
Estimation of Volumetric Oxygen Concentration
in a Marine Environment with an Autonomous
Underwater Vehicle

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Christopher M. Clark
Department of Computer Science, California Polytechnic State University, San Luis Obispo, California 93407
e-mail: cmclark@calpoly.edu
Kasper Hancke
Institute of Biology and Nordic Center for Earth Evolution, University of Southern Denmark, Odense, Denmark
e-mail: khanckc@biology.sdu.dk
Alex Xydes, Kevin Hall, Frank Schreiber, and Jessica Klemme
Department of Computer Science, California Polytechnic State University, San Luis Obispo, California 93407
e-mail: cmclark@calpoly.edu
Jane Lehr
Department of Ethnic Studies, California Polytechnic State University, San Luis Obispo, California 93407
e-mail: jlehr@calpoly.edu
Mark Moline
Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California 93407
e-mail: mmoline@calpoly.edu

Received 24 January 2011; accepted 23 January 2012

Dissolved oxygen (DO) concentration is a key indicator of the health and productivity of an aquatic ecosystem.
This paper presents a new method for high-resolution characterization of DO as a function of both space and
time. The implementation of a new oxygen optode in an Iver2 autonomous underwater vehicle (AUV) is de-
scribed, which enables the system to measure both absolute oxygen concentration and percentage saturation.
Also described are details of AUV missions in Hopavågen Bay, Norway, which consisted of a series of repeated
undulating lawnmower patterns that covered the bay. Through offline postprocessing of data, sensor character-
istic models were developed, as well as a 3D lattice time series model. The model was constructed by estimating
DO at each 3D lattice node location using a 1D Kalman filter that fused local measurements obtained with the
AUV. By repeating model construction for several missions that spanned 24 h, estimates of DO as a function of
space and time were calculated. Results demonstrated (1) the AUVs ability to repeatedly gather high-spatial-
resolution data (2) significant spatial and temporal variation in DO in the water body investigated, and (3) that
a 3D model of DO provides better estimates of total DO in a volume than extrapolating from only a single 2D
plane. Given the importance of oxygen within an ecosystem, this new method of estimating the quantity of DO
per volume has the potential to become a reliable test for the health of an underwater ecosystem. Also, it can be
refined for detecting and monitoring a range of soluble gases and dispersed particles in aquatic environments,
such as dissolved O2 and CO2 around production facilities such as fish farms, or dispersed hydrocarbons and
other pollutants in fragile ecosystems. C© 2012 Wiley Periodicals, Inc.

1. INTRODUCTION

Oxygen plays a key role in a broad suite of biological
and chemical processes in aquatic environments. Plants,
for example, consume oxygen as part of their metabolism
(i.e., oxygen is the primary electron acceptor) and thus
the rate of oxygen consumption can be used to character-
ize heterotrophic activity in an aquatic ecosystem. At the
same time, aquatic plants (e.g., sea grass, microalgae and
macroalgae) produce oxygen during photosynthesis.

Of importance is the balance between the consumption
and production of oxygen, which can be used to quantify

the net community production (NCP) of a given ecosystem
and is a powerful descriptor of biological activity (John-
son & Needoba, 2008). The NCP of aquatic environments
is the driving force for the export of organic matter and
has implications for the growth rates of fish stocks and
sea birds, and mammals (Nicholson, Emerson, & Eriksen,
2008). In addition, the NCP is important for the carbon cy-
cle, on both local and global scales, and a primary con-
trol on the fugacity of carbon dioxide (fCO2) in the atmo-
sphere, all of which are of great commercial and societal
importance.
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Given the importance of the dissolved oxygen (DO)
concentration in aquatic ecosystems, scientists and natural
resource management agencies rely heavily upon in situ
observations of DO to understand, interpret, and manage
physical properties and biological resources in marine and
freshwater environments. Previous studies have assumed
that 2D depth profiles of DO are sufficient to characterize
the variability in DO that may affect local ecosystems. Here
the neccessity for higher-resolution estimation of DO varia-
tions in a 3D volume of water is explored. To accomplish
this goal, a method is proposed that uses repeated deploy-
ments of AUV missions to quantify the temporal dynamics
of DO and calculate an oxygen budget for a water body in
four dimensions.

This paper presents and demonstrates a new approach
to investigating and quantifying the distribution and spa-
tial heterogeneity DO in three dimensions of a defined
water volume using an autonomous underwater vehicle
(AUV). Furthermore, a method is proposed that uses re-
peated deployments of AUV missions to quantify the tem-
poral dynamics of DO and calculate an oxygen budget for
a water body in four dimensions.

To acomplish this, a new, fast-responding sensor that
measures DO concentration in percentage of saturation,
from which DO in absolute units can be calculated, was in-
tegrated into an AUV. A Kalman filter-based strategy for
fusing DO measurements is also presented that constructs
a time series of 3D DO estimates. What follows in Section 2
is an overview of other work in which an AUV was used
to measure underwater ecosystem indicators. In Section 3,
the hardware components are described. The method used
for calculating DO estimates is shown in Section 4. The field
trials used to validate the approach and the corresponding
results are presented in Sections 5 and 6, respectively. Fi-
nally, conclusions are drawn in Section 7.

2. RELATED METHODS FOR SAMPLING
DISSOLVED OXYGEN

Traditional methods for measuring DO are chemical anal-
yses (e.g., Winkler titration), stable isotope techniques,
or electrochemical sensors (e.g., Clark-type sensors). Re-
cently, optical technologies have been applied and devel-
oped for in situ measurements of DO (Glud, Gundersen, &
Ramsing, 2000; Tengberg et al., 2006). In fact, a novel com-
pact, robust, and fast-responding optical DO sensor is now
commercially available: the Aanderaa 4330F oxygen optode
(Aanderaa Data Instruments [AADI], 2010), which can de-
liver in situ oxygen concentration data with high accuracy
and temporal resolution.

The Aanderaa optode sensor makes an optical mea-
surement by exciting a luminiferous porphyrin foil with a
monochromatic pulse of light from a light-emitting diode
(LED). The quenching time of the emitted fluorescence is

dependent on the DO concentration in the medium (Teng-
berg et al., 2006).

Another recent approach for estimating DO concentra-
tions and flux rates take advantage of the eddy-correlation
technique, relying on simultaneous measurements of the
fluctuating vertical velocity and oxygen concentration
above the seafloor (Berg et al., 2003). The technique has
been used to measure DO flux rates across the benthic–
pelagic interface, i.e., between the seafloor communities
and the overlying water, with a high temporal resolu-
tion, for instance, in seagrass meadows (Hume, Berg, &
McGlathery, 2011). There is a potential to combine the
method presented here with the eddy-correlation tech-
nique for systematically studying DO dynamics in confined
aquatic ecosystems and to set up integrated system budgets
of oxygen or carbon turnover.

Autonomous platforms equipped with relevant sen-
sors afford limnologists and oceanographers unprece-
dented sampling opportunities (Dickey, Itsweire, Moline,
& Perry, 2008). Aquatic environments remain grossly un-
dersampled and are often difficult and time-consuming to
sample because of limited access (e.g., rough weather, far
from ports, under ice) and vast spatial distribution (both
horizontally and vertically). However, autonomous vehi-
cles are capable of providing high-resolution survey data
in both the horizontal and vertical dimensions (Moline,
Blackwell, et al., 2005; Dickey et al., 2008). Relative to pre-
vious methods, these surveys are fast and low-cost.

Some examples of current autonomous underwater
platforms include remote environmental monitoring units
(REMUS) (Allen et al., 1997; Moline, Blackwell, et al., 2005),
SAUV II (Blidberg et al., 2005; Crimmins et al., 2005), and
the Slocum Glider (Webb, Simonetti, & Jones, 2001). The
REMUS is propeller-driven and steered using vertical and
horizontal fins attached to the back of the body. It has had a
variety of applications, e.g. testing bioluminescence in the
San Diego Bay for applications of tracking objects mov-
ing though the ocean (Moline, Bissett, et al., 2005). The
SAUV II is a solar-powered AUV that can charge batter-
ies at the water’s surface and utilize that charge for up to
12 h. It uses a single vectored thruster at the rear of the
AUV for locomotion. This device has been used to measure
DO levels in Greenwich Bay, RI to test for hypoxic water
(Crimmins et al., 2005). The Slocum Glider is an energy-
efficient AUV that uses a buoyancy engine in conjunction
with fixed wings and controlled redistribution of internal
mass to create motion in the horizontal direction while con-
trolling their position. In (Leonard et al., 2007), collabora-
tive vehicle control algorithms were presented for multiple
gliders performing an adaptive sampling task.

Previous studies using AUVs to sample oceano-
graphic data have proven their effectiveness in the field
(Moline, Blackwell, et al., 2005). Dissolved oxygen was not
the only variable measured; temperature, salinity, depth,
bathymetry, and bioluminescence are some other examples
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Figure 1. (a) The OceanServer Iver2 AUV, (b) the oxygen optode (4330F) that was mounted on the Iver2, and (c) the prescribed
path for the AUV in Hopavågen Bay, Norway.

of data that are currently being measured using AUVs.
AUV data sampling can be much more effective than pre-
vious methods because of their small size, lower cost, and
ability to collaborate in groups to cover large areas quickly.
Crimmins et al. (2005) state that towed sampling devices
are problematic because of vessel draft and sediment dis-
turbance in shallow waters, whereas a smaller AUV has
less impact on surrounding waters. Jenkins et al., (2010)
demonstrated the use of an AUV for obtaining DO mea-
surements (as well as temperature, salinity, light attenua-
tion, and seabed topography maps) while navigating below
the Pine Island Glacier ice shelf in Antarctica. Additionally,
using multiple AUVs for sampling can result in faster task
completion, greater sampling resolution, or greater sam-
pling accuracy.

Examples of using AUVs for marine biology include
(Moline et al., 2009), where coastal planktonic communities
were studied using an onboard sensor. In (Grasmueck et al.,
2007), the finding and mapping of coral mounds in Florida
was presented. Chemical sampling with AUVs and appro-
priate sensors is discussed in (Camilli et al., 2004), and was
a recently applied in the Deepwater Horizon oil spill, track-
ing the spill and evaluating the bacterial respiration by
oxygen cencentrations using an onboard mass spectrome-
ter (Camilli et al., 2010). More recently, AUVs have been
used to map benthic habitats (Williams, Pizarro, Jakuba, &
Barrett, 2010).

For this effort, we exploited the benefits of an AUV in-
tegrated with an Oxygen Optode 4330F sensor that mea-
sures DO to carry out field investigations in Hopavågen
Bay, Norway. Contributions of this work include

• Oxygen optode 4330F sensor integration into an AUV
• DO sensor modeling
• DO estimation techniques
• Calculation of total DO in a water volume
• Field experiment validation of techniques

Unlike previous work, this study demonstrates not
only the importance of measuring and estimating DO in

three spatial dimensions, but also that it is necessary for
accurately estimating DO quantities in a water volume.

3. HARDWARE SYSTEM

3.1. Autonomous Underwater Vehicle Platform

An OceanServer Iver2 AUV [Figure 1(a)] was used as the
base platform for our investigations. The Iver2 has a length
of 1.27 m and a diameter of 0.147 m and weighs 21 kg. It
can dive to a maximum depth of 100 m and has a max-
imum speed of 2 m/s. For propulsion the Iver2 has one
propeller with two horizontal and two vertical control sur-
faces. However, for this experiment, the Iver2’s servo for
the top control surface was damaged so the only the two
horizontal and the bottom vertical control surfaces were
available. The sensors that were already on the Iver2 in-
clude a compass, a depth sensor, an altimeter, a GPS, and
an angle sensor for each control surface. The DO sensor was
integrated onto the platform by the authors. This Iver2 con-
tained two 500-MHz processors: the main computer and
a secondary processor. The main computer is responsible
for autonomous tracking of waypoints. Missions are cre-
ated with OceanServer’s software. The secondary proces-
sor, upon which Windows XP was installed, can communi-
cate with the main processor via a serial port connection. In
our studies the secondary processor was used to run soft-
ware that logs the DO data.

3.2. Dissolved Oxygen Sensor

The Oxygen Optode 4330F sensor [Figure 1(b)] is manufac-
tured by AADI (Aanderaa Data Instruments, Bergen, Nor-
way). Its dimensions are 36 × 86 mm and the sensor mea-
sures temperature and dissolved oxygen concentration (in
percentage of saturation, from which absolute concentra-
tions can be calculated). The sensor measures DO in the
medium using the lifetime-based luminescence quenching
principle. It has no stirring sensitivity (does not consume
oxygen), long-term calibration stability (>1 yr, according to
the manufacturer), and a response time (63%) with the fast
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response foil of <8 s. This response time allows sampling
while the sensor is in motion. This is not to be confused
with the sensor sampling rate of 1 Hz.

The sensor outputs data in two formats: RS-232 and
CANbus AiCaP. The RS-232 connection was used to pro-
vide simplicity, and because of the possibility of integrat-
ing the sensor data directly into a custom control loop for
the Iver2. The sensor outputs the DO as a percentage of at-
mospheric saturation between 0% and 150%, with a reso-
lution of 0.4% and an accuracy of less than 5% within the
calibrated range of 0% to 120%. For known salinity, the
sensor outputs absolute DO concentrations between 0 and
500 μM, with a resolution of less than 1 μM and an accu-
racy of better than 8 μM or 5%, whichever is greater. As
will be described, the DO as a % saturation can be con-
verted to an absolute concentration if both temperature
and salinity are known. The optode is slightly pressure-
sensitive, with a linear suppression of the signal by 3.2%
(1,000 dbar)−1 (Uchida, Kawano, Kaneko, & Fukasawa,
2008). Consequently, we assumed that the pressure sensi-
tivity of the optode was negligible in this study because
operations were conducted at depths of less than 15 m.

3.3. System Integration

Three cables were designed to integrate the Oxygen Optode
sensor with the secondary processor on the Iver2. Cable 1
brought 12 V of power to the sensor. Cable 2 interfaced with
one of the serial ports on the secondary processor. Cable
3 provided a bridge between the Iver2’s CPU area (water-
tight) and the Iver2’s cable cavity. The sensor’s cable con-
nected to cable 3 in the Iver2’s cable cavity and from there
went outside to connect to the sensor. Once the sensor was
connected to the secondary processor of the Iver2, the soft-
ware provided by AADI was run on the secondary proces-
sor to log all the data coming in from the sensor.

4. DISSOLVED OXYGEN ESTIMATION

4.1. Dissolved Oxygen Lattice Model

In this work, the underwater environment is described as a
3D lattice structure (i.e., a grid) that is fixed in space with
respect to the environment, and is denoted here as L. Each
lattice point li,j,k of L uses three, indices (i, j, k) as a refer-
ence for its location within the lattice (see Figure 2):

L(m) = {li,j,k(m)|i ∈ [1, I ], j ∈ [1, J ], k ∈ [1, K]}. (1)

Lattice points are characterized by a 3D position [x y z] in
an inertial coordinate frame fixed in the underwater envi-
ronment of interest, a DO estimate o for the lattice point lo-
cation, and the corresponding error variance σ 2

o of the DO
estimate. Because DO is time-varying, the DO estimates are
a function of the discrete variable m, representing a step in a
time series. In this work, a relatively low resolution of time
is used because DO only varies significantly across several
hours (e.g., in a series of four time steps, m = 0 corresponds

Figure 2. The lattice structure L anchored to a fixed under-
water environment with a Cantesian coordinate frame labeled
XYZ. A lattice point li,j,k (i.e., a node in the latice), uses the
three indices i, j , k as references for its position in the lattice.

to estimates at time 0 h, m = 1 to a time 3 h later, m = 2 to a
time 6 h later, m = 3 to a time 9 h later):

li,j,k(m) = [
x y z o(m) σ 2

o (m)
]
i,j,k

. (2)

In this model, the spacing between lattice points was se-
lected, which determined the sizes of I, J,K necessary for
the water volume of interest. The goal of this research
was to determine the DO in μmol/L for each lattice point,
oi,j,k(m), and the corresponding error variance, σ 2

o,i,j,k(m).
Although DO at each lattice point is time-dependent,

in this research it was assumed that DO variations in time
were negligible within a single AUV mission deployment
(approximately an hour in length). As shown later, DO can
change significantly over time spans of several hours. For
the field trials that follow, there are four AUV mission de-
ployments that occurred several hours apart, and m corre-
sponds to the AUV mission number (i.e., 1,2,3, or 4).

4.2. Conversion to Absolute Dissolved
Oxygen Concentration

The oxygen optode measures DO as a saturation percent-
age. The absolute concentration o can be calculated as the
product of measured DO saturation percentage zo and oxy-
gen solubility Ksp as follows:

o = zoKsp. (3)

Absolute values of Ksp can be calculated knowing the ex-
act temperature T and salinity S according to Garcia and
Gordon (1992). In this study we used a simplified version
(Eq. (4)) of their equation to calculate Ksp, which is accu-
rate for temperature values between 0 and 10◦C and salin-
ity values between 25 and 35, both of which are valid ranges
for the bay of interest being sampled:

Ksp = (−0.0017T 2 + 0.088T − 2.5696)S

+ 0.2215T 2 − 12.304T + 448.09. (4)

Journal of Field Robotics DOI 10.1002/rob
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Figure 3. Salinity modeling. (a) The seven geographic locations from which salinity measurements were obtained. (b) The data
obtained from all seven locations, with a polynomial fit model in red.

The oxygen optode measures temperature with every DO
saturation measurement. Unfortunately, the Iver2 was not
equipped with a salinity sensor, as would be standard for
this measurement. For this work, a salinity sensor (CTD,
Model SD204, SAIV AS, Bergen, Norway) was lowered by
hand to various depths from a small boat. This was re-
peated at seven different locations across the Hopavågan
bay. Figure 3(a) shows the seven locations across the bay
from which measurements were obtained. As shown in
Figure 3(b), the salinity S has minimial variance across
the horizontal planes, but significant variance with depth.
Hence, salinity was modeled as a function only of depth. In
Figure 3(b), the relationship between salinity and depth is
shown. A third-order polynomial was used to approximate
the relationship between salinity and depth (the fit is illus-
trated as the red line). This will not be required for many
AUVs that have an onboard salinity sensor.

For any given AUV location, the corresponding depth
was used in combination with the model depicted in
Figure 3(b) to calculate salinity. Hence, for every point in
an AUV trajectory, measured salinity, temperature, and DO
saturation percentage were available. By substituting these
measurements into Eq. (3) and Eq. (4), absolute DO concen-
trations for each AUV location were calculated.

4.3. Sensor Fusion

To fuse multiple measurements of absolute DO concentra-
tion taken from multiple AUV positions, a 1D Kalman fil-
ter (KF) was used (Thrun, Burgard, & Fox, 2005). Each new
DO measurement zo,t was assumed to be perturbed by ran-
dom noise, which is modeled as a Gaussian distribution
with zero mean and variance σ 2

z,t . Similarly, the absolute
DO concentration ôt calculated from such measurements
using Eq. (3) and Eq. (4) was modeled as a Gaussian dis-
tribution with zero mean and variance σ 2

ô,t .
To incorporate these new measurements into the esti-

mate of absolute DO concentration for each grid point, the

Kalman gain can be calculated as

Kt =
σ 2

o,t−1

σ 2
o,t−1 + σ 2

ô,t

. (5)

Note that the subscript i, j, k has been removed for clarity.
The subscript t indicates the time step within the AUV mis-
sion upon which a new DO measurement was obtained. In
this case, time varied on the order of seconds between time
steps. The new DO estimate for a grid point can then be
calculated as

ot = ot−1 + Kt (ôt − ot−1). (6)

As well, the following equation can be used to calculate the
corresponding DO estimate error variance:

σ 2
o,t = (1 − Kt )σ 2

o,t−1. (7)

4.4. Sensor Modeling

The KF assumes that absolute DO measurements are per-
turbed by zero-mean Gaussian noise with variance σ 2

ô
. In

the modeling of variance, it was assumed that the planar
distance δpi,j,k,t and the vertical distance δvi,j,k,t between a
lattice point and a measurement location would affect the
confidence with which the measurement would reflect the
actual DO at the lattice point. This assumption is based on
that fact that the variables of interest typically vary much
less in the horizontal plane than with depth:

σ 2
ô,t = σ 2

p,t (δpi,j,k,t ) + σ 2
v,t (δvi,j,k,t ) (8)

δpi,j,k,t =
√

(xt − xi,j,k)2 + (yt − yi,j,k)2 (9)

δvi,j,k,t = abs(zt − zi,j,k). (10)

Data from missions run in Hopavågan Bay were used
for the sensor modeling. To determine the variance
in absolute DO concentration as a function of planar

Journal of Field Robotics DOI 10.1002/rob
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Figure 4. Sensor modeling. (a) Histograms, where the frequency is plotted as a function of difference between meaurements.
The four plots correspond to increasing planar distance between measurements. (b) The standard deviations calculated for each
histogram in (a), fit with a linear least-squares model. (c) A similar model of standard deviation with increasing depth is shown.

distance, histograms for increasing planar distance were
created in which the frequency of change in DO was plot-
ted. Figure 4(a) shows the resulting histograms for pla-
nar distances of 2.81, 6.56, 10.31, and 14.06 m, respectively.
From this figure, it can be seen that the distributions of
change in DO resemble Gaussian distributions. Moreover,
the variance increases with planar distance; i.e., the greater
the distance at which a measurement is taken from a lattice
point, the less confidence that the measurement represents
the lattice point’s true DO.

This increase in variance with planar distance was
modeled linearly. Figure 4(b) shows the variances for the
eight distributions including those in (a), along with a least-
squares square-root fit. The same procedure was used to
determine the increase in variance with change in depth,
i.e., vertical distance (Figure 4(c). It should be clear from
the slopes of the plots in (b) and (c) that our confidence in a
measurements ability to reflect a lattice point’s DO is much
more dependent on the difference in depth than on the pla-
nar distance.

Journal of Field Robotics DOI 10.1002/rob
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5. FIELD INVESTIGATIONS

To validate the ability of the Iver2 to conduct DO sam-
pling, a series of field investigations were conducted in
Hopavågen Bay, Norway. The bay is essentially a closed
system with high residence times for the water (low ex-
change). This makes it an ideal location for change detec-
tion, in this case to examine the net production of oxy-
gen within the system (i.e., the sum of the oxygen produc-
tion rate from photosynthesis and the oxygen consump-
tion rate from respiratory activity and microbial mineral-
ization). The location is sheltered from weather exposure
and the advective forces were low. The water column was
stratified in the upper 10 m, as also seen from the salinity
profile, i.e., good for gas-exchange studies.

To best characterize the DO gradients throughout the
bay, a variety of undulating lawnmower trajectories were
tested. The trajectories were designed to cover the section
of the bay that has minimum depth, and do so within a
time span in which DO will not change significantly. The
undulation frequency and the total trajectory time were the
two major variables altered between tests. Table I lists the
mission details for these experiments that were conducted
within a 24-h period.

For the deployments described, a grid lattice spacing
included a horizontal grid point seperation of 20.0 m, with
a vertical grid point seperation of 2.0 m. The lattice had di-
mensions of 23 × 29 × 8, resulting in 5,336 nodes. Hence,
there were 23 nodes × 29 nodes in each horizontal layer,
and there were 8 layers.

Before measurements could be used to calculate the
lattice DO state estimates, AUV position estimates were up-
dated to account for the drift that occurs while the AUV is
underwater and subjected to currents. At the surface, the
AUV fuses compass, propeller speed, and GPS measure-
ments to estimate the position of the AUV. This filtering is
accomplished with OceanServer’s state estimator, propri-
etary software that does not output state error covariances.
Our experimentation has demonstrated that localization er-
rors are similar to errors associated with the GPS measure-
ments (on the order of 2–3 m, but bounded).

Once below the surface, the AUV only has access to
compass and propeller speed. Hence, while it is submerged
the horizontal position errors grow laterally with respect to
forward motion. At worst, we observed a 25% error growth;

e.g., in 40 m of forward motion, the AUV’s horizontal po-
sition estimate drifted laterally by 10 m from its actual po-
sition. During all dives, this error drift was conisistent in
terms of direction and relative magnitude, indicating the
effects of a constant-velocity current. To account for this,
subsurface state position estimates are calculated as the in-
terpolated value between the location estimates just before
and after the AUV dives.

Using the AUV position estimates, every single DO
measurement obtained during the mission was used to up-
date the DO estimate and associate error variance for each

of the 5336 nodes. The sensor model described earlier gives
higher confidence in measurements taken closer to the node
location. Each measurement was fused with each node’s
DO estimate using the Kalman filter described previously.

6. RESULTS

Examples of the DO estimates calculated for our lattice
structure are shown in Figures 5–7. Plotted in Figure 5 is the
DO for each horizontal layer of lattice points. These layers
are plotted for six different values of depth. The plots are
also made for each of the four different missions, each con-
ducted at a different time of day. It is notable that the sys-
tem is capable of measuring variations in DO across both
space and time. As expected, the highest DO gradient oc-
curs with respect to depth, but horizontal gradients in DO
are clearly visible. When the DO estimates are compared
between missions, there is significant variation. Consider
the depth = 4 m plots (upper right) in Figures 5(a)–5(d).
These are the DO estimates for the same locations, but at
different points in time. There are clear changes in DO as
time progresses.

DO measurements at the beginning of the mission oc-
cur earlier (e.g., an hour) than DO measurements at the
end of the mission. When measurements for a single lat-
tice point are fused, the set of measurements taken most
closely to the lattice point will contribute most to the DO es-
timate for that lattice point (according to our sensor model).
Hence, the time stamp for each lattice point’s DO estimate
more closely matches the time the AUV was in close prox-
imity the point location.

For these experiments, the DO measurements taken
during a single mission are obtained within an hour of each

Table I. Experiments conducted in Hopavågen.

Mission num. Date Start time Trajectory type Mission time (min) Undulation depth (m)

1 June 19, 2010 6:23 Surface 127 0
2 June 19, 2010 19:48 Undulating 75 10
3 June 19, 2010 21:30 Undulating 68 10
4 June 20, 2010 12:15 Undulating 70 10
5 June 20, 2010 14:52 Undulating 76 10

Journal of Field Robotics DOI 10.1002/rob
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Figure 5. Planar results. Dissolved oxygen estimates for horizontal planes of the lattice are plotted for four field Deployments
(a to d). For each deployment, six different depth levels of the lattice are plotted. The depth = 0 m plot also has the AUV trajectory
for the mission plotted in yellow.

Journal of Field Robotics DOI 10.1002/rob
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Figure 5. Continued

other. Because DO varies over a time scale of several hours,
and time stamps of lattice point DO estimates are within an
hour of each other, it is assumed that asynchronous mea-
surement effects are not significant.

Also, without a DO sensor that has a fast response
time, on the order of seconds, the AUV cannot traverse
the desired path quickly and complete the mission within
an hour. A fast sensor response is crucial to cover greater

Journal of Field Robotics DOI 10.1002/rob
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Figure 6. Planar error variance. The dissolved oxygen estimates for horizontal planes of the lattice are shown for the fourth
deployment (a) along with the error variance for each grid point (b).

volumes of water but also is essential for resolving the spa-
tial heterogeneity of DO, as a relatively slower sensor will
smooth the amplitude of the DO measurements and thus de-
crease the spatial resolution.

Figure 6(a) illustrates the DO estimates at each node in
the lattice, as estimated by fusing multiple measurements
with the KF described in Section 4.3, with the correspond-
ing error variance in DO, as determined by the KF shown

Journal of Field Robotics DOI 10.1002/rob
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Figure 7. Depth plane profiles. The dissolved oxygen estimates for vertical planes of the lattice are shown in (a). In (b), the
corresponding variance is plotted. Each plot is the YZ plane for particular values of X. For example, the Dist = 40 m subfigure
corresponds to the plane located at X = 40 m in Figures 4 and 5.

Journal of Field Robotics DOI 10.1002/rob
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Figure 8. Depth profile differences over time. The differences of dissolved oxygen estimates between the second and third de-
ployments. For vertical planes of the lattice, the differences between DO are plotted in (a). The corresponding error variance plots
are shown in (b). In both (a) and (b), various vertical cross sections are shown where the Dist value in meters dictates the X value
for the plotted YZ plane.
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Figure 9. Total DO in each cell’s water column of the investigated volume of water. By summing the DO of each node of the
lattice, and knowing the distance between nodes in the lattice, the total DO can be calculated for each vertical column the bay
water. Here, the total DO is plotted for each column, i.e., the total DO below the surface of each cell in the grid. Each of the four
plots corresponds to a different mission deployment.

in Figure 6(b). In these plots, dark blue indicates low error
variance, and it can be seen that error variance increases for
nodes farther away from the AUV trajectory. This makes
sense, as we have lower confidence in our DO estimates at
locations where the AUV did not sample. As well, the er-
ror variance increases with depth, because fewer measure-
ments were obtained at deeper positions in the bay. This is
highlighted by the five clearly visible patches of low error
variance (blue) where the AUV actually dove to depths of
10 m, in contrast to high error variance elsewhere.

In Figure 7(a), several vertical cross sections of the lat-
tice structure DO estimates are shown. Each vertical cross
section is an YZ plane for particular values of X. That is, the
Dist = 40 m subfigure corresponds with the plane located
at X = 40 m in Figures 4 and 5.

In Figure 7(b), the corresponding error variance as cal-
culated with the filter described in Section 4.3 is shown. It is
clear in Figure 7(a) that DO increases with depth, although
an interesting feature is observed in the middle of the first
three images, where a lower DO is observed even at slightly
greater depths. In Figure 7(b), higher error variance is ob-
served at the right and left sides of the images. This results
from the facts that the AUV did not travel to these locations
to obtain measurements and that the filter produces higher
error variances with increasing distance between measure-
ment and lattice node position (see the Guassian sensor
model shown in Section 4.4).

To exemplify the temporal variance in DO, the DO es-
timates for nodes in vertical cross sections of the lattice can
be subtracted between different missions. In Figure 8(a),
the DO as estimated for field trial 2 is subtracted from
that estimated in field trial 3. Although many of the DO
estimates do not seem to vary between the two experi-
ments (as shown by the light green color), there are clear
differences.

Consider the large positive difference (indicated by
red) at a location of (60, −9) in the bottom right plot
(Dist = 260 m). If one observes the error variance,
Figure 8(b) at that same location, it is clear there is high
error variance at that location, leading us not to have much
confidence in this difference. The large error variance for a
lattice point is an indication that fewer measurements were
obtained near the lattice point position.

However, consider the horizontal layer centered at
(100, −5.5) in the top three figures. The corresponding er-
ror variance shown in Figure 8(b) for this location is low,
indicating high confidence that there is in fact a difference.
That is, we believe there was a large change in DO at this
location between experiments 3 and 2 (i.e., 15 μ M in ap-
proximately 2 h).

To illustrate the DO changes across time, Figure 9
presents the sum of total DO in each vertical column of
the area sampled. The four plots show increasingly more
DO per vertical column, indicated by darker red shading.
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Figure 10. Total DO in the investigated volume of water. By
summing the DO of each node of the lattice, and knowing the
distance between nodes in the lattice, the total DO can be cal-
culated for a particular volume of the bay water. In (a), the total
DO is plotted as a function of mission number/time. In (b), one
can see the total DO calculated based on vertical planes at dif-
ferent longitudes for mission 3. The total DO calculated by the
volumetric approach for mission 3 is represented by the hori-
zontal line.

This is further illustrated in Figure 10, where the total DO
is plotted for each of the four subsurface field trials, labeled
E2, E3, E4, and E5. The totals were calculated for each field
trial by summing the DO over all grid cells with a miminum
level of confidence (i.e., a maximum allowed error variance
of (0.00015 μmol/L)2). Because each field trial’s total DO
was with respect to a slightly different volume (due to a
different number of cells meeting the error variance crite-
rion), each total was then normalized to be with respect to
the approximate average volume of 2.4 × 106 m3.

Figure 10(b) shows the total DO for experiment 3 by
summing over the cells for each longitude and then normal-
izing with respect to the same volume of 2.4 × 106 m3. That
is, the total DO is calculated using only estimates from grid
points in each vertical plane (e.g., Figure 7). As can be ob-
served, higher DO totals are estimated when the longitudes
corresponding to the central parts of the bay are considered.
This is because the central bay has higher DO than along
the edges. The large variance in DO as a function of longi-
tude stresses the strength of obtaining a high-resolution 3D
model of the bay, as opposed to a one-dimensional profile
as commonly used in classical aquatic studies, when esti-
mating total DO and its temporal dynamics.

7. CONCLUSION

This work has demonstrated a new way to create high-
resolution estimates DO concentrations in an aquatic envi-
ronment. The approach of mounting a new fast-responding
oxygen optode on an AUV to obtain DO measurements
across three spatial dimensions and time proved success-
ful. As well, a simple KF-based approach to DO estimation
of nodes in a 3D lattice was presented. The KF requires
that measurements be modeled with a Gaussian distribu-
tion, which is shown to be a valid model for this sensor.
The system is able to detect fine variations in DO across the
four dimensions. The KF method also produces DO error
variance for each lattice node position, providing a method
for assessing confidence. Finally, by summing DO across
the 3D lattice of grid cells with low error variance, the total
DO in a particular water volume is calculated and shown to
improve results when compared with similar calculations
using only 2D vertical planes. This new method of quanti-
fying the DO in a particular volume of water could be used
as a measurement of the health of an ecosystem, evaluat-
ing net primary productivity, allowing the assessment of
the impacts of fish farms, pollution, natural disasters, etc.
This quantification could also be generalized to quantify
the amount of several other dissolved gases and other sub-
stances that can be measured from compact electrochemical
or optical sensors (e.g., colored dissolved organic matter) in
aquatic environments.

To address the issue of obtaining DO measurements at
different times within a single mission, further work could
include multiple AUVs within a single mission. This work
could also be extended to incorporate intelligent AUV path
planning (Petres et al., 2007). There are earlier examples
of AUV path planning for area coverage (Carroll et al.,
1992), and more recent work has demonstrated onboard
adaptive planning (Wang, 2007) as well as task planning
(Chow, Huissoon, & Clark, 2011). More relevant are (Bin-
ney, Krause, & Sukhatme, 2010) and (Davini, Choboter, &
Clark, 2011), where the authors used path planning to con-
struct paths that maximized information gain. Such meth-
ods could be used in conjuction with the DO estimator to
minimize error variance.
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