Leopard
shark is shown in (b).

Groups of acoustic receivers can be organized so there are
many receivers spread over a specified area, either in high
concentration in smaller areas, or wide-spread with receivers
set up as gates to track the inward and outward movement of
sharks and other tagged animals [3]. Unfortunately, none of
these solutions address the problem of obtaining high spatial
resolution positions on highly mobile species that may easily
swim beyond the reaches of a stationary acoustic receiver.

In [5] the necessity for en-route decision making in AUVs
was identified as a problem that needed to be addressed.
AUVs have been programmed to follow a designated GPS
waypoint path, recording information as it travels. Prior to
this project, there had yet to be an AUV that could contin-
ually follow a single tag on a specific animal (shark) and
make logical decisions on the changing location to follow
the animal. An active localization of the shark is necessary
to track and follow it as it moves. A major part of this active



localization is the sensor fusion required for such state es-
timation. The AUV was equipped with a stereo-hydrophone
receiver system which provided differential time of arrival
data necessary for state estimation. This paper presents a
Particle Filter based method for fusing measurements from
the stereo-hydrophone receiver over time, enabling real-time
estimation of the shark state.

The paper is organized as follows. Section II discusses
related works and elaborates on existing research. The
problem definition is described in Section III. Section IV
describes the state estimator, and breaks down the steps of
the proposed algorithm. Experiments are described in Section
V, and Section VI reports the results of these experiments.
Section VII concludes the scientific contributions made by
this project. Finally, Section VIII discusses future work to
be done to further advance research in this area.

II. RELATED WORK

Current tracking of aquatic animals includes stationary
receivers, receivers on boats, and GPS tags. Stationary
receivers can track tag information while multiple tagged
individuals are within range. However, once the animal
leaves the area where the receivers are positioned, no data
can be gathered. This is problematic for both stationary
locations near the coast, as well as out in the ocean [3].

GPS tags provide a longer term solution, as they provide
data consistently and are not restricted to a single area.
However, once the shark dives below the surface of the water,
the GPS signal can no longer be detected [13]. Ship-bourne
receivers and directional hydrophones have been used by
humans to steer the boat with the goal of following the tagged
shark. However, boats can disturb the sharks and potentially
change the behavior of the shark. In addition, this requires
the human to maintain operation of the vessel and follow the
signal of the shark for the length of the track.

Using robots to track and follow moving objects in itself
is not novel. For example, there have been several projects
developed to accomplish dynamic tracking systems based
on vision. In [7], joint probabilistic data association filters
are used in conjunction with particle filters in order to
track multiple humans inside a building, and are able to
successfully and reliably keep track of multiple persons [7].
The joint probabilistic data association filter is an algorithm
that improves the separation and individual identification of
data when tracking multiple objects. This particular study
compares the success of Kalman filters to the success of
particle filters when tracking a moving being. An additional
study [8], also used particle filters and joint probabilistic
data association filters to determine the location of people
in an office type environment. Similarly, in [12] visual data
is acquired by the robot in order to determine it’s desired
movement path. That particular study focused on soccer
playing robots which need to track the location of a soccer
ball in-order to determine their next move. In [7], a particle
filter algorithm is used to predict the location of the ball.

Underwater robots have also been equipped with vision
systems to track moving objects [2]. While in [14] a vision

system was developed to conduct tracking of fish with
an ROV, it was not implemented for autonomous tracking
experiments. In [6], a vision system was used to successfully
track jelly-fish with an ROV. AUVs have been equipped with
acoustic receivers to passively record acoustic tag signals.
In [4] an AUV was used to gather data from two tagged
Atlantic Sturgeon in the Hudson River. This study proved
that AUV’s are highly useful in gathering data on a tagged
fish. In [5] validated the use of hydrophone’s mounted on a
moving AUV.

Determining position of a tag from such acoustic mea-
surements requires state estimation and filtering techniques.
Kalman filter algorithms are often used in estimating the
state in robot localization problems. Based on a distribution
of error, Kalman filters use uni-modal Gaussian distributions
for representations of state. Kalman filters are very efficient
when used for localization[10], but due to the limitations
of the uni-modal distribution, are best used when the initial
position of the robot is known [1]. Another approach to robot
localization is Monte Carlo Localization (MCL), a compu-
tationally efficient localization algorithm with the ability to
represent arbitrary distributions [1]. MCL uses an adaptive
sampling mechanism in which the number of sample states is
chosen as the robot travels. A larger sample set is used when
position is relatively unknown, and thus, MCL can globally
localize a robot [1]. Particle filter estimation is heavily based
on the MCL algorithm [10]. A particle filter state estimation
algorithm approximates a belief state through a set of par-
ticle representations [11]. Each particle represents a single
randomized representation of state, the set of which creates
a multiple hypothesis sample set. In this paper, the particle
filter’s ability to handle ambiguous sensor measurements is
leveraged to deal with a stereo hydrophone and receiver
system that cannot determine the sign of the relative angle
to a detected fish tag.

Fig. 2: Flow of control variables through the AUV tracking
system, from sensors to actuators.



III. PROBLEM DEFINITION

The problem addressed in this paper is as follows. Given
an AUV with stereo-hydrophone and receiver, design an es-
timator that determines the position, orientation, and velocity
of a tagged shark in real time. The AUV used in this project
is an Oceanserver IVER2 AUV (Fig. 1a), a torpedo shaped
robot actuated with two fins to control pitch, two rear fins to
control yaw, and a rear propeller to provide locomotion. As
shown in Fig. 2, U represents the control vector sent to each
of these five motors. The AUV’s antenna has a built-in GPS
receiver providing longitude and latitude measurements at a
rate of 1 Hz. These position measurements are represented
here as ZGPS . The IVER2 also has a 3 degree of freedom
compass. In this work the compass’ yaw measurement Zθ is
required for shark state estimation.

Fig. 3: Top Down View of Sample Measurement

The IVER2 has two processors, the primary which runs
waypoint tracking missions, monitors the status of the robot’s
actuators, and enables sensor and actuator communications.
The secondary processor is designated for external programs,
and is where the acoustic receiver software, estimator, and
controller are run. The receiver software produces measure-
ments of the bearing to the tag Zα and signal strength
Zss, and passes these measurements to the estimator. The
estimator processes the inputs, and outputs Xshark which it
sends to the controller. The controller takes Xshark as an
input, and uses this to make decisions about movement of
the AUV relative to the estimated shark position.

The stereo-hydrophones, acoustic receiver, and receiver
software are part of the Lotek MAP RT-A Hydrophone
sensor system. The hydrophone system is designed to listen
for frequencies of 76 kHz, the same frequency of signals
emitted by the Lotek tags. The tags transmit encoded analog
signals that allow them to be identified uniquely on the same
frequency. An external frame was created in order to hold the
stereo-hydrophones in place. The Lotek MAP RT-A system
was designed to have the hydrophones set 2.4 meters apart,
and at least one meter below the surface of the water. The
hydrophone cables are internally connected and fed through
sealed holes in the tail end of the hull of the AUV.

The estimation problem is depicted in Figure 3. In this

figure a top down view of this system is shown with
hydrophones h1 and h2 positioned just ahead of the AUV
nose and just behind the AUV tail, respectively. Xauv rep-
resents the position and yaw of the AUV with respect to an
inertial coordinate frame and determined by OceanServer’s
proprietary software. The estimator uses Xauv and Zα as
inputs to estimate the shark position and velocity Xshark at
each time step t. More precisely, for t ∈ [0, tmax]:

Given:

Xauv,t = [xauv yauv θauv ẋauv ẏauv θ̇auv]t (1)

Zt = [Zss Zα]t (2)

Determine:

Xshark,t = [xshark yshark θshark vshark wshark]t (3)

Challenges associated with the stereo-hydrophone system
include its limited range (L = 100 m), its low resolution (=
π/9 rad), and the ambiguity of sign of the bearing angle. This
ambiguity is illustrated in Figure 3, where the AUV cannot
determine if a single bearing measurement Zα corresponds
to angle +α or −α. X ′shark represents the other possible
location of state based on the ambiguous sensor reading.

IV. STATE ESTIMATOR

A Particle Filter (PF) was used to estimate the state of
the shark, with states defined in equation 3. The PF uses
a collection of P particles to represent a probabilistic dis-
tribution of potential shark states. Each particle represents a
single estimate of the shark state, with a position, orientation,
velocity, and weight. Initially, each particle is randomly
assigned a position, orientation, and velocity, by selecting
from a uniform random distribution. Positions (x, y) are
randomly selected from an L meter by L meter square area
with the initial location of the AUV as the center of the
distribution. Here, L reflects the range of the acoustic receiver
system.

After being initialized, particles are updated with the PF
algorithm that is called at each iteration of the AUV’s control
loop. The algorithm has two main steps, a prediction step
and a correction step. The prediction step predicts the shark
state of every particle. If a new valid signal from the shark
tag is received, the likelihood or weight of all particles is
calculated and the correction step will be called to resample
the particle distribution. At the end of these two steps, the
shark state estimate is calculated as the average position,
orientation and velocity of all P particles.

A. Prediction Step

At every time step, each of the P particles in the set
{Xp} is propagated forward according to a first-order motion
model. The motion model is a function of the previous
particle position (xpshark, y

p
shark), orientation θpshark, veloc-

ity vpshark and the uncertainty associated with these values,
specifically the standard deviations σθ and σv . Steps 3 – 8
in Algorithm 1 show details.



Randomness is added to each propagated state by sampling
from a Gaussian distribution with zero mean and standard
deviations σθ and σv (i.e. with the function randn() in
Algorithm 1). To note, velocity is additionally filtered within
each particle using a weighted average of current estimate
with the previous estimate. A weighting value of γvt is
used to determine the dependency on new versus previous
estimates within the average.

Algorithm 1 PF Shark State Estimator({Xp}, Xauv , Zα)

1: //Prediction
2: for all p particles do
3: vprand ← vp + randn(0, σv)
4: θprand ← θp + randn(0, σθ)
5: xpshark ← xpshark + vprand ∗ cos (θprand) ∗∆t
6: ypshark ← ypshark + vprand ∗ sin (θprand) ∗∆t
7: vp ← γvt ∗ vp + (1 − γvt) ∗√

(ypshark−y
p
prev)2+(xpshark−x

p
prev)2

∆t
8: θp ← θprand
9: if α is valid then

10: αpexp ← atan2(yauv − ypshark, xauv − x
p
shark) −

θauv
11: αpexp ← g(αpexp)
12: wp ← h(Zα, α

p
exp)

13: end if
14: end for
15:
16: //Correction
17: if α is valid then
18: {Xp}temp ← {Xp} for all p
19: for all p particles do
20: Xp ← RandParticle({Xp}temp)
21: end for
22: end if

B. Correction Step

The correction is only run when a “valid” Lotek value is
received. The expected bearing angle from the AUV to the
particle’s shark position, αpexp is calculated on line 10, and
is adjusted for the rotation of the AUV, θauv , (see Figure 3).
On line 12, the angle αpest is then converted from units of
radians to Lotek angle units with the following function:

g(αpexp) =− 1 ∗ 10−6(αpexp)
3 + 2 ∗ 10−5(αpexp)

2

+ 0.0947αpexp − 0.2757
(4)

The above function was defined through experimental
testing of the Lotek system, and was generated from a Least
Squares best fit line to those data plots. The angle, αpexp, is
then rounded to the nearest whole number, since all Lotek
angle values are integers between -8 and 8. The particle is
then assigned a weight on line 13, through the following
Gaussian weighting function:

h(α, αpexp) = 0.001 +
1√

2παpexp
∗ e
−(|alphapexp−Zα)2

2∗σ2α (5)

The weight has a minimum value of 0.001, and is given
a higher value when the particle’s expected angle, αpexp, is
closer to the measured angle, Zα. As the angle difference
decreases, a higher weighting is assigned.

The re-sampling is shown in Algorithm 1, lines 18 – 21.
A copy of the propagated particle set is saved in {Xp}temp.
Then, each particle state is repopulated by randomly se-
lecting from {Xp}temp using the function RandParticle().
This function selects a particle at random, with a likelihood
of selection proporational to the particle’s normalized weight.
To improve the robustness of the algorithm, a small % of
particles returned by this function will be newly generated
random states.

TABLE I: Filter Parameter Values

Parameter Value
σauv 5.0 meters
σv 0.3 meters per second
σθ π/2 radians
σα 1.0 lotek angle units
σss 15 lotek signal strength units
γvt 0.75

C. Sensor Modeling

There is a certain amount of error associated with every
motion model propagation and sensor measurement. These
errors are modeled as random variables that follow a zero
mean Gaussian probability density function. The standard
deviations associated with these functions, were derived both
with experimental and historical data. The σ values in Table
I represent the standard deviations used within this work.

V. EXPERIMENT DESCRIPTION
A. Avila Beach Pier Experiments

A series of validation experiments were performed at the
Cal Poly Center for Coastal Marine Science (CCMS). The
facility is located at the end of a large pier in Avila Beach,
CA. These experiments included sensor characterization (e.g.
determine σα), AUV tracking of a stationary tag, and AUV
tracking of a moving tag.

During stationary and moving tag experiments, the AUV’s
start position relative to the tag was varied to ensure tracking
could be performed from every direction. AUV start positions
also were varied according to initial distance to the tag (i.e.
20, 50, 75, and 100 meters). For moving tag experiments,
the tag was attached to either a human operated kayak or a
second Iver2 AUV. During these experiments, the tag was
fixed 2.0 meters below the surface, and the water depth was
10.0 meters. GPS measurements were recorded at the surface
just above the tag’s location.

Once the AUV was deployed for these experiments, it
would autonomously track the tag’s position estimates pro-
duced by the PF. To note, a controller was implemented



TABLE II: Mission Data

Mission Name Date Time Mission Length Avg Error Min Error Max Error Min Std Dev X Max Std Dev X Min Std Dev Y Max Std Dev Y Area Covered
min meters meters meters meters meters meters meters meters

sharkTrackA 8/9/11 10:41 AM 48.16 n/a n/a n/a 4.23 51.59 3.44 56.12 164.29 x 85.32
sharkTrackB 8/9/11 12:07 PM 37.25 n/a n/a n/a 4.95 52.10 2.79 46.89 62.85 x 50.10
sharkTrackC 8/9/11 2:42 PM 41.27 n/a n/a n/a 1.54 79.83 2.77 65.75 120.14 x 81.34
sharkTrackD 8/9/11 3:33 PM 1:41.27 n/a n/a n/a 1.91 80.91 2.34 87.72 103.62 x 69.69
auv2Track 8/10/11 11:19 AM 1:38.28 41.73 0.85 140.43 0.85 106.95 1.51 112.75 386.23 x 718.20

stationaryTrackA 8/7/11 4:19 PM 4.27 7.01 0.25 15.46 2.61 13.43 3.17 12.00 55.56 x 43.26
stationaryTrackB 8/7/11 4:24 PM 10.38 16.88 1.53 47.26 6.92 23.51 4.42 32.68 53.74 x 33.28
stationaryTrackC 8/7/11 4:47 PM 10.26 21.70 3.13 47.54 4.21 29.10 3.49 31.05 43.55 x 54.35

that would achieve two goals: Minimize the distance between
the AUV and tag and Minimize the time in which particles
converge to the correct position of the tag.

Given the direction to the tag is γt = αt + θAUV,t,
the controller directed the AUV to maintain its maximum
propeller speed, while repeating on the following 3 steps: 1)
track a desired heading of θdes = γt + π/4, then 2) track
a desired heading of θdes = γt − π/4, and finally 3) track
a desired heading of θdes = γt. This resulted in the AUV
zig-zagging its way towards the AUV with 90 degree turns
that help resolve the ambiguity in the sign of the bearing
angle. For stationary tag experiments, the AUV terminated
its mission when it was within 10 meters of the tag.

B. Port of LA Experiments

The experiments from CCMS were repeated in SeaPlane
Lagoon, Los Angeles, CA, to verify accuracy and functional-
ity at a new location. In addition to these same experiments,
a leopard shark (Triakis semifasciata) was caught, externally
fitted with an acoustic transmitter, and tracked. In some parts
of the lagoon, eel grass became a problem both for AUV
navigation and attenuation of the acoustic signal.

To catch a leopard shark for final validation of the system,
a 10 hook long line was set in the lagoon and continuously
monitored. Althogh several species of sharks were caught
and released, a 1-meter leopard shark was externally dart
tagged with an acoustic transmitter (Lotek MM Series, 76
kHz freq, 2,5 second ping rate), which is in standard use for
tagging large marine fishes. The entire procedure took less
than 10 minutes. Once the tagged shark was released, the
AUV was deployed to track and follow the shark.

VI. RESULTS
For stationary tag tracking experiments, the error is defined

as the distance between actual and estimated tag position.
Fig. 4 shows the error during a typical experiment, which
remains less than 18 meters during the experiment, and is on
average less than 10 meters. Signal rate, i.e. the frequency of
usable measurements, is also plotted. As expected, as signal
rate decreases, standard deviations and error increase.

To demonstrate system performance with a moving target,
results are presented from an experiment where an acoustic
tag was attached to a second Iver2 AUV. Fig. 5(a) shows
the paths for both the tracking vehicle (named AUV) and
the tagged vehicle (named AUV2). AUV2 was manually
driven within the lagoon, mimicking the relatively slow
movement of a leopard shark. AUV autonomously tracked
and followed AUV2 using the PF and controller described

Fig. 4: Error, Standard Deviation, and Lotek Signal Rate
from Tracking a Stationary Tag

above. The error, standard deviations, and signal rate can be
seen in Figure 5(b). At t=2500 seconds, there is a significant
increase in error. This corresponds with poor quality acoustic
measurements we observed as the AUVs crossed an area
with a high density of eel grass. This can be observed as
this darker coloring in Fig. 5(a). Eel grass creates a curtain
that dampens signal transmission.

On August 9, 2011 a tagged leopard shark was tracked by
the AUV for several hours with little interruption. The AUV
and estimated shark paths from a 48-minute long tracking
experiment are shown in Fig. 6(a). Fig. 6(b) shows the
corresponding standard deviations of the particle set as well
as the signal rate from the acoustic tag. While no estimation
accuracy was obtained, these experiments demonstrated the
ability for long term autonomous AUV tracking and follow-
ing of a live shark. Table II summarizes the results, with a
notable maximum tracking time of 1.67 hrs.

In Figure 7, a series of images represent the conver-
gence of particles while tracking the tagged shark. In 7(a),
the initial time step, the particles are randomly distributed
throughout an L meter by L meter square area centered
around the initial location of the AUV. The second image,
7(b), shows the beginning of particle convergence after a
single acoustic signal is picked up by the hydrophones. The
ambiguity in the sign of α can be observed here by the
fact that particles are into two symetrical groups, one on



(a) (b)

Fig. 5: Tracking a tagged AUV: In (a), the trajectories of the tracking AUV, the tagged AUV2, and the estimated AUV2 are
shown. In (b), the error, standard deviation, and Lotek signal rate of the same experiment are shown.

(a) (b)

Fig. 6: Tracking a tagged shark: In (a), the trajectories of the tracking AUV, the tagged shark, and the estimated shark are
shown. In (b), the standard deviation, and Lotek signal rate of the same experiment are shown.

each side of the AUV. The third image, 7(c), depicts an
instance when the AUV has rotated enough so that only one
of the rays cast by the current bearing measurement (+Zα
or -Zα) overlap with one of the existing particle groups.
This geometric overlap leads to appropriate weighting of
particles and convergence to a single accurate location. After
a few more signals from the tag, and only 32 seconds after
the initialization, the particles have consolidated into a tight
distribution in 7(d).

These four images demonstrate the convergence that oc-
curred during each experiment. The particles continually
spread out through propagation, then were weighted and re-
sampled after a Lotek measurement was obtained. It was a
repeated cycle of expansion and contraction, with frequent
contractions during a higher Lotek signal rate.

VII. CONCLUSIONS & FUTURE WORK

A state estimation method has been developed to enable
tracking and following of a tagged sharks. The state estimator
uses a Particle Filtering algorithm containing propagation
and correction steps which control the movement of the
particles. This filtering algorithm has been proven accurate
through testing by localizing a stationary tag, tracking a
tagged AUV, and a tagged shark. While tracking a second
tagged AUV, the average error during the tracking was 41.73
meters, with a minimum value of 0.85 meters. A shark was
continually tracked for a period of 1 hour and 41 minutes,
thus validating this real system.

In the future, the tag signal strength may be calibrated
with both an external sensor system as well as with the
Lotek system in place. This could provide valuable range



(a) t = 0.0 s (b) t = 2.54 s

(c) t = 13.92 s (d) t = 32.37 s

Fig. 7: Time Series of Particle Convergence

measurement, which may be required in tracking faster
swimming sharks. Also, investigations into acoustic systems
with greater range and more hydrodynamic hydrophone
design will be conducted. Streamlining and reduction of the
hydrophone profile will improve battery life of the AUV,
reduce the likelihood of animal disturbance, and make the
AUV more manuverable. Finally, this work promotes the
use of collaborative multi-AUV tracking that may improve
accuracy and reduce the likelihood of losing the shark.
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