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Abstract

AUTONOMOUS TRACKING AND FOLLOWING OF SHARKS WITH AN

AUTONOMOUS UNDERWATER VEHICLE

Esfandiar Manii

This thesis presents the integration of an acoustic tracking system within

an autonomous underwater AUV (AUV) to enable real-time tracking of sharks

tagged with artificial acoustic sources. The tracking system consists of two hy-

drophones and a receiver unit that outputs a measurement of the relative angle

to the tagged shark. Since only two hydrophones are used, the sign of the rela-

tive angle measurement is unknown. To overcome this ambiguity, a particle filter

algorithm was developed to estimate the position of the acoustic source. When

combined with an active control system that drives vehicle to obtain different ori-

entations with respect to the acoustic source, real-time autonomous localization,

tracking, and following of a tagged shark is shown to be possible. Four types of

ocean experiments were used to validate the system including: 1) AUV tracking

of a stationary tag, 2) AUV tracking of a tagged kayak, 3) AUV tracking of a

tagged AUV, and 4) AUV tracking of a tagged shark. These experiments were

analyzed with respect to the localization error, associated error variance, and

distance between the AUV and the tag. The final shark tracking experiments

took place in SeaPlane Lagoon, Los Angeles, CA, where the AUV was able to

autonomously track and follow a tagged Leopard Shark for several hours.
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Chapter 1

Introduction

For years the underwater world has attracted scientists to explore and con-

duct research in many areas, including: Biological Sciences, Naval Engineering,

Mechanical Engineering, etc. Most of this work directly requires humans to en-

gage and as a consequence there is an increase in human-work time and costs.

Through the development of AUVs, efforts have been undertaken to reduce those

costs and increase productivity in all aspects. AUVs have been used by scientists

for a variety of applications, e.g. pipe monitoring, exploring, etc. One application

area where AUVs have seen little use but have great potential is the study of fish

movement patterns.

Throughout the world, acoustic tracking systems have been used for study-

ing several species of fish. In most studies, the fish are caught, tagged and then

released. The tags have an omnidirectional acoustic transmitter that broadcast

signals at a constant rate. Receivers are used to detect and interpret the sig-

nals. Through this process, the bearing and sometimes distance to the fish can

be measured. The main purpose of this thesis was to increase the mobility of

such a tracking system which typically is stationary. The goal is to design an
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autonomous mobile shark tracking system for long term missions with admissible

accuracy and consistency. This chapter presents some of the current research

in tracking sharks using underwater AUVs and answers why autonomous shark

tracking is necessary.

1.1 Autonomous Underwater Vehicle (AUV)

Autonomous Underwater Vehicles (AUVs), are vehicles that can operate with-

out human aid. The main reason for designing such AUVs is to conduct under-

water operations in remote or dangerous situations. AUV can operate missions

that a human is not able to perform. A very simple AUV consists of two main

units: 1) Navigation system, and 2) Propulsion system. The navigation system

(which is autonomous) calculates the waypoints that the AUV must follow based

on its program. Then it supplies the proper velocity and angle to the propulsion

system to follow those waypoints. The first AUV was developed in the Applied

Physics Laboratory at the University of Washington in 1957, by Stan Murph, Bob

Francois and later improved by Terry Ewart. The ”Special Purpose Underwater

Research Vehicle”, or SPURV, was used to study diffusion, acoustic transmis-

sion, and submarine wakes [1]. Currently, numerous operations are being done

by AUVs. They range in size based on the operation(s) they might perform.

AUVs are mostly used in the following areas: 1) Marine Biology, 2) Oceanogra-

phy, 3) Commercial Purposes, and 4) Military Purposes [16]. Research mostly

focuses on localization and mapping of the underwater environment. AUVs have

many advantages in comparison with other types of underwater robots, (e.g.

ROVs). These advantages include: 1) Navigational and positioning accuracy,

2) Survey flexibility, 3) survey time, 4) data quality and digital quality, 5) Large
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data collection, 6) Longer duration of operations, 7) Ability to perform in extreme

conditions. However, AUVs encounter several problems including ocean currents

and waves which may move AUVs to undesirable locations. AUV navigation

uses a variety of sensors and sensor fusion techniques. A common sensor found

on almost all AUVs is a GPS receiver. Since water is roughly 1000 times denser

than air, electromagnetic signals cannot pass through as easily as through air and

therefore diminish much faster. As a result, GPS signals can only be useful when

the AUV is on the water surface or in shallow water. While underwater, sev-

eral acoustic positioning systems can be used for AUVs including Conventional

Long Baseline (LBL), Short Baseline (SBL), or Ultra Short Baseline (USBL) sys-

tems which are now being offered as combined systems. The unique LBL (least

squares adjustment of lines of positions) or USBL (phase correlation to generate

wave vectors) solutions then have to be combined with external sensor data to

provide the adjusted position [53]. On the other hand, optical analysis, which

consists of color, texture, shape and dynamic properties of the environment is

used to analyze the image sequences for target tracking by Autonomous Under-

water Vehicles (AUVs) [9, 10]. Here, an Inertial Navigation System (INS) which

improves autonomous underwater vehicle navigation for undersea explorations

is investigated [27]. Also the strategic and tactical applications for autonomous

submersibles place great demand on the platforms’ passive sonar signal and data

processing abilities. It is necessary to overcome the limited acoustic aperture

and lack of human supervision by exploiting synergism between front-end signal

processing functions and back-end data fusion algorithms [24]. Other types of

experiments include object tracking in the underwater environment which will be

discussed in the next section.
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1.2 Current Research in Underwater Tracking

Underwater tracking operations are typically accomplished by manually track-

ing instruments, at piers, or by satellites. To track fish, two methods are widely

used: 1) Acoustic tracking, and 2) GPS tracking. Acoustic tracking systems are

one of the most popular research tools based on other studies [22, 30, 23, 56].

These systems let researchers track fish with less labor intensive activities [22],

but still require human operations to simultaneously track signals from the tags

[47]. In recent years, studies have benefited from several advances in acoustic

transmission systems. These studies have mainly focused on how to design ar-

rays of hydrophones to monitor underwater habitats [20, 46, 22, 56, 18] as well

as gaining data from the environment and the animal using triangulation and

trilateration techniques [19, 39, 6]. Most of the developments were based on

research conducted using fixed hydrophones in the experimental areas. Further-

more, those technologies led to new era of mobile acoustic tracking where fixed

hydrophones were placed on a boat or ship to track animals [57]. GPS tracking

systems works different than acoustic tracking systems. Tracking systems based

on GPS technology were initiated in the 1990s to acquire the regions in which

terrestrial and Volant animals live [40, 43]. Utilizing GPS technology has some

advantages over other methods due to: 1) High spatial accuracy and temporal

resolutions, 2) Capacity to collect large databases about environments, 3) Ability

to localize without human aid, and 4) Ability to locating any individuals. The

only disadvantage is that GPS technology requires animals to swim close to the

water surface. When an animal descends below the surface, tracking operations

fail due to signal loss [54]. To localize and track sharks several methods can be

manipulated: e.g. 1) Stationary acoustic receivers are spread in a specific area to

track sharks at any time, and 2) Boats can patrol the sea to find a tagged shark
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and to follow that shark’s movements. These solutions are labor intensive and

some species are lost for long periods of time.

Currently, autonomous underwater vehicles (AUVs) are well known for their

high efficiency and accuracy. [32] Addresses the reason to operate AUVs for un-

derwater explorations and research. AUVs have the potential to revolutionize our

access to the oceans to address critical problems facing the marine community.

Efforts to design and implement control systems and algorithms for tracking ob-

jects in dynamic environments have been done before. These methods suggest

a probabilistic data association filtering to track the moving objects with mo-

bile AUVs, [45, 44, 33], that can be extended to the underwater environment.

Tracking objects in underwater environments using acoustic systems has been

known as a good way of localization [2]. Some studies have been done to track

Sperm Whales with AUVs by using two arrays of hydrophones to auscultate the

signals from them for tracking and localization [50, 51]. Because of imperfec-

tions in vehicle control, it is common for an AUV to undergo significant yaw and

pitch oscillations. Therefore for localization of underwater targets, methods have

been developed to reduce the imperfections in vehicle control using sonars. These

methods incorporate bearing stabilization algorithms that were implemented to

address these issues on an intelligent AUV sonar sensor and tested during a sub-

sequent sea trial with the goal of providing target bearing estimates [25]. Since

imperfections can be solved, studies have been done to increase the range of

acoustic signals to be used by an AUV resulted in range enhancement of acous-

tic devices [38]. Numerous studies also have been done to record the sounds of

the underwater mammals in order to inspect their lives [26]. None of the previ-

ous studies have utilized an AUV integrated with acoustic transmission system.

Also, shark tracking operations have never been performed by AUVs equipped
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with acoustic devices. The main difference between this thesis and previous re-

search is to use an acoustic system in non-stationary states attached to an AUV

to track any type of fish species underwater.

1.3 Why Sharks?

Based on the information provided by ISAF ”International Shark Attack File”

[11], every year sharks attack fatally and non-fatally. Although sharks threaten

human life, sharks must also be protected. White Sharks are threatened with

extinction. The number of White Sharks has been reduced in the past years

and biologists are worried about their future. If the migration path of sharks

and their behavior became clear to scientists, dangerous locations close to the

shore would be recognized and the number of attacks close to beaches could be

reduced. To perform this important task, scientists need to understand shark

behavior in order to answer complicated questions including: Which habitats do

sharks prefer? What is the size of their home ranges? Do White Sharks show

fidelity to particular sites, such as hunting grounds, and if so for how long? How

far do White Sharks travel? Do White Sharks have regular migrations, and if so

what are the sizes and routes of these migrations? What are the relationships

between great White Sharks that live in different parts of the world? Are the

movements of White Sharks driven by environmental factors? If so, which are the

most important of them? Therefore, autonomous shark tracking can be useful for

two purposes: 1) Tracking for attack prevention, and 2) Extinction prevention.

AUVs track sharks to study their behaviors.
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Figure 1.1: Number of shark attacks in the United States from 2000
to 2010. Cited from Florida Museum of Natural History, International
Shark Attack File

1.4 Current Methods of Shark Tracking

One of the main reasons sharks are such effective predators is their keenly

attuned senses. Initially, scientists thought of sharks as giant swimming noses.

When researchers plugged the nasal openings in captive sharks, the sharks had

trouble locating their prey. This seemed to demonstrate that the shark’s other

senses were not as developed as the sense of smell. Further research demonstrated

that sharks actually have several acute senses, but that they depend on all of

them working together. When you take one away, it significantly hinders the

shark’s hunting ability [5]. Therefore by providing a large amount of blood in the

environment, sharks can be easily distracted and lured to the bait. Besides this

basic method to track a shark, other methods are being used widely in research

such as satellite and acoustic tracking.

In one common tracking method a near-real time tag is attached to a shark.
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When the shark swims in shallow water or gets close to the water surface, the

tag sends the signal to the satellite and by getting those signals the shark can be

located [19]. Another method for tracking fish is to attach an acoustic transmitter

to the shark. Often, scientists are required to follow the signals from the tag by

acoustic receivers.

In [18], the authors used an AUV to track two tagged Atlantic Sturgeon in

the Hudson River. Results of this research proved that the AUV is capable of

collecting data from a tagged fish. The AUV in this research sweeps across a

specific area to get signals from the fish. Then by getting more signals, it locates

the fish. Finally, in [17], the authors incorporate hydrophones receivers in an

AUV. Also they validated the effectiveness of the hydrophones in the area of

deployment.

In one approach, [60], the authors used an acoustic system to locate a tagged

Shovelnose shark. They set up acoustic receivers in a bay and collected data when

the shark came into the range. The data was analyzed to investigate the shark’s

behaviors based on its motion patterns. In this thesis, the focus is on using

acoustic tags. This method involves tagging a shark with an acoustic device

which propagates information on regular time sets.

Other methods are currently used for object tracking by robots. In [57], visual

tracking systems were investigated for tracking multiple human inside a building.

In this research, visual tracking is used in order to track multiple human inside

a building. The authors were able to reliably keep track of multiple persons

successfully. In [49], visual data is used by a robot to determine its path based

on a complex decision making algorithm. This research focused on soccer player

robots. Obviously the location of the ball must be tracked. Similarly, [57] uses

visual data to predict the location of a soccer ball. In [33], the authors use

8



SLAM (simultaneous localization and mapping) algorithm in order to determine

the surrounding environment.

Underwater robotics have incorporated visual tracking systems as the other

types of robotics [14]. In one approach, computer vision system is used in a ROV

to track a fish [61]. Similarly, this system is used to track jelly-fish with an ROV.

1.5 Objectives of Shark Tracking Research

Specific objectives for the overall project were defined as:

Shark Motion Behavior Characterization This part of the research focuses

on modeling the different behavior modes of a shark including, resting, foraging,

etc., as well as modeling the transitions between these modes. In every mode,

shark locomotion kinematics will be modeled as well as associated model cer-

tainty. Associating these modes with different oceanographic parameters and

geolocated positions is also of interest.

AUV Marine Tracking Technology To track a tagged shark with a mobile

platform, investigation into novel shark localization is required. Robust and in-

telligent planning and control in response received acoustic transmissions must

be developed. This planning should consider speed, distance, and the depth of

the AUV relative to the shark as well as shark movement behaviors.

1.6 Objectives of the current research

This thesis only focuses on ”AUV Marine Tracking Technology” whose pur-

pose is to design an autonomous mobile shark tracking system. All components of

the system will be discussed in the next chapter. The validation and experimental
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results are covered in the later chapters.
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Chapter 2

Mobile Tracking System Design

Problem Statement

This thesis proposes solutions to two related problems, 1) Design of a mobile

shark tracking system, and 2) Design of an autonomous control system that drives

the mobile unit to the shark.

2.1 System Design

2.1.1 Design Constraints

Several constraints were considered in this design problem, including physical

requirements of both the mobile technology and the shark itself. The constraints

include: 1) Minimum speed, 2) Minimum maneuverability, 3) Minimum detection

range, 4) Minimum sampling frequency, and 5) Full autonomy.
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2.1.1.1 Average Sharks Speed

For the mobile system to follow an individual shark, it must have a maximum

speed equal to or greater than the shark’s maximum sustainable swimming speed.

In ”Aspects of Shark Swimming Performance Determined using a Large Water

Tunnel” [15], the critical speeds of several sharks were tested. Lemon, Leopard,

and Mako sharks were tested for the purpose of estimating their speed. The

measured speed was based on the maximum sustainable swimming speed for a

set period of time, in this case 30 minutes. The type of shark which this project

focuses on is Leopard sharks. In [15], a total of 18 different Leopard sharks were

tested with total lengths ranging from 0.35 m to 1.21 m. The average critical

swimming speed was 0.70 m/s with a maximum recorded sustainable swimming

speed of 0.97 m/s [56]. This value is used as a minimum max speed for the mobile

tracking system.

2.1.1.2 Sharks Maneuverability

Another important issue to address in this work is the shark’s maneuverability,

or high rotational velocity. A study at University of South Florida has shown

that sharks can change their directions while moving at full speed. The key to

this ability is that sharks use their tiniest traits-flexible scales on their bodies.

These scales control water flow separation across their bodies. Based on the

experimental measurements and models of shark scales; the tapered shape of a

shark’s fin enables the scales to be easily manipulated to angles of 60 degrees or

more [31]. This also can be rephrased in a mathematical form. In Figure 2.1,

assume that the shark is going with the maximum swim speed and the vehicle

is following its path. Suddenly the shark turns around and goes to the opposite
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(a)

(b)

(c)

(d)

Figure 2.1: Vehicle Maneuverability Analysis
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direction.

Therefore, the vehicle detects this change after a while and it must turn

around to follow the shark. Figure 2.1a presents the initial state of the vehicle and

the shark. In Figure 2.1b the shark suddenly changes its direction to the opposite

direction. After a while, the vehicle detects the new location of the shark (Figure

2.1c). Finally the vehicle changes its direction toward the shark and follows the

shark (Figure 2.1d). To calculate the minimum acceptable rotational rate for the

vehicle in this scenario, it is required to consider some factors:

∆TZ =
VV ehicle√

(x2V ehicle − x1V ehicle)2 + (y2V ehicle − y1V ehicle)2
(2.1)

Where,

(xV ehicle, yV ehicle): The location of the tracking system.

(xShark, yShark): The location of the shark.

VV ehicle: Velocity of the vehicle.

∆TZ : The time between sensor measurements of the tracking

device after the shark changes it direction.

When the tracking device locates the new position of the shark, the tracking

vehicle turns around to follow the new direction. Assume that this turn takes

∆TT seconds with the radius r. Therefore,

VV ehicle = rω = r
∆θ

∆t
= r

π

∆TT
(2.2)

Where,
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ω: Angular velocity of the vehicle.

∆θ: Angular displacement.

While the vehicle is changing its direction, the shark moves further away. The

distance that the shark goes can be calculated as:

√
(x3Shark − x1Shark)2 + (y3Shark − y1Shark)2 =

VShark
∆TT + ∆TZ

(2.3)

Assume that the shark just moves directly on the x-axis. Therefore, y3Shark =

y1Shark. Also x1Shark was calculated when the tracking device located the shark

in the previous step. Therefore,

x3Shark =
VShark

∆TT + ∆TZ
+ x1Shark (2.4)

The maximum distance between the shark and the vehicle must be less than the

tracking device’s sensing range. Therefore,

√
(x3V ehicle − x3Shark)2 + (y3V ehicle − y1Shark)2 < DR (2.5)

Where,

DR: Tracking device maximum detection range.

Based on the assumption, (y3V ehicle − y1Shark)2 holds a constant value which is

called A. Therefore,

(x3V ehicle − x3Shark)2 < DR2 + A (2.6)

Therefore,

|x3V ehicle −
VShark

∆TT + ∆TZ
− x1Shark| <

√
DR2 + A (2.7)
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|x3V ehicle −
VShark

rx
π

VV ehicle

+ ∆TZ
− x1Shark| <

√
DR2 + A (2.8)

|x3V ehicle −
VSharkVV ehicle

rxπ + ∆TZVV ehicle

− x1Shark| <
√
DR2 + A (2.9)

|(rxπ + ∆TZVV ehicle)(x3V ehicle − x1Shark)− VSharkVV ehicle|

< (rxπ + ∆TZVV ehicle)
√
DR2 + A

(2.10)

(rxπ + ∆TZVV ehicle)(x3V ehicle − x1Shark)− VSharkVV ehicle

< (rxπ + ∆TZVV ehicle)
√
DR2 + A

(2.11)

rx <
VSharkVV ehicle + ∆TZVV ehicle(

√
DR2 + A− (x3V ehicle − x1Shark))

π(x3V ehicle − x1Shark −
√
DR2 + A)

(2.12)

(rxπ + ∆TZVV ehicle)(x3V ehicle − x1Shark)− VSharkVV ehicle

> −(rxπ + ∆TZVV ehicle)
√
DR2 + A

(2.13)

rx >
VSharkVV ehicle + ∆TZVV ehicle(−

√
DR2 + A− (x3V ehicle − x1Shark))

π(x3V ehicle − x1Shark +
√
DR2 + A)

(2.14)

Therefore the minimum rotational rate for the vehicle can be calculated by Equa-

tion 2.14 if the shark moves along the x-axis.

Now assume that the shark just moves directly on the y-axis. Therefore,

x3Shark = x1Shark. Also y1Shark was calculated when the tracking device located

the shark in the previous step. Therefore,

y3Shark =
VShark

∆TT + ∆TZ
+ y1Shark (2.15)
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The maximum distance between the shark and the vehicle must be less than the

tracking device’s sensing range. Therefore,

√
(x3V ehicle − x3Shark)2 + (y3V ehicle − y1Shark)2 < DR (2.16)

Where,

DR: Tracking device maximum detection range.

Based on the assumption, (x3V ehicle − x1Shark)2 gets a constant value which is

called B. Therefore,

(y3V ehicle − y3Shark)2 < DR2 +B (2.17)

Therefore,

|y3V ehicle −
VShark

∆TT + ∆TZ
− y1Shark| <

√
DR2 +B (2.18)

|y3V ehicle −
VShark

ry
π

VV ehicle

+ ∆TZ
− y1Shark| <

√
DR2 +B (2.19)

|y3V ehicle −
VSharkVV ehicle

ryπ + ∆TZVV ehicle

− y1Shark| <
√
DR2 +B (2.20)

|(ryπ + ∆TZVV ehicle)(y3V ehicle − y1Shark)− VSharkVV ehicle|

< (ryπ + ∆TZVV ehicle)
√
DR2 +B

(2.21)

(ryπ + ∆TZVV ehicle)(y3V ehicle − y1Shark)− VSharkVV ehicle

< (ryπ + ∆TZVV ehicle)
√
DR2 +B

(2.22)

ry <
VSharkVV ehicle + ∆TZVV ehicle(

√
DR2 +B − (y3V ehicle − y1Shark))

π(y3V ehicle − y1Shark −
√
DR2 +B)

(2.23)
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(ryπ + ∆TZVV ehicle)(y3V ehicle − y1Shark)− VSharkVV ehicle

> −(ryπ + ∆TZVV ehicle)
√
DR2 +B

(2.24)

ry >
VSharkVV ehicle + ∆TZVV ehicle(−

√
DR2 +B − (y3V ehicle − y1Shark))

π(y3V ehicle − y1Shark +
√
DR2 +B)

(2.25)

Therefore the minimum rotational rate for the vehicle can be calculated by Equa-

tion 2.25 if the shark moves along the y-axis.

Finally the minimum rotational rate for the vehicle to perform the operation

can be calculated by Equation 2.26 as follows:

r >
√
r2x + r2y (2.26)

2.1.1.3 Sharks’ Sensing Range

Sharks are very sensitive animals. They can pick up on electromagnetic fields,

sounds, smells, tastes, and physical activities. Therefore, one issue is to design

the tracking vehicle in a way that sharks do not attack it. Also, it must maintain

a minimum distance from the shark to reduce the probable damages. Shovelnose

and Leopard sharks inhabit shallower waters and tend to swim on the bottom.

They have the tendency to rest on the bottom and mill around over an area of

100 meters. Therefore, the vehicle must be able to stay at least 20 meters away

from these sharks. Current research focuses on Leopard sharks which are not

as sensitive to local disturbances. Therefore this issue is not considered in the

current research.
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2.1.1.4 Necessity of Autonomy

To relieve human operators of the tedious, difficult and sometimes dangerous

task of continuous shark tracking experiments that can last up to 48 hours, this

thesis aims to design a system that is fully autonomous with no human interven-

tion except to start and stop the system.

2.1.1.5 Tracking Device Response Time

As discussed in the previous sections; sharks can change their speed and

direction with their maximum speed. This can happen any time during operations

and the tracking system must be able to detect the changes as fast as they happen.

For this purpose, the tracking device must get measurements through its sensors

on regular frequency
1

∆TZ
which discussed in the previous sections. Also, the

tracking system must be able to log the state of the shark in regular time steps

during operations.

2.1.2 Design Criteria

2.1.2.1 Tracking Speed

Based on the average swim speed of sharks, the tracking vehicle must be able

to operate even faster than the average speed of shark. As discussed before, the

greatest sustainable velocity of Leopard sharks is 0.97 m/s. If the shark is far

away from the tracking system, the vehicle must be able to approach the shark

with a greater speed to reduce the distance in between.
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2.1.2.2 System Maneuverability

The tracking system must also be able to change its direction as fast as

possible. As discussed before, sharks can change their direction with their full

speed. Therefore, two common scenarios might happen: 1) The shark and the

vehicle are close to each other when the shark turns in a random direction, and

2) They are far enough from each other. The main problem is the first case. In

the first case, the vehicle must be able to turn very fast, which requires a greater

moment of inertia to the rudder and greater thrusting force (with respect to the

vehicle size). This would help the vehicle to turn with a smaller radius to follow

the shark.

2.1.2.3 Tracking Device Response Time and Detection Range

To perform consistent shark tracking operations, the tracking device must be

able to localize the shark on a regular frequency. The higher frequency of logging

data is more desirable. This is because by having more information about the

shark’s movements, localization of the shark can be done easier which increases

the reacting time of the tracking vehicle. Also, the more detecting range is more

desirable. Therefore, having a tracking device with higher frequency and greater

detection range can be defined as a constraint for the system.

2.1.2.4 Duration of System in Hours

In terms of migratory habits, sharks can be divided into three groups; 1) local

sharks, 2) coastal pelagic sharks and 3) highly pelagic sharks [28].

• Local Sharks: are those that do not migrate at all. They stay within
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approximately 160 kilometers (or 100 miles) of a central point [28].

• Pelagic Sharks: will migrate along the shallower waters for a distance of

over 1600 kilometers, or 1000 miles. This may be to follow certain currents

or in search of food [28].

• Highly Pelagic Sharks: which will follow currents across oceanic borders

[28].

Having a system which can operate consistently for a longer time would help

to collect more information about the migration paths. Therefore a system that

can follow sharks on longer migratory paths is desirable. Table 2.1 summarizes

the constraints and criteria to design a tracking system.

Design Constraints Design Criteria

Speed Leopard Sharks Maximum
Speed is:

The maximum speed of the
vehicle must be greater than
sharks’ maximum speed.VShark = 0.97 m/s

Maneuverability Sharks can change their
direction with maximum
speed.

The vehicle must be able to
maintain a great angular ve-
locity to be able to follow
the shark consistently.

Sensing Range Sharks can smell up to 100
meters away but they can-
not see or hear anything far-
ther than 30 meters.

At least 30 meters away
from the shark. (Not appli-
cable to this thesis)

Response Time and
Detection Range

As fast as shark moves
within a specific range.

The tracking device must
be able to detect the shark
with a greater maximum de-
tection range and report the
location of shark with con-
stant sampling frequency.

Table 2.1: Tracking System Design Constraints and Criteria
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2.2 Proposed Solution

To design an autonomous system for shark tracking, three components must

be used: 1) A vehicle for tracking, 2) A tracking device, and 3) A shark. The

vehicles for tracking may vary in type, e.g., it can be an autonomous underwater

vehicle (AUV), a remotely operated vehicle (ROV) or even a boat which human

track a shark manually. Also, the tracking device may vary in type, e.g., an

acoustic transmission device, a GPS device or a visual tracking system. The

candidate vehicles and the tracking devices have advantages and disadvantages

in comparison with one another which are discussed below.

2.2.1 Vehicle for Tracking

As discussed the first chapter, one of the goals of designing autonomous sys-

tems is to reduce operations labor. Therefore, it is required to have a robot to

perform the operation. There are two choices to select a robot which would per-

form shark tracking operation. A remotely operated vehicle (ROV) is a type of an

underwater robot which is operated via the support unit by a human. The ROV

is connected to the support unit by a long tether which limits the range of the

robot. An important part of our shark tracking project was to design a system

which can follow a shark as long as possible without any human intervention,

making ROVs less applicable. The other choice was to select an AUV to perform

the operation. AUVs can operate without human control and they do not have

any wire or tether which limit their functionality. Therefore, an AUV was chosen

as the tracking vehicle.
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Figure 2.2: An AUV Figure 2.3: A ROV

2.2.2 Device for Tracking

The chosen vehicle (AUV) must use a tracking system to provide measure-

ments necessary for shark localization. Three main types of tracking were con-

sidered: 1) Acoustic tracking systems device, 2) GPS tracking systems, and 3)

Visual tracking systems [22, 30, 23, 56].

2.2.2.1 Acoustic Tracking Device

An acoustic tracking device uses the transmission and reception of sound

waves to localize its target’s locations. Often, an acoustic transmitter tag is at-

tached to the target being tracked. The receiving systems consist of an array

of hydrophones which can be processed for calculating relative distances and or

bearings to the tag. To note, acoustic devices perform well in deep waters.

Previous research focused on using acoustic tracking system for tracking tar-

gets and positioning systems for autonomous underwater vehicle. Acoustic track-

ing systems are widely used for tracking of fishes [22, 30, 23, 56]. In [20], re-

searchers tagged a Macrofauna and established an array of hydrophones in the

Mullica River and Great Bay estuary in southern New Jersey, USA as part of

an observatory for the study of migration. In [18], the authors used an AUV to

track two tagged Atlantic Sturgeon in the Hudson Rive using acoustic tracking
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system and tracked and followed the fish with a detection range of about 2 km.

[35] focused on tracking Megamouth sharks using acoustic an tracking system.

In that research, the authors had followed a Megamouth shark for about 4 days.

The detection range of the acoustic system in this papers was reported 200 me-

ters. In another study, Humpback whales were tracking using acoustic tracking

system. In this paper, two high density clusters of detections occurred approxi-

mately 1500 m northeast of the Hawaiian Islands and were attributed to a large

aggregation of migrating animals [36].

Acoustic systems are also used for the purpose of localizing AUVs when they

are underwater and have no access to GPS signals. There are three common types

of acoustic positioning systems: 1) Ultrashort baseline (USBL), 2) Short base-

line (SBL), and 3) Long baseline (LBL). The distance between acoustic baselines

is generally used to define an acoustic positioning system which is the distance

between the active sensing elements [52]. USBL was used for AUV navigation

system in [42]. In this paper, the USBL sensor was attached to a boat. The

USBL system interacted with the AUV frequently. To evaluate the accuracy of

the USBL acoustic tracking system, AUV was driven in a square shaped area

and the error was calculated by having the actual location and the estimated

location of the AUV. The average error in this paper is reported as less than 20

meters. In [48] a SBL system is incorporated for an AUV navigation. In this

paper, the SBL system includes 3 hydrophones that were placed on the vertices

of a triangle which constantly receive signals from the transmitter. To investigate

the accuracy of the system, an experiment in a 200 meters x 200 meters area was

done which showed less than 10 meters average error. [34] addresses the design

of a low-cost LBL navigation system for an AUV. In this paper, the experiments

were done in a 500 meters x 500 meters area in order to navigate the AUV in a
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lawnmower pattern. The average error is reported as 5 meters which presents a

good accuracy.

In [13], an acoustic tracking system consisting of an array of hydrophones was

used to locate the location of an acoustic tag by an AUV. In the experiments the

average error reported as less than 50 meters. While there are different types of

acoustic tracking system, there are a few types of portable systems which can

be integrated with the vehicle. Theses systems can repeatedly locate the indi-

viduals without additional handling and transmit signals through fresh and salt

water. On the other hand, portable acoustic tracking systems have a good range

(<1000m) capability [53]. Any obstacle, depth, and salinity reduces the signal

rate. Noise and air reduce signal detection and it requires in-water detection

system (hydrophone) which increases the wet area of the AUV which increases

the frictional force [8].

2.2.2.2 GPS Tracking Device

A GPS tracking device is a device that uses the Global Positioning System to

determine the precise location of a vehicle, person, or other asset to which it is

attached and to record the position of the asset at regular intervals. The nominal

Figure 2.4: An Acoustic Tracking Device
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GPS Operational Constellation consists of 24 satellites that orbit the earth in

12 hours. There are often more than 24 operational satellites as new ones are

launched to replace older satellites. The satellite orbits repeat almost the same

ground track (as the earth turns beneath them) once each day. The orbit altitude

is such that the satellites repeat the same track and configuration over any point

approximately each 24 hours (4 minutes earlier each day). There are six orbital

planes (with nominally four SVs in each), equally spaced (60 degrees apart), and

inclined at about fifty-five degrees with respect to the equatorial plane. This

constellation provides the user with between five and eight SVs visible from any

point on the earth. Civil users worldwide use the Standard Positioning Service

(SPS) without charge or restrictions. Most receivers are capable of receiving and

using the SPS signal. The SPS accuracy is intentionally degraded by the DOD

by the use of Selective Availability. SPS predictable accuracy is 10 meter on

average on land while GPS signals cannot penetrate water at all [58, 7, 8]. GPS

device records the location data frequently. The recorded location data can be

stored within the tracking unit, or it may be transmitted to a central location

data base, or internet-connected computer, radio, or satellite modem embedded

in the unit. This allows the asset’s location to be displayed against a map back-

drop either in real time or when analyzing the track later, using GPS tracking

software. Advantages of GPS tracking system can be listed as follows: 1) High

spatial accuracy and temporal resolutions, 2) Capacity to collect large databases

about environments, 3) Ability to localize without human aid, and 4) Ability to

locating any individuals. Considering the advantages, GPS tracking systems have

an important disadvantage that makes it not suitable for the tracking project.

The disadvantage of GPS is that signals cannot be received below the water’s

surface and most fish and sharks swim at depth. Due to this restriction, Pop-up
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Figure 2.5: An Example of a Satellite Image

Satellite Archival Tags (PSAT) are widely used instead [29]. A PSAT is gener-

ally constructed of several components: a data-logging section, a release section,

a float, and an antenna. The release sections includes a energetically popped

off release section or a pin that is actively corroded on a preset date or after

a specified period of time. Some disadvantages of using PSAT are their depth

limitations (2000m), size, their costs, and their vulnerability to loss by environ-

mental issues (biofouling) or ingestion by a predator [29]. For data collection the

tag must be recovered which would be hard [8].

2.2.2.3 Visual Tracking Systems

Visual tracking is the process of locating a moving object (or multiple objects)

over time using a camera. It has a variety of uses, some of which are: human-

computer interaction, security and surveillance, video communication and com-

pression, augmented reality, traffic control, medical imaging and video editing.

Previously, vision systems have been used for AUV navigation and pipe tracking

[59, 3] with acceptable error rate. However, the error rate increases when the

object is far away from the camera or acquired data is distorted due to camera

movements. Computer vision system is inexpensive to use, but can be a time

consuming process due to the number of data that is contained in video [59].

Adding further to the complexity is the possible need to use object recognition
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Figure 2.6: An Underwater Video Camera Used by Visual Tracking
Devices

techniques for tracking. To note, the water clarity is a major issues when using

vision systems in underwater environments, making it less applicable to shark

tracking.

2.2.3 System Design Decision

The procedure to make the final decision to design the autonomous tracking

system is represented in Figure 2.7. As the specifications of tracking vehicles

and tracking device were discussed, a combination of an AUV and an acoustic

transmission system was chosen.

2.2.3.1 Final Design Decision

Table 2.2 compares several tracking systems by constraints and criteria which

discussed earlier. There are several capital letters in each criterion and constraint.

• 3 stands for good which means that the variable is in or more than the

required range.

• 2 stands for moderate which means that the variable is close the required

range.

• 1 stands for bad which means that the variable is not in the required range.
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Figure 2.7: The Autonomous Tracking System Design Decision Dia-
gram

Finally, with the total score of 24/24, the autonomous tracking system was

designed based on an autonomous underwater vehicle equipped with an acoustic

tracking system.

2.2.4 Current Research AUV

IVER2, made by the ocean-server Company, was used in this research. Spec-

ifications of this AUV are presented in the Table 2.3.

Figure 2.8: Autonomous Underwater Vehicle Used in the Current Re-
search
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Tracking
Vehicle

Tracking De-
vice

Constraints Criteria

AUV Acoustic
Tracking
System

Speed 3 Speed 3
Maneuverability 3 Maneuverability 3
Sensing Range 3 Sensing Range 3
Response Time 3 Response Time 3
Total: 12 12

AUV GPS Tracking
System

Speed 3 Speed 3
Maneuverability 3 Maneuverability 3
Sensing Range 2 Sensing Range 1
Response Time 2 Response Time 1
Total: 10 8

AUV Visual Track-
ing System

Speed 3 Speed 3
Maneuverability 3 Maneuverability 3
Sensing Range 1 Sensing Range 1
Response Time 1 Response Time 1
Total: 8 8

ROV Acoustic
Tracking
System

Speed 1 Speed 1
Maneuverability 3 Maneuverability 2
Sensing Range 3 Sensing Range 3
Response Time 3 Response Time 3
Total: 10 9

ROV GPS Tracking
System

Speed 2 Speed 1
Maneuverability 3 Maneuverability 2
Sensing Range 2 Sensing Range 1
Response Time 2 Response Time 1
Total: 9 5

ROV Visual Track-
ing System

Speed 2 Speed 1
Maneuverability 3 Maneuverability 2
Sensing Range 1 Sensing Range 1
Response Time 1 Response Time 1
Total: 7 5

Table 2.2: Final Design Decision Table

The AUV (Figure 2.8) operates with two processors. The main processor runs

the controlling API for the basic controlling operations such as fins controller,

propeller velocity controller, GPS data logger, altimeter data logger, gyroscope

data logger, and battery data logger. The secondary processor runs the controller
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Hull Diameter: 0.147 m (5.8 in)
Hull Material: Carbon Fiber Tube
Vehicle Length: 1.27 m (50 in)
Weight in air: 19kg (42 lbs.)
Trim Weight: 1.2 kg (2.6 lbs.)
Maximum Operating Depth: 100 m (328 ft.)
Energy: 600 watt/hours
Propulsion: DC brushless motor
Control: 4 independent fin control

surfaces, yaw, pitch and ac-
tive roll correction

Integrated Sensors: Depth (pressure), Altimeter
(acoustic), 3 Axis Digital
Compass, leak detectors

Processor: Standard processor is an
AMD LX800. Custom
CPU, Intel ATOM 1.6Ghz

Table 2.3: The Autonomous Underwater Vehicle Specifications

code that has been developed by the author to operate autonomously to track

the shark. For the tracking purposes, this AUV has not been equipped with any

tracking devices. To perform the acoustic tracking, a LOTEK acoustic system

was integrated into the AUV and connected to the secondary processor via port

RS-232. Together the acoustic receiver and its software supply the required in-

formation to perform the localization. The information provided by the acoustic

receiver and the data from the main processor allow the controller program to

localize and track the shark. The information flow block diagram is presented

in Figure 2.9. In this figure, the acoustic system’s hydrophones receive analog

signals from the acoustic tag. MAPHost RTA interprets the information and

provides the strength of the signal and bearing to the target for the secondary

processor. At this stage, the main processor sends the data from GPS, gyro-

scope, and the power units of the main processor to the secondary processor.

Using measurements from these sensors, the particle filter estimates the shark’s
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Figure 2.9: System Diagram of the AUV

location. The particle filter algorithm was not developed in this thesis. This part

has been done by another member of the shark tracking team [12]. The controller

code sends the proper fin angle and motor speed to the main processor allowing

the AUV to track the shark at the correct distance and position.

2.2.5 Acoustic Tracking System, LOTEK

The LOTEK MAPHOST-RTA, Figure 2.10, is a dual acoustic receiver that

has been used for the localization purposes. This device receives signals, from an

acoustic transmitter which is attached to the shark, by two passive hydrophones

which listen to the pings during an operation. The main usage of this device is

for outdoor purposes such as boats and piers. The LOTEK system calculates

the angle to the transmitter by triangulation between two hydrophones and the

transmitter.
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Figure 2.10: Acoustic Tracking Device, LOTEK MAPHOST-RTA

The major problem of the LOTEK system is that the bearing to the tag is

always positive while this assumption is not always true. Consider an imaginary

line between two hydrophones, from the perspective of the LOTEK system there

is no difference between the left side (0 to π) and the right side (0 to +π) of the

line. More details will be discussed in the controller system section.

The acoustic transmitter operates in 76 kHz frequency range and this offers

a theoretical maximum range of 500-1000 meters depending on outside noises,

placement of hydrophones, and temperature differences. The acoustic transmitter

can also record the depth of operation. An advantage is that the LOTEK system

converts the analog signal to the digital by itself this allows the system to use

thousands of tags in the same frequency. Each tag’s unique ID is coded within the

signal, allowing identification of each individual tag. Therefore, multiple objects

can be followed by an AUV with the same frequency tags. The receiver calculates

the bearing to each tag (with respect to their IDs) and provide it to the control

unit.
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Figure 2.11: Acoustic Transmitter

Figure 2.12: Acoustic Tracking Device Integrated with the AUV
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Figure 2.13: Control System Diagram of the AUV

2.2.6 Shark Tracker System Components

Figure 2.13 illustrates the feedback control system designed for tracking and

following purposes. In each time step, the acoustic receiver waits for the signal’s

arrival from the acoustic tag. After a signal is received, the signal is filtered

and transformed to a bearing and signal strength measurement that can be used

by the state estimator. Meanwhile, the particle filter algorithm uses; the current

location of the AUV from the GPS, the heading angle from the gyroscope, and the

incoming data from LOTEK to update its shark state estimate. Whenever the

particle filter estimates the location of the shark, it sends the absolute location

of the shark with the AUV to the step controller. The step controller calculates

the current error and sets the proper fin angles and propeller motor velocity.
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Figure 2.14: The Rig Used to Fix the Hydrophones under the AUV

2.2.6.1 Hydrophone Mounting Frame

One of the major problems encountered in the project was how to correctly

attach the hydrophones to the AUV. Experiments were conducted on multiple

rigs equipped with hydrophones in order to achieve admissible speed and maneu-

verability results. The main goals were to minimize water friction and maximize

speed. The most accurate bearing calculations by the LOTEK system happen

when the hydrophones are 2.4 meters from each other and 1.5 meters below the

water surface. Thus several frames have been designed and tested to guarantee

the maximum maneuverability and velocity. The frames were built with alu-

minum pipes, PVC pipes, and carbon fiber rods. After drag experiments, the

final rig was built using carbon fiber rods Figure 2.14. Tables 2.4 and 2.5 present

the thrusting forces needed by the AUV to move with a constant speed with each

mounting frame.
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Direction Straight Left Turn Right Turn

Carbon Fiber (N) 9.94 10.131 9.54
PVC Pipe (N) 12.41 16.31 15.13

Table 2.4: Average Thrust Force Needed for Each Mounting Frame on
Forward Direction

Direction Straight Left Turn Right Turn

Carbon Fiber (N) 4.91 3.93 3.74
PVC Pipe (N) 7.543 5.88 4.31

Table 2.5: Average Thrust Force Needed for Each Mounting Frame on
Backward Direction

2.2.6.2 Yaw Fin

After completing a final design of the frame, the wet area of the AUV had

been increased due to the hydrophones and carbon fiber rods. As a result, the

rotational drag increased the AUV turning radius. In the case of tracking, the

turning radius was too large to track the shark in a specific path. As illustrated

in the Figure 2.15. IVER2 has two small yaw fins. New larger fins were built.

After testing, the fin that provided the best turning radius with the minimum

speed reduction was chosen (2.16). In Table 2.6, the ability to turn with the two

types of fins is evaluated.

Figure 2.15: Original Yaw Fin Figure 2.16: New Yaw Fin

Increasing the size of the fin would increase the control surface area leading
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to a reduction of the turning path. However if this area is increased more than a

tolerable limit on the motor torques, the rotors would be burned out.

Turning Angle (Degrees) 15 30 45 60 75 90

Original Fin (Seconds) 5.303 8.351 10.131 14.764 17.313 23.13
New Fin (Seconds) 4.313 7.543 9.64 12.011 15.765 18.095

Table 2.6: Time Elapsed for the AUV to Complete a Turn with Carbon
Fiber Mounting Frame and Different Yaw Fins
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Chapter 3

Control System

For this section, we assume the mobile tracking unit design will be based on

Autonomous Underwater Vehicle (AUV) technology. A control system must be

designed that enables the AUV to track and follow the shark using by setting the

appropriate motor speed and control surface (i.e. fin) angles in response to the

AUV and shark state estimates.

3.1 Control System Design

Figure 3.1 presents a top down view of an AUV and a shark in an environment.

The AUV’s state consists of current location (xAUV , yAUV ), yaw angle (θAUV ),

velocity (VAUV ) and angular velocity (ωAUV ). The shark’s state is defined by the

estimated shark location (xShark, yShark) and its angle (θShark). Therefore,

X̂(t)AUV = [x(t)AUV y(t)AUV θ(t)AUV ẋ(t)AUV ẏ(t)AUV θ̇(t)AUV ] (3.1)
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Figure 3.1: Shark Tracking Coordinate System

And,

X̂(t)Shark = [x(t)Shark y(t)Shark θ(t)Shark] (3.2)

Therefore distance between shark and AUV would be,

ρt =
√

(x(t)AUV − x(t)Shark)2 + (y(t)AUV − y(t)Shark)2 (3.3)

Also the absolute bearing from the AUV to shark in the global coordinate frame

is,

αt = −θ(t)AUV + atan2(y(t)Shark − y(t)AUV , x(t)Shark − x(t)AUV ) (3.4)

The reason that the coordinate system is chosen to be 2D is that the acous-

tic tag can measure the depth of the shark. Also, the final experiments were

performed in very shallow waters which restricted the ability to dive.
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3.1.1 Cost Function Definition

The goal of the controller is to minimize the cost function defined in Equation

3.5. That is, the distance between the shark and the AUV, averaged over time.

C =
1

N − t0

N∑
t=t0

ρt (3.5)

3.1.2 Constraints for Modeling

The AUV has several physical constraints which must be considered. These

are framed as kinematic constraints here. Dynamic constraints are ignored here

and should be considered for future work.

xt = xt−1 + ∆tvtcos(θt−1) (3.6)

yt = yt−1 + ∆tvtsin(θt−1) (3.7)

θt = θt−1 + ∆tωt (3.8)

Where,

xt: Position of the AUV on the x− axis at time t.

yt: Position of the AUV on the y − axis at time t.

∆t: The time which the AUV moved from the initial location (at time

”t− 1”) to the final location (at time ”t”).

vt: Velocity of the AUV (at time t).
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θt: Heading bearing of the AUV (at time t).

ωt: Angular velocity of the AUV.

Equations 3.6, 3.7, and 3.8 are the kinematic equations of motion for the AUV.

The maximum velocity of the AUV is 4 knots (which is 2.057 meter/second, based

on conversion rate of 1 knot = 0.5144 meters) and maximum turn radius of 3

meters [37]. Therefore the maximum angular velocity can be calculated by,

ωmax =

√
Vt
R

= 0.83(
rad

sec
) (3.9)

Therefore the constraints can be set to:

Vt ≤ Vmax (3.10)

ωt ≤ ωmax (3.11)

3.1.3 Assumptions

As discussed earlier, modeling is done by a first order kinematic model. As

AUV operates underwater, due to the complexity of the equations, the effect

of waves and momentum and drag forces were not considered in the kinematic

equations. This reduces the calculations allowing for the tracking to be easier to

implement and results to be simplified. Another assumption would consider the

environment as an open water area which doesn’t contain any obstacle on the

AUV’s path.
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3.2 Proposed Solution - A Bearing Modulation

Controller

The design of the AUV’s control system was a critical part of this research.

As discussed in chapter one, the LOTEK system waits for the signals to arrive

from acoustic transmitter and then calculates relative bearing by using data from

the hydrophone which receives the signal first. Also, the LOTEK system cannot

differentiate between negative and positive angle values.

To improve shark localization, a control method is proposed that enables ac-

tive localization, in which the AUV actively modifies its behavior to improve shark

localization accuracy. To reduce localization uncertainty, the controller uses a re-

peated series of control actions that enable multple sensor vantage points while

still guiding the AUV towards the shark, (Figure 3.2). The series consists of

3 actions which include 1) tracking a heading +45 degrees from the estimated

bearing angle to the shark, 2) tracking a heading -45 degrees from the estimated

bearing angle to the shark, and 3) tracking a heading equal to the estimated

bearing angle to the shark. By tracking desired headings that are 90 then 45

degrees from one another, the AUV should obtain bearing measurements with

sensor footprints that only overlap on one side of the vehicle. This will lead to

particles on one side of the vehicle having higher weights and hence resampling

will converge particles to the correct location.

Figure 3.2 provides an example. Initially, when the AUV is at point A, re-

sampling from the Particle Filter reduces the group of particles to two clusters.

After the AUV moves to point (B), the overlap of the bearing measurement sen-

sor footprint only covers one of the particle clusters, giving those particles higher

weights and high likelihood of survival during the upcoming resampling. The
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surviving particles will likely only reside in close proximity with a single (correct)

cluster.

Figure 3.2: Particles Convergence

3.2.1 Step Control System

A proportional control system is a type of linear feedback control system,

often control systems are designed using proportional control system. In the

proportional control algorithm, the controller output is proportional to the error

signal, which is the difference between the set point and the process variable. In

other words, the output of a proportional controller is the multiplication prod-

uct of the error signal and the proportional gain. This can be mathematically

expressed as,
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Pout = Kpe(t) (3.12)

Where,

Pout: Output of the proportional controller.

Kp: Proportional gain.

e(t): Instantaneous process error at time ’t’.

To use this controller for shark tracking purpose, it is required to define output,

proportional gain and the error respectively. The output can be defined as the

fins’ angle relative to the current bearing to the shark; the proportional gain value

will be set through experiments and the error can be defined as follows:

e(t) = θdes − θ (3.13)

Where,

θdes: Desired yaw angle in absolute coordinate frame.

θ: Vehicle yaw angle with respect to the global coordinate frame.

3.2.2 Control System Definitions

Let’s assume,

−→
XAUV = [xAUV yAUV ] (3.14)

And,

−→
X Shark = [xShark yShark] (3.15)
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Figure 3.3: Control System Behavior
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As is known,

ρ =‖
−→
XAUV −

−→
X Shark ‖ (3.16)

ρ =
√

(xAUV − xShark)2 + (yAUV − yShark)2 (3.17)

Also the absolute bearing angle from the AUV to the shark with respect to the

global coordinate frame is:

β = atan2(yShark − yAUV , xShark − xAUV ) (3.18)

As defined earlier in the control system section, θdes is the desired yaw angle in

absolute coordinate frame. Therefore, the AUV should obey the following rules

and set the heading (θ) to a proper θdes,

If



(Mode = 0) and (θ ≈ θdes) then


θdes → β + γ

Mode→ 1

(Mode = 1) and (θ ≈ θdes) then


θdes → β − γ

Mode→ 2

(Mode = 2) and (θ ≈ θdes) then


θdes → β

Mode→ 0

(3.19)

γ: The control parameter angle (set to
π

4
in Figure 3.3).

The main reason to use this γ is to define the circularity of the path of the robot

in tracking operations.

3.2.3 Shark Tracker

The control system receives the estimated bearing and distance to the shark

from the particle filter algorithm. It sets the fins’ angle and motor velocity with
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respect to those values. To relate the distance between the shark with the velocity

of the AUV, Equations 3.20 and 3.21 were defined:

vt = C0Vmax
−C1

ρt
+ 1 (kn) ρt < D (3.20)

v = Vmax (kn) ρt ≥ D (3.21)

Where,

D: The threshold which the AUV must lower its velocity if the distance

between the AUV and the Shark is less than D, in the other case it must go

with the maximum velocity. This variable is chosen based on experiments

and Leopard sharks behavior.

Equation 3.20 sets the velocity of the AUV based on the distance between the

shark and the AUV. Therefore when the AUV is getting close to the goal, its

velocity is reduced and vice versa. Also, whenever the AUV is far away, more

than D meters from the shark, Equation. 3.21 sets the velocity of the AUV to its

full speed. Vmax was chosen to be less than the maximum velocity of the AUV

because operation with the maximum propeller speed may burn the engine or

wires after a long period of time.

3.3 Simulations

To validate the control system, the AUV, shark, and acoustic sensing system

were simulated in the MATLAB environment. These simulations were used to

improve the efficiency of the tracking system. The control system which was

discussed earlier uses a constant value (γ) to obtain bearing measurements with
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Figure 3.4: Control System Algorithm Diagram
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sensor footprints that only overlap on one side of the vehicle. Therefore by having

the results of the simulations with real-time calculations, the constant value (γ)

can be dynamically set during operations.

3.3.1 Autonomous Tracking System Simulation

The autonomous tracking system consists of two main parts: 1) the AUV, and

2) the LOTEK acoustic receiver system. The simulator used to initially validate

the controller was developed in MATLAB and based on models of these two main

components.

3.3.1.1 AUV Simulation

The AUV is assumed to behave according to the following kinematic equa-

tions:

X̂AUV = [xAUV yAUV ] (3.22)

V̂AUV = [
∂xAUV

∂t

∂yAUV

∂t
] = [VxAUV VyAUV ] (3.23)

Where,

X̂AUV : State matrix of the AUV.

V̂AUV : Velocity matrix of the AUV.

AUV velocity ranges from 0-4 knots and the turning radius (R) is 5 meter [37].

To calculate the rotation (θ) rate of the AUV in a small time t, one would have,

dθAUV = VAUV
dt

R
(3.24)
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By linearizing 3.24 one would have,

∆θAUV = VAUV
∆t

R
(3.25)

After ∆t seconds, the new location of the AUV can be calculated by,

X̂1(t)AUV = [x0AUV + V(t)AUV cos(∆θAUV )∆t y0AUV + V(t)AUV cos(∆θAUV )∆t]

(3.26)

3.3.1.2 LOTEK System Simulation

Calibration of the LOTEK system was previously done in a senior project of

two undergraduate students at Cal Poly [4]. In their work, the equations were

developed that map the relationship between the relative bearing and distance

between the hydrophones and tag.

Signal = −1 ∗ 10−6 ∗ θ3des + 2 ∗ 10−5 ∗ θ2des + 0.0947 ∗ θdes − 0.2757 (3.27)

Where,

Signal: Value which is produced by LOTEK system..

θdes: Relative bearing between the AUV and the shark.

3.3.2 Standard Deviation

The standard deviation of the particle position is used as a measure of confi-

dence in the shark state estimation.

µx =
1

N

P∑
i=1

xi (3.28)

µy =
1

N

P∑
i=1

yi (3.29)
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σ2
x =

1

N

P∑
i=1

(xi − µx)2 (3.30)

σ2
y =

1

N

P∑
i=1

(yi − µy)
2 (3.31)

Where µx, µy, σ
2
x and σ2

y are the mean positions of the particles in the x and y

direction, and variance of the particles in the x direction and y direction respec-

tively.

Assume that the calculations are done at each ∆t second. Therefore, after

each time step, the new states of the simulated AUV and the simulated shark can

be calculated based on their previous states. The new states help the particle

filter algorithm to estimate the location of the simulated shark. On the other

hand, at each time step the states of the simulated AUV, the simulated shark

and the particles (in the particle clusters) can be stored. If we repeat this process

for different values of γ, for a constant operation time, a database including all

states with different γ values can be produced. Thereby the database can be

used in real-time calculations. So at each time step, the database is searched for

the similar situations with the lowest standard deviation of the particles clusters.

Finally, the γ value is chosen from the database and applied to the controller in

real-time.

3.3.3 Simulation Data for an Improved Control System

To produce the database, which was explained in the previous section, the

simulated shark was placed in seven different locations relative to the simulated

AUV (0, 30, 60, 90, 120, 150, 180 degrees) in a constant distance (200 m). Also

for each location, six different γ values (0, 15, 30, 45, 60, 75 degrees) were used in

52



the simulated controller for approaching the shark. In each run of the simulator,

states of the simulated AUV, the simulated shark and the particles were stored

at each time step. Storing the results of all states would be useful in real-time

calculations. Thus, a new controller can be designed which uses this data to find

the most similar situation in the database, with the lowest standard deviation, to

the current situation and uses its stored γ value to increase the convergence rate of

the particles cluster. Similarity can be defined by comparing the current distance

and bearing to the shark with the stored states in the database. Figure 3.5

presents examples of data generations for the database. In this set of experiments,

the simulated shark is placed in 30 degrees relative to the simulated AUV. Each

image presents the path that the simulated AUV traverses to follow the simulated

shark with constant γ values.

3.3.4 Setting Controller Parameters

Similarity between the current state of the AUV, shark and particles with the

data in the database was briefly defined in the previous section. In the database

six variables are stored for each time step. These variables include: 1) Relative

bearing to the shark, 2) Standard deviation of the particles, 3) Heading angle

of the AUV, 4) Distance to the shark, 5) Time step, and 6) γ value. Here, the

flowchart to find the optimal γ for the controller is presented in Figure 3.6.

To investigate the results of incorporating the improved controller, a large

variety of experiments were done with the constant γ controller for different

situations. The simulated shark was placed in seven locations (0, 30, 60, 90,

120, 150, 180 degrees relative to the simulated AUV with 200 meters distance

in between). For each position, the experiment was done with six different γ
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Figure 3.5: Graphs of Plotting the Particles Standard Deviation vs.
Time with Different Yaw Angle Values

values (0, 15, 30, 45, 60, 75 degrees). Then the results of experiments with the

constant γ controller with six different γ values were averaged. On the other

hand, experiments with the improved controller were done in the same situations

as the constant γ controller. Table 3.1 presents the average slopes of the first 20

seconds of running the both controllers vs. the bearing to the simulated shark.

For all the bearings the average slope for the improved controller is greater. This
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Figure 3.6: Setting Controller Parameters Algorithm

means that the particle clusters converge faster than the original controller. Table

3.1 presents the average slopes between t=20 to t=200 seconds. The results of

the Table 3.2 are similar to Table 3.1, but in two cases (
π

6
and

π

2
) the original

controller decreases faster than the improved controller. This represents the fact

that using the database might be enough to be to improve the controller, but it

is not guaranteed that in all situations the chosen values are the optimal values.
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θdes(t=0)(Degrees) 0
π

6

π

3

π

2

2π

3

5π

6
π

Improved
Controller
(m/s)

-6.286 -7.384 -7.0122 -10.962 -5.1948 -2.6249 -2.9432

Original
Controller
(m/s)

-5.6852 -3.898 -3.8894 -3.2657 -3.561 -1.2629 -1.7094

Table 3.1: Standard Deviation of Particles Clusters Reduction Slopes,
for the first 20 seconds

θdes(t=0)(Degrees) 0
π

6

π

3

π

2

2π

3

5π

6
π

Improved
Controller
(m/s)

-1.358 -0.286 -3.9723 0.703552 -1.4208 -4.6223 -3.1675

Original
Controller
(m/s)

-1.1221 -1.124 -1.3199 -2.14236 -0.9473 -2.1712 -2.0142

Table 3.2: Standard Deviation Particles Clusters Reduction Slopes,
after the first 20 seconds

56



Chapter 4

Experiments Description and

Results

To validate the system performance, a variety of ocean experiments were con-

ducted that involved autonomous AUV tracking of either a stationary or moving

tag.

4.1 Stationary Tag Tracking

Initial experiments were conducted at the CCMS (Cal Poly Center for Coastal

Marine Science, Avila Beach, CA, shown in Figure 4.2). For stationary tag exper-

iments, an acoustic tag was attached to an anchored rope and placed 100 meters

away from the pier and 2 meters below the water’s surface. The acoustic system

was designed to have hydrophones 2.4 meters from each other. The acoustic tag

that was used in the experiments operates with a 76 kHz frequency and a 2 second

ping rate. During these experiments, the AUV’s start position relative to the tag

was varied to ensure that the tracking could be performed from every direction
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Figure 4.1: Acoustic Transmitter Attached to a Buoy

Figure 4.2: Cal Poly Pier, Avila Beach, CA.

and from various distances. In these experiments, the acoustic was attached to

a rope which is connected to a buoy from a one side and an anchor from the

other side. This would help to stabilize the position of the tag 2 meters below

the water’s surface. Figure 4.1 shows the buoy, rope, anchor and the acoustic

tag that were used to stabilize the tag on a fixed location. In the Figure 4.2, a

sample location of the AUV and the tag for experiments are also presented.

During the experiments, the tag was fixed on a position (e.g. (Latitude:
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35.1699, Longitude: -120.74139)). Then the AUV was placed in various positions

relative to the location on the tag. A sample table of relative locations is provided

in Table 4.1 Overall, close to 20 trials were done in this phase.

Tag Location (m, m) AUV Start Location (m, m)

(0, 0) (25, 25)
(0, 0) (-25, -25)
(0, 0) (-25, 25)
(0, 0) (25, -25)

Table 4.1: Relative Location between AUV and Tag

4.2 Moving Tag Tracking

After stationary tag tracking, the second set of experiments included au-

tonomous tracking and following of a moving tag. The first set of moving tag

experiments were conducted by attaching the tag to a Kayak with a two meter

long rope was tied to the kayak’s stern. In those experiments, the kayak traveled

in a wide variation of random paths, both toward and away from the AUV. Table

4.2 presents the start locations for the both AUV and moving tag. Overall, close

to 30 trials were done in this phase.

Moving Tag Start Location (m, m) AUV Start Location (m, m)

(0, 0) (25, 25)
(25, 25) (-25, -25)

(-25, -25) (0, 25)
(25, 20) (-25, 0)

Table 4.2: Relative Location between AUV and Tagged Kayak
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Figure 4.3: Transmitter Attached to The Second AUV

4.3 Secondary AUV Tracking

To provide a metric of tag state estimation accuracy, a second AUV with

known position was tagged and tracked by the first AUV equipped with the

tracking system. The error here is calculated as the difference between the second

AUV’s actual position (as measured with GPS) and the first AUV’s state estimate

of position as calculated by the Particle Filter that fuses bearing measurements

over time.

4.4 SeaPlane Lagoon Field Experiments

SeaPlane Lagoon (Figure 4.4) is located in the Port of Los Angeles. The

Lagoon is roughly in rectangular shape with 800 meters side. Mostly, water

is shallow and many Leopard sharks can be found there at particular times of

the year. This was the final location for testing and shark tracking of the season.

Stationary tag and two AUV tracking tests were repeated before tracking a shark.

Subsequently, a leopard shark (Triakis semifasciata) was caught, externally fitted

with an acoustic transmitter tag, and released.

The last results demonstrate the accuracy and ability of the system in per-
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Figure 4.4: SeaPlane Lagoon, Los Angeles, CA.

Figure 4.5: A Leopard Shark

forming tracking operations. In the Long Beach experiments, the shark was

pulled to the surface using the line, and was then gently restrained with a rope

tied to its tail. Sharks have a biological response of tonic immobility, becoming

still as though they are hypnotized, when they are turned upside down. This was

used to keep the shark from moving while it was fitted with the tag. The entire

procedure took less than 10 minutes. Once the tagged shark was released, the

AUV was deployed to track and follow the shark.
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4.5 Results

4.5.1 Stationary Tag Tracking

In this experiment, the tag was fixed at a specific location and the AUV starts

from several different locations around the tag. At each time step, the state of the

AUV is logged by the GPS device and gyroscope mounted on the AUV. Also, the

particle filter algorithm estimates the location of the tag by getting measurements

from the LOTEK device. Therefore, to evaluate the accuracy of the system, the

particle filter algorithm estimations must be compared with the actual values.
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Figure 4.6: Cost Function, Error, Standard Deviation, Cost Function
First Derivative, and LOTEK Signal Rate from Tracking a Stationary
Tag

Figure 4.6 presents the results of an experiment which was done in 250 sec-

onds. In Figure 4.6, the cost function is plotted in green and it increases with

different slope during the experiment. To show how it changes, the first deriva-

tive of the cost function is also plotted in blue. The first derivative of the cost
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function increases at the beginning of the experiment due to lack of information

about the location of the tag. Therefore, as the LOTEK signal rate increases

(plotted in pink) and the AUV gets close to the localized tag, the first derivative

of the cost function decreases. Also, when LOTEK signal rate increases by the

time, the standard deviation and the error values decrease significantly. This

means that the particle filter algorithm receives enough measurements from the

LOTEK device to perform the estimation. At the end of the mission, the stan-

dard deviation increases because of signal loss. On the other hand, when the

LOTEK signal rate increases by the time, cost function increases less than the

time which the LOTEK signal rate decreases. Error in this experiment defined

as the distance between the actual and estimated tag locations:

et =
√

(xTag − xEst.)2 + (yTag − yEst.)2 (4.1)

4.5.2 Tagged AUV Tracking

For the second round of experiments; the secondary AUV (IVER2) was tagged

with an acoustic transmitter. Like the stationary tag tracking, the acoustic tag

was attached to the AUV and fixed 2 meter under the water’s surface. This

experiment was done in about an hour. In this experiment, data on the second

AUV such as GPS logs and gyroscope (for heading bearing) logs were compared

with the values which the follower AUV estimated about the second AUV. This

comparison helps to calculate the error value.

As presented in Figure 4.7 at the beginning of the mission, the error value is

lower in comparison with the second half of the mission. The high error value

resulted from the area being covered with sea weed which acted as a wall against
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Figure 4.7: Error, Standard Deviation, and LOTEK Signal Rate from
Tracking a Tagged AUV
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Figure 4.8: Cost Function, Cost Function First Derivative, and LOTEK
Signal Rate from Tracking a Tagged AUV

acoustic signals and blocked them from the receiver. Therefore by having fewer

signals, the error and standard deviation increased respectively until the AUV
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Figure 4.9: Close-up of the Follower AUV, the Secondary AUV, and
Estimated Position Trajectories

received a better signal rate. Figure 4.8 presents the cost function and its deriva-

tive at each time step. Similar to the stationary tag tracking results, the cost

function decreases when the LOTEK signal rate increases and vice versa. Also,

the error is defined as the distance between the actual and estimated secondary

AUV location:

et =
√

(xGPS − xEst.)2 + (yGPS − yEst.)2 (4.2)

4.5.3 Shark Tracking

When the results of the stationary tag and AUV tagged tracking were promis-

ing, the final phase of the research was planned to be done on a real shark. On

August 2011, at SeaPlane Lagoon (located at Long Beach), a 2 meter leopard
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shark was lured and an acoustic transmitter was attached to its fin. Experiments

took 3 days. A total of 36 hours of operation were performed by the AUV fol-

lowing the shark. Similar to the other experiments, the results of the experiment

are presented in Figures 4.10 and 4.11. In Figure 4.11 the AUV yaw angle and

the relative bearing to the tag are plotted in one control sequence. As it is pre-

sented, there is a big gap in the relative bearing to the tag plot. This is due to

a rapid movement of the shark or a reduction in the LOTEK signal rate which

reduces the accuracy of the localizer algorithm. As discussed in the control sys-

tem chapter, the AUV follows the tag on S-shape paths. The graph of the AUV

yaw angle in Figure 4.11 clearly implies this matter. In fact, the AUV yaw angle

oscillates around the angle to the shark which provides multiple sensor vantage

points. Considering this, there is however overshoot, i.e. greater than 45 degrees

difference between the angle to the shark and the yaw angle of the AUV, in the

results due to the environmental effects to the AUV maneuverability and con-

stant displacement of the shark. Also, The velocity of the shark is presented in

Figure 4.12. There are some jumps in the graph due to a low LOTEK signal rate

which reduces the localization accuracy. It is clear that by having more signals

localization is performed more accurate. Finally, the average velocity of the shark

from the results of this experiment was calculated 1.775
m

s
.
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Figure 4.10: Cost Function, Standard Deviation, Cost Function First
Derivative, and LOTEK Signal Rate from Tracking a Tagged Shark
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Figure 4.13: Live Shark Path
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Chapter 5

Conclusion

In this thesis, an autonomous shark tracking system has been developed. Al-

though the efficiency of the current system is acceptable, there are still improve-

ments to be made. The autonomous tracking system consists of two main parts:

1) A tracking vehicle, and 2) A tracking device. Constraints and criteria for those

two parts were investigated and an AUV and an acoustic tracking system were

chosen to be used as the tracking vehicle and tracking device. Also, the control

system which navigates the AUV to follow a shark was designed. The control

system was chosen to be a proportional control system. In parallel, simulations

were done to troubleshoot the probable problems during the operations. Based

on the simulations, an improved control system was designed which locates the

shark faster than the previous one. The improved control system receives the

bearing to the shark from the particle filter algorithm. Then it sets the proper

fin angles and navigates the AUV to follow the shark. Many experiments includ-

ing stationary tag tracking, Kayak tracking, and secondary AUV tracking were

done to evaluate the accuracy of the system. Finally, in the SeaPlane lagoon the

tracking system followed a tagged shark for 1 hour and 41 minutes continuously.
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At this stage, it is required to compare the results from the system with the

constraints and criteria which were defined in chapter 2. As discussed before, the

maximum sustainable swim speed of Leopard sharks is 0.97
m

s
. But the results of

the SeaPlane Lagoon experiments, showed the speed value of 1.775
m

s
. Although

that the calculated value is 1.83 times greater than the maximum sustainable

swim speed of Leopard sharks, but still is less than the maximum velocity of the

AUV which is 2
m

s
. Therefore the first criteria which required the vehicle have

a greater speed than Leopard Sharks average speed is met. For the second crite-

ria, maneuverability of sharks, the result proved that Leopard sharks can change

their direction with full speed. There were some situations which the shark had

turned 180 degrees with the full speed. On the other hand, mounting frame

which was attached to the AUV reduced the angular velocity of the vehicle due

to increase of water friction. Without the frame, the AUV can operate with the

angular velocity of 0.13
rad

s
. With the frame, the angular velocity was reduced

to 0.08
m

s
. Although the angular velocity was reduced, but from the results it

is clearly proven that the maneuverability criteria is met. Finally, response time

and detection range of the LOTEK tracking system were recorded as 1 ping per

3 seconds and 150 meters of detection range.
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Chapter 6

Future Works

Although operations seemed to be smooth, many limitations exist e.g. in-

accuracy of the tracking device, short life of the batteries (which just operate

10 hours continuously), and less AUV maneuverability with the hydrophones at-

tached. For the current tracking device, it is better to have a stronger tag which

can propagate stronger signals into the environment. Although the current track-

ing system can successfully follow a Leopard shark, this might not be true for

faster swimming sharks such as great white sharks. Consequently, a larger range

would be a big issue for tracking operations. More importantly, this research does

not consider obstacles in front of the AUV and assumes that the path has no ob-

stacle. For the next phases of the current research, it is required to satisfy the

requirements for tracking other types of fishes. A better tracking device might

localize the fish directly, instead of more efforts for localization by the control

system, with a wider range of operation. Also, a better thruster would be able to

accelerate the AUV with the hydrophones attached more than the current one.

Finally, this work promotes the use of collaborative multi-AUV tracking that may

improve accuracy and reduce the likelihood of losing the shark.
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