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ABSTRACT

Mapping and Visualizing Ancient Water Storage Systems with an ROV – An

Approach Based on Fusing Stationary Scans within a Particle Filter

William McVicker

This paper presents a new method for constructing 2D maps of enclosed un-
derwater structures using an underwater robot equipped with only a 2D scanning
sonar, compass and depth sensor. In particular, no motion model or odometry
is used. To accomplish this, a two step offline SLAM method is applied to a
set of stationary sonar scans. In the first step, the change in position of the
robot between each consecutive pair of stationary sonar scans is estimated using
a particle filter. This set of pair wise relative scan positions is used to create an
estimate of each scan’s position within a global coordinate frame using a weighted
least squares fit that optimizes consistency between the relative positions of the
entire set of scans. In the second step of the method, scans and their estimated
positions act as inputs to a mapping algorithm that constructs 2D octree-based
evidence grid maps of the site.

This work is motivated by a multi-year archaeological project that aims to
construct maps of ancient water storage systems, i.e. cisterns, on the islands of
Malta and Gozo. Cisterns, wells, and water galleries within fortresses, churches
and homes operated as water storage systems as far back as 2000 B.C. Using a
Remotely Operated Vehicle (ROV) these water storage systems located around
the islands were explored while collecting video, still images, sonar, depth, and
compass measurements. Data gathered from 5 different expeditions has produced
maps of over 90 sites. Presented are results from applying the new mapping
method to both a swimming pool of known size and to several of the previously
unexplored water storage systems.
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Chapter 1

Introduction

Underwater robots are used to explore harsh environments, dangerous caves,

and underwater domains. Remotely Operated Vehicles (ROV) allow researchers

to safely study these places remotely by capturing video, images, acoustic data,

and measurements from underwater sensors. The field of underwater robotics in

the past decade has made substantial progress in the areas of localization and

mapping. Sonar technology has been the primary choice of equipment to assist

in mapping underwater environments because sonar waves propagate through

water better than light. Recently in [19], an ROV was used to inspect 1 km of an

underwater tunnel operated by Electricité de France for reasons of availability,

safety, accessibility, and diagnostic quality. Another example of underwater ROV

research includes implementing vision systems for underwater applications, to

support shared control, and 3D mapping [15].

More relevant, micro-sized ROVs have been developed to help improve ma-

neuverability within tight passages for a variety of applications including the

exploration of sensitive ecosystems that one may not want to disrupt [13]. Other

environments ideal for micro-ROVs include ancient cisterns, wells, and water gal-
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Figure 1.1: The VideoRay Pro 3 GTO is an underwater micro-ROV
with dimensions 36.8cm x 28.9cm x 21.6cm. It is equipped with depth
and compass sensors along with a front and a rear video camera. A
Tritech Micron scanning sonar was attached to the top of the ROV.

leries. The water storage systems found in Malta are difficult to access due to

their size (e.g. a typical opening diameter of 0.3 m). To explore such environ-

ments, a VideoRay Pro 3 ROV equipped with an underwater scanning sonar head,

depth sensor, and two video cameras, (seen in Fig. 1.1), was used to generate 2D

and 3D sonar based maps. This paper proposes a new mapping and localization

technique used to reconstruct the explored cisterns as well as document results

from a recent expedition, (i.e. Spring of 2012).

Since the sites explored in this research have tunnels of limited size and acces-

sibility, the ROV sensor payload must be minimal. Much research has focussed

on developing complex motion models to decrease uncertainty, accurately model

the ROV’s motion, and improve localization. Instead of increasing the sensor

payload of the ROV, this paper proposes a 2D localization algorithm to be run

offline that does not require a motion model, but instead uses a particle filter

to calculate relative translations between pairs of sonar scans that are used to

construct a global map of the environment.
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This paper is sectioned into five chapters. In chapter II, a brief background

is provided on similar mapping and localization techniques. Chapter III explains

the mapping reconstruction pipeline used to generate a map. In chapter IV, the

results are presented followed by the conclusions and future works in chapter 5.
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Chapter 2

Background

The recent advances of underwater robot sensing technology (e.g. sonar,

imaging, Doppler velocity logging) have led to the ability to conduct Simultaneous

Localization and Mapping (SLAM) [7] in the underwater domain [28]. In many

SLAM algorithms, it is common to use robot odometry to predict the new robot

position with respect to the map before using exteroceptive sensor measurements

to correct the robot’s position and update the map itself [4].

The traditional approaches to SLAM rely mainly on feature extraction from

the robot’s environment in order to correct for odometry errors as well as move-

ment from external forces which are undetectable without inertial sensors. For

example, Mahon and Williams [20] used an AUV equipped with a sonar and

camera for data collection to map portions of the Great Barrier Reef. They de-

veloped a set of transient features to track short-term movement and a set of

stable features to track landmarks. The developed feature-based algorithm was

able to correct for the odometry errors and undetectable movement from the

waves in the ocean which assisted in the reconstruction of the robot’s natural un-

derwater environment. Similarly, in [21] a combination of sonar scanners and a
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vision system was used with their feature-based SLAM algorithm, which incorpo-

rated statistical models for filtering the data, on an ROV to assist in underwater

navigation.

Recently, the analysis of raw measurements for mapping and localization has

become of great interest. Analyzing raw measurements, as opposed to extracting

geometric features from a map, is known as scan matching. A probabilistic

algorithm called iterative-closest-points (ICP) has taken popularity among the

robotics community in many different variations [14, 11, 22]. In [1], the sonar

probabilistic model spIC was used to localize a mobile robot by analyzing raw

sonar data to correct odometry errors for short robot trajectories. This helped

minimize the displacement between noisy and sparse measurements.

Such applications have proven to work well in underwater environments. The

core of the ICP algorithm matches two point clouds together in order to align the

scans for map generation and/or vehicle localization. This algorithm has proven

to work well with noisy data, but remains computationally heavy – O(P 3) per

iteration for P number of points. In [11], Fairfield and Wettergreen developed

a variation to ICP and the Lucas-Kanade (LK) matching algorithm that is an

efficient form of the inverse compositional algorithm called icLK to generate 3D

maps of underground mines which reduced the complexity of ICP to O(P 2) by

thresholding the data; however, with 100 k points the approach remains burden-

some.

Other recent research has focused on generating maps in real-time using a

complex motion model in order to associate each sonar measurement with a cor-

responding location in the map. For example in [22], a pose-based algorithm was

developed to map unstructured and unfamiliar environments using a probabilistic

scan matching technique. The scan matching techniques that extract ranges from
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sonar beams explained in [2, 3, 22] are most similar to the techniques developed

in this paper.

Similarly in [10], a complex real-time mapping system was developed for ex-

ploration of underwater tunnels using octree evidence grids with a particle filter

based SLAM approach similar to the algorithm presented in this paper. The

main difference in their approach is the robot used, which benefitted by their full

suite of underwater navigation sensors. Their robot has a diameter of 2m and a

weight of 1.3 metric tons whereas the robot used for the research presented here

has the dimensions 36.8cm x 28.9cm x 21.6cm. The basic algorithms developed in

[10] are similar to the core scan matching techniques presented in this paper, but

are executed in real-time with several feedback loops from the on-board naviga-

tion sensors. The expedition in [10] successfully created 3D maps of the Wakulla

Springs cave system in Florida and the Sistema Zacaton in Mexico.

There has also been an increase in visual SLAM recently [9, 24, 25]. A tech-

nique called frameSLAM [18] uses bundle adjustment techniques to match point

features along with stereo vision to track landmarks. The system developed was

capable of autonomously navigating an off-road vehicle with only the use of stereo

vision. Visual SLAM has proven to work well in terrestrial environments, but

murky water (a common condition in cisterns) would likely decrease performance.

Similar to detecting frames and features, the incremental smoothing and map-

ping (iSAM) [16, 17] technique uses an informational filter to incrementally asso-

ciate measurements in large-scale environments to solve the full SLAM problem.

iSAM and frameSLAM are both feature-based, using landmarks such as trees to

assist in localization, which differs from the scan matching solution based on raw

measurements presented in this paper.
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In the previous expeditions dedicated to mapping Maltese cisterns, [5, 6, 27],

the mapping techniques included sonar mosaicking, and underwater robot fast-

SLAM (presented in [26]) with both a stationary and moving robot. Sonar mo-

saics are images generated by piecing together different parts (scans) of the image

to create a single image. This is a manual and time consuming job, but is able

to successfully localized an ROV through manual calculations. For underwater

robot SLAM, inadequate motion modeling led to reduced accuracy in robot local-

ization and hence mapping [5]. To ensure highly accurate maps, the subsequent

expeditions focussed on obtaining a series of stationary sonar scans from several

positions in the tunnel [27].

The work reported here differs from the scan matching techniques developed

in [2, 10, 22], in that our robot has a limited payload, and no motion model or

odometry is used to predict the robot’s location with respect to a map being

built. Instead, mapping is done offline. A particle filter is first used to calcu-

late relative positions of the robot between consecutive pairs of stationary scans.

Then, a weighted least squares approach uses these relative positions to calculate

the absolute position of the robot for each individual sonar scan. To note, the

algorithm improves the consistency of scan matching by considering how every

tuple and every triplet of scans fit together. Finally, the scans and their esti-

mated positions are used to assist the fastSLAM algorithm in converging to the

most likely positions creating a 2D octree-based evidence grid map. A detailed

description of this approach is presented in the following chapter.
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Chapter 3

Map Generation Pipeline

In [5], it was proven difficult to construct maps using sonar data collected

while moving. Localization uncertainty accumulated at a far higher rate than

could be corrected with infrequent sonar measurements. This work attempts to

accomplish the following: given a series of stationary sonar scans with corre-

sponding depth and compass measurements, where each scan overlaps with at

least the immediately following scan in the series, determine the locations of the

ROV scans such that fastSLAM and visualizations can be accomplished with

relative scan positions and scan data. fastSLAM, similar to [8], was used over

traditional SLAM approaches because it doesn’t require features.

The proposed solution uses the following stages to generate a map: Sonar

Scan Retrieval, Pair Wise Scan Matching, Scan Localization, Map Generation,

and Map Visualization. These stages are shown in Figure 3.1.
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Figure 3.1: The pipeline created to generate 3D maps

3.1 Sonar Scan Retrieval

The range data used to generate the maps is created from sonar data. The

sonar scanner uses a rotating mechanical head to sample its environment. A full

360 degree revolution of the sonar head returns of a set of 200 sonar beams. Each

beam travels outwards from the robot where the window of time associated with

capturing the return beam can be adjusted according to the beam range.

The sonar data is then filtered using image processing techniques to remove

noise and multipaths commonly found in acoustic data. The resulting range data

becomes the input data to the next stage of the map generation pipeline.

3.1.1 Data Collection

Data collection was performed using the VideoRay Pro 3 GTO seen in Fig-

ure 1.1. The VideoRay Pro 3 GTO is a professional remotely operated vehicle

designed to assist in underwater exploration. The Pro 3 GTO model was de-

signed for large payloads such as an external 2D imaging sonar. The dimensions

of the Pro 3 GTO are 36.8cm x 28.9cm x 21.6cm (length, width, and height re-

spectively) with a submersible weight of 4.5 kg. The internal sensors consist of a

depth gauge, compass heading, a front, wide angle, color camera with a variable

tilt, and a fixed, rear facing, black & white camera. To fly the ROV, two horizon-
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Figure 3.2: Data Collection process. The top left pane demonstrates
the surveying of the site. The keyhole cistern found at the Citadel
on Gozo is seen in the right image. The bottom left image shows the
typical set up of the equipment during ROV deployment.

tal propulsion thrusters, a single vertical thruster, two forward facing lights, and

a rear LED array around the rear camera are used. The entire system includes

a control box with the necessary remote controls which uses a 100 m tether to

communicate with the ROV.

The process of collecting data begins by visually investigating the site and

sketching the surroundings in order for one to uniquely identify each site from a

top-down perspective. The ROV is then lowered into the cistern for exploration.

Figure 3.2 demonstrates these two processes as well as how the equipment is set

up during deployment.

In order to collect data in the cisterns, the depth of the water in the cistern

must be over a 0.5 m in order to fully submerge the ROV with the attached sonar

head underwater as well as get a clear sonar image. Once lowered in the cistern,
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Figure 3.3: This sketch was taken while collecting data at the Mdina
Gatto Pardo Bistro cistern in Mdina, Malta. The numbered circles
with arrows represent the estimated position of the ROV during sonar
scan # facing in the direction of the arrow. Refer to Figure 4.4(g) for
the generated map of this cistern.

the ROV is driven around to create a sketch of the cistern’s shape as seen in

Figure 3.3. This sketch is used to manually indicate where each sonar scan was

taken as well as a rough heading of the ROV for each scan. These sketches are

used to verify the final map of the cistern as well as for manually mosaicking.

Using the sketched map, the driver can efficiently collect sonar data. The

ROV data is collected as follows: land the ROV on the bottom or hover mid-

depth without moving, log ROV depth and compass sensor measurements, initiate

a sonar scan for one full revolution, move forward and repeat.

The collection of these measurements are defined as Zm and collected at each

time step t such that Zm = {Zt
m|t = 0...Tmax} where Zt

m represents all the sensor

11



Figure 3.4: A representation of the Tritech SeaSprite sonar head on
the ROV and its corresponding scan plane.

measurements collected at time t, i.e at a new scan location. These include robot

yaw angle measurements zθ, depth measurement zd, and stationary sonar scans

zs.

Zt
m = [zθ zd zs]

t (3.1)

Each sonar scan zs consists of a series of j = 1 . . . A beam angles αj, each with

a corresponding vector of signal strengths [ssj,i] as seen in Figure 3.4. These signal

strengths represent the signal strengths of the discretized sonar signal returned

from a specific distance normal to the sensor referred to as the beam range that

increases linearly with the value of i = 1 . . . Num Bins where Num Bins is

defined when configuring the sonar head. The most common beam range used

was 5m.

zs = {[αj ssj,1 . . . ssj,Num Bins] | j = 1 . . . A} (3.2)

3.1.2 Data Processing

When collecting data with the Tritech scanning sonar head, there are sev-

eral different settings that can be modified to enhance the quality of the sonar

scans, e.g. adjust the signal strengths to reduce noise from debris in the water.
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Additionally, signals will be stronger the closer the robot is to a wall due to

the properties of the sonar wave. To compensate for these variations, the signal

strengths need to be normalized to a standard range of values where a single wall

threshold can be used for all the scans.

To normalize the signal strengths within the range [0, 255], all the bins in

the entire scan are iterated through, one beam at a time, to find the maximum

signal strength ssmax. Then, all of the bins are divided by ssmax and multiplied

by 255 (3.3). This allows for a more accurate comparison between scans with low

returns and scans with high returns.

ssj,i norm =
ssj,i
ssmax

× 255 (3.3)

At this stage, the sonar measurements may contain noise and multipaths

which can negatively affect the particle filter, causing inaccurate alignments due

to mistaking noise for a wall. A similar technique to beam segmentation in [3]

was developed.

The signal strengths ssj,i are converted into range measurements ss
′
j,i by iter-

ating through each beam of the scan and identifying the bin with the maximum

signal strength that has at least one adjacent bin along the same beam with a

signal strength value greater than zero. If the maximum intensity is above a set

threshold (50 in our case), the bin’s value along with the adjacent bins’ values

are set to 255 while all the other bins in the beam are set to 0. This approach

removes most of the noise and allows for two scans with drastically different levels

of signal strengths to be accurately compared.
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3.2 Octree-based Evidence Grid Generation

Using evidence grids to represent an environment was first introduced in 1983

[23]. This approach has since been developed, modified, widely accepted, and

proven to work well for many different environments with sonar measurements,

including underwater. Evidence grids discretize space into an occupancy grid map

m(cxy) (3.4) where x and y are indices to the grid and the value pxy ∈ [0, 255] of

the cell cxy indicates the likelihood that cxy contains a wall. This probability is

calculated using the log-odds method [26] to logarithmically diffuse the filtered

signal strengths ss
′
j,i (range data) into the corresponding cell cxy (3.5) which

can ultimately generate a highly accurate and detailed representation of one’s

surroundings.

m(cxy) = {cxy | x ∈ [xmin, xmax], y ∈ [ymin, ymax]} (3.4)

L(pxy, ss
′

j,i) = log

(
pxy

1− pxy

)
+ log

(
ss
′
j,i

1− ss′j,i

)
(3.5)

pxy =
1

1 + e−L(pxy ,ss
′
j,i)

(3.6)

This approach was adopted and used to generate a single map from a set of

sonar scans.

3.2.1 Pair Wise Scan Matching

Pair Wise Scan Matching takes the sensor measurements Zm as input and

outputs the measured position translations zdij of the robot between each pair of

stationary scans i and j. To note, these relative translation vectors are aligned

with a global coordinate frame that has the X-axis aligned with true North.
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The pseudo code for Pair Wise Scan Matching is shown in Table 3.1. To

begin, the robot’s position during scan si is assumed to be at the origin of a

Cartesian coordinate frame and map mi is generated using an evidence grid (line

2 of Table 3.1) within this coordinate frame with the log-likelihood approach [26].

On line 4 of Table 3.1, the location of the robot during scan j with respect

to map mi is calculated using an implementation of Particle Filter Localization

[26]. Note, when i = 1 line 4 of Table 3.1 iterates only on j = i + 1 and when

i = Num Scans the same line only iterates on j = i− 1.

In this Particle Filter, as described in Table 3.2, a collection of k = 1 . . . Num Particles

particles is used to represent the robot state during scan j. Each particle k con-

sists of the robot’s state [xk yk zk θk], and a weight wk that indicates how likely

particle k represents the true state. The particle position states are initially sam-

pled randomly (line 1 of Table 3.2) from a square uniform distribution centered

on the origin of mi and within the range of the sonar beam range rs.

The Particle Filter iterates for Num Iterations or until the particles con-

verge. At each iteration of the algorithm, the x, y, and θ of the particle’s state

are propagated (line 4 of Table 3.2) by adding a sample drawn from a zero mean

Gaussian distribution of variance σ2
p. This added randomness models errors in-

troduced by drift, sensor measurements, and driver control.

Table 3.1: Pair Wise Scan Matching Algorithm
Calc Translation Measurments(s, Num Scans)

1: for i = 1 to Num Scans do
2: mi = construct map(si)
3: for j = i-1 to i+1 do
4: dij m = PF Localization(mi, sj)
5: endfor
6: endfor

15



Table 3.2: Particle Filter Robot Localization
PF Localization(mi, sj)

1: initialize particle states()
2: for i = 1 to Num Iterations do
3: for k = 1 to Num Particles do
4: Xk = propagate robot state(Xk)
5: wk = calculate weight(mi, sj)
6: endfor
7: resample particles()
8: if particles converged() break
9: endfor
10: dij = calculate translation(dm, wµ)

To calculate particle weights (line 5 of Table 3.2), scan sj’s range data is

compared to the map mi. Particle k ’s weight wkij is calculated as shown in (3.8)

by calculating the difference between δs, the distance to a wall according to the

scan sj’s range measurement beam angle αj, and δm calculated as the distance

from particle k ’s robot state in the direction of αj to the nearest occupied cell cp

with a probability above τw in map mi as demonstrated in Figure 3.5.

This difference δs − δm is plugged into the Gaussian function ϕ (δs, δm) (3.7)

Figure 3.5: The particles’ weights are calculated by taking the differ-
ence between the distance to a wall in the robot’s map and in the range
data with respect to the robot

16



where the standard deviation σc equals twice the map’s cell size rc with parameter

a set to equate each of the Gaussian function’s maximum values to one. If this

difference is less than a set maximum distance, δmax, then the particle’s weight

wkij is equal to ϕ (δs, δm); otherwise, wkij is reduced by 1−ϕ (δs, δm) (3.8) in order

to include negative feedback.

ϕ (δs, δm) =
1

a
√

2π
e
− (δs−δm)2

2σ2c (3.7)

wkij =

 ϕ (δs, δm) if δs − δm < δmax

wkij − (1− ϕ (δs, δm)) otherwise
(3.8)

For every iteration, the algorithm creates a new set of particles (line 7 of

Table 3.2) by randomly resampling from the current set of particles such that

each particle has a probability of being selected proportional to its weight wkij.

In order to determine if the particles have converged (line 8 of Table 3.2),

an exponential average of the particles’ weights wtij µ = χww
t
ij + (1 − χw)wt−1

ij µ

and an exponential average of the standard deviation of the particles’ states

σtp µ = χσσ
t
p + (1 − χσ)σt−1

p µ are calculated before the particles are resampled

where χw, χσ ∈ [0, 1] are constant smoothing factors. The algorithm iterates

for scans i and j until the particles converge or Num Iterations is exceeded.

Convergence is determined when both of the following criteria are met:

• The exponential average of the standard deviation of the particles’ states

σtp µ is less than or equal to the robot’s map cell size rc.

σtp µ ≤ rc (3.9)

• The exponential average of the particles’ weights wtij µ is greater than or

17



equal to an experimentally determined threshold τpw.

wtij µ ≥ τpw (3.10)

If the scans do not converge within Num Iterations, then scan j is skipped and

the next iteration begins. If the scans i and j converge, the translation vector

zdij = {zdxij , zdyij} is calculated as the difference between the location of the ROV

for scans i and j.

In analyzing the pair wise scan matching algorithm for runtime complexity,

we find that the most computation occurs in the resampling stage of the particle

filter which occurs once per eight iterations. The pseudo code with the high-

est runtime complexity is provided in Table 3.3. The worst case occurs when

rand weight equals sum weights, which causes the inner most for loop to it-

erate Num Particles times. As seen in Table 3.1, the PF Localization() is

called for each pair of scan, 2×Num Scans, and resample particles() is called

Num Iterations/8, where Num Iterations is a constant. Therefore, the run-

time complexity for the pair wise scan matching algorithm is O(Num Scans ×

Num Particles2). This is an area for future work. Specifically for a real-time

system, resampling should be improved to a O(NlogN) solution.

3.2.2 Scan Localization

The Scan Localization stage of the pipeline inputs the set of measured trans-

lation vectors zdij from the Pair Wise Scan Matching stage, and aims to output

the translation estimates dij for scans i and j. This is accomplished by solving

a weighted least squares minimization that aims to reduce the cost function S
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in (3.11).

S =
∑
i

i+1∑
j=i−1

4∑
n=1

wtij µ n(dij − d̂ij,n)2 (3.11)

In this cost function, dij is the relative translation vector between scans i and

j being estimated. The variable d̂ij,n represents n = 1 . . . 4 possible measurements

extracted from various combinations of dij m as outlined below:

• d̂ij 1 = zdij

• d̂ij 2 = −zdji , noting that zdji 6= zdij

• d̂ij 3 = zdik + zdkj , a reciprocal pseudo measurement

• d̂ij 4 = −zdjk − zdki , a reciprocal pseudo measurement

Each translation vector has a corresponding weight that represents the like-

lihood of that measurement being the true measurement. The weight wtij is the

exponential average of the particles’ weights at the time t the particles converged.

The pseudo measurements’ weights wtij µ n are calculated in the same manner as

the pseudo translate vector measurements.

Table 3.3: Part of the Resample Particles Algorithm
resample particles()

1: ...
2: sum weights = sum particles weights()
3: for i = 1 to Num Particles do
4: rand weight = sum weights * rand(0, 1)
5: for i=0 to Num Particles do
6: sum += particle[i].weight
7: if (sum ≥ rand weight) break
8: endfor
9: new particle set.push(particle[i])
10: endfor
11: ...
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The minimizing function reduces the error among the four types of d̂ij,n.

min

{
S =

∑
i

i+1∑
j=i−1

4∑
n=1

wtij µ n(dij − d̂ij,n)2

}
, (3.12)

dS

d(dij)
= 0 , (3.13)

dij =

∑4
n(wtij µ n × d̂ij,n)∑4

nw
t
ij µ n

(3.14)

If neither permutations of scans i and j converge then there is no possible

path between scans i and j.

The weights wtij represent the uncertainty of the translation vectors. This

uncertainty is reduced by the weighted least squares calculation and becomes

apparent in the final map by how accurate the walls line up. Further analysis

could calculate a weight of the final translation vectors dij and then adjust the

final occupancy grid cells’ probabilities based on these weights. Basically, when

adding the range data to the final map in the Map Generation stage, the weight

of the scans translation vector could be used to adjust the probability of the cells

added to the map.

3.2.3 Map Generation

To create the robot’s map mref , we fuse the set of sonar scans together using

the log-odds approach previously explained. Since many of the sites explored

contain multiple passageways, the maps can include large empty sections of space.

Additionally, when exploring water galleries, the tunnels can extend for hundreds

of meters and include side passages along the way. To avoid allocating memory

for every cell in the map at runtime, we instead use an octree-based evidence
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grid that dynamically allocates memory for a cell upon insertion of a new cell

in the map. By reducing memory consumption, we were able to quadruple the

resolution of the map from 100 cm2/cell to 25 cm2/cell without a performance

hit.

The mapping algorithm, shown in Table 3.4, moves the robot to the localized

positions according to the calculated translation vectors dij for scans i and j from

the Scan Localization step, and then calls FastSLAM to update the robot’s map

with the new sonar scan.

In generating the map, a single reference scan ref is chosen to be positioned

at the center of the robot’s map based on the first scan in the series that converges

with another scan. The remaining scans are added using the translation vectors

calculated in Section 3.2.2. If there is no path between scans ref and i, then the

remaining scans are discarded.

The pair wise scan matching algorithm explained in this paper is currently

only capable of matching scans for 2D maps. Since many of the cisterns explored

were bell-shaped, the 2D maps generated are only rough estimates of the curved

walls. Future work will focus on converging scans along the vertical axis to

generate true 3D maps from a set of 2D maps

Table 3.4: Mapping Algorithm
Generate ROV Map(dij, Num Scans)

1: sref = choose reference scan(dij)
2: mref = draw map(sref)
3: for i = 1 to Num Scans do
4: if (si != sref)
5: Xref,i = set ROV state(dref,i)
6: FastSLAM(Xref,i, si)
7: endif
8: endfor
9: return mref
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3.3 Map Visualization

After an octree-based evidence grid representation of the environment is gen-

erated, the map is visualized into a 3D model using isosurface extraction and

then textured and visualized as described in [12].
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Chapter 4

Results

The pair wise scan matching algorithm presented above was applied in two

scenarios. First, a map of a swimming pool located at Cal Poly’s Lab for Au-

tonomous and Intelligent Robotics (LAIR) was generated. Second, the algorithm

was used to create maps of several different ancient cisterns found at archaeolog-

ical sites in Malta.

The swimming pool located at the LAIR was used to statistically validate

the accuracy of the pair wise scan matching algorithm by comparing the true

dimensions of the pool to the measured dimensions of the evidence grids. The

true dimensions of the pool were obtained using a measuring tape that is accurate

to ±0.025m. The shape of the pool curves inward at the bottom of the pool.

When measuring, a straight edge was used to measure the width and length at

the center depth of the pool. This best represents where the sonar beams would

hit. The true width of the pool is 3.61m and the length is 7.21m. Four stationary

sonar scans of the pool were obtained using the procedure for data collection

explained in Section 3.1.1 with the sonar beam range rs set to 5m. The mosaic of

these scans can be seen in Figure 4.1(a). The measurements Zm were passed into

23



the map generation pipeline and the evidence grid with cell size 0.05m x 0.05m

seen in Figure 4.1(b) was generated.

(a) Swimming pool sonar mosaic (b) Evidence grid representation

(c) Model from visualization

Figure 4.1: Pool at Cal Poly’s LAIR

The accuracy of the mapping algorithm was determined by comparing the

true dimensions of the pool to dimensions extracted from the 2D map. The cells

inside the map were counted from one inside edge to the other. This resulted in

map estimated dimensions of 3.47m in width and 7.27m in length. Since each cell

is 0.05m in width and length, the pools dimensions can not be accurate to better

than ±0.05m. The Percent Difference PD of the ratio of the mean width and

length to the ratio of the true width and length was calculated as -4.78% (4.1).

PD =
rµ − r

(rµ + r)/2
× 100% (4.1)

PD =
3.47m/7.27m− 3.61m/7.21m

(3.47m/7.27m+ 3.61m/7.21m)/2
× 100% = −4.78 (4.2)
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The standard deviation of the pair wise scan matching algorithm was cal-

culated by measuring the width of the pool at 10 different locations and then

comparing those 10 different measured widths and lengths to the true width and

length of the pool. The calculated standard deviation of the width was 0.119m

and length was 0.060m.

This algorithm was then applied to several cisterns explored between 2008

and 2012. Results from applying the algorithm to sensor measurements taken

from three different cisterns are provided here. The constants that vary when

generating the maps include τpw and Num Particles. The following constants

and their corresponding values were used when generating the three cistern maps

and the swimming pool:1 χw = 2.0
6.0+1.0

, χσ = 2.0
4.0+1.0

, rc = 0.05m (map cell size),

and Num Iterations = 1200.

The first map presented represents the Gatto Pardo Bistro cistern found in

the city of Mdina, Malta. The value for τpw was experimentally determined as

8.0, and 800 particles were used. Figure 4.4 presents the different pairings of

sonar scans during the Pair Wise Scan Matching stage. The position of the ROV

for the first scan used to create the map (line 2 of Table 3.4) is represented by

the yellow robot model. The localized ROV position corresponding to the second

scan to be matched with the first is represented by the green and white particles,

where the whiteness of the particle corresponds to the magnitude of the weight

(as calculated using line 4 of Table 3.1) where the white particles have higher

weights than the green particles.

The second map presented (Site 8) was explored in 2008 at a private home

in the city of Mdina seen in Figure 4.2. This cistern was mapped with the new

1χ represents the degree of weighting decrease. Alternatively, χ = 2.0
N+1.0 where N represents

the number of previous measurements that have the greatest impact on the exponential average.
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(a) Cistern sonar mosaic (b) Evidence grid

(c) Before surface extraction (d) Textured final visualization

Figure 4.2: Mdina private home cistern pipeline walk-through. In
(a), the manual sonar mosaic is shown. The auto-generated occupancy
grid is shown (b). The 2.5D model and the surface extracted, textured
model is shown in (c) and (d) respectively.

algorithm using 800 particles with a τpw value of 8.0. This cistern demonstrates

the ability to converge a set of scans where the end point scans have limited

overlap due to the robot being in two separate chambers.

Lastly, the map shown in Figure 4.3 represents a cistern found on the island

of Gozo at the Gozo Citadel. Since this site had much smaller dimensions, the
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(a) Evidence grid representation (b) Model from visualization with texture

mapping

Figure 4.3: Reconstruction of the Gozo Citadel ”Keyhole” cistern.
In (a) and (b), the auto-generated occupancy grid and the visualized
model are shown respectively.

sonar signal strengths were higher. This resulted in a τpw value of 20.0 and the

use of 1000 particles. The higher τpw value is experimentally determined based

on the exponential average of the particles’ weights when the first pair of scans

converge.

Since no truth data regarding the size and shape of the explored cisterns were

available, mosaics of raw sonar scan images were manually created. The result of

this manual mosaic process for the Gatto Pardo Bistro cistern is shown in Fig-

ure 4.4h. To note, the average particles’ positions obtained from the automated

pair wise scan matching (the green and white particles) converged to locations

that correspond well to the localized ROV positions in the manually created sonar

mosaic (orange circles seen in Figure 4.4). The orange circles in the raw sonar

scans are believed to be the acoustic reflections from the robot itself. The holes

in the map are attributed to the mapping algorithm’s method of fusing scans

together by adding the log-odds of each cell. These holes are filled during the

Map Visualization step of the pipeline covered in [12].
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.4: Pair wise scan matching algorithm on the Gatto Pardo
Bistro cistern. Parts (a)-(f) demonstrate each of the scans and where
the particles converged. In (g) and (h), the auto-generated occupancy
grid is shown as well as the manually crafted sonar mosaic respectively.
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Table 4.1: Mean Dimension Differences (Grid vs. Mosaic)

Site Name Width (m) Length (m)

Mdina Home (Site 8) 0.000 -0.022
Gatto Pardo Bistro -0.026 0.033
Swimming Pool 0.105 -0.025

Further comparison of three evidence grid maps was done by comparing the

width and length of the mosaics to the width and length of the evidence grids.

Since all the sites are not linear in shape, width and length measurements were

chosen based on distinct features in the map, i.e. corners and tunnels. Table 4.1

outlines the difference in width and length measurements between the mosaics

and evidence grids of three different maps.

29



Chapter 5

Conclusions and Future Works

5.1 Conclusions

This work demonstrates the ability to conduct offline mapping of underwater

cisterns with robots that have low payloads and then apply surface extraction

techniques to further enhance the generated maps for archaeological research.

Specifically, maps were constructed offline without the use of robot odometry or

a motion model. By applying the newly developed pair wise scan matching algo-

rithm, octree-based evidence grid representations of such tunnels, cisterns, wells,

and water galleries were produced with a best fit solution and then visualized

using surface extraction techniques.

The results of four generated maps demonstrate that for the application at

hand, the pair wise scan matching algorithm is accurate up to a standard devia-

tion of 0.119m calculated from the evidence grid of the mapped swimming pool.

The percent difference between the dimensions of the pool’s evidence grid map

and the truth data was also measured as -4.78%. To reinforce these statistics
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and the accuracy of the pair wise scan matching algorithm, the dimensions of

three manually created mosaic maps were compared to their corresponding evi-

dence grid maps generated from the pair wise scan matching algorithm seen in

Table 4.1 and resulted in the highest difference being just over twice the cell size

of the evidence grids.

5.2 Future Works

Some limitations of the pair wise scan matching algorithm include the need

for unique features that overlap across scans. Additionally, this algorithm is

negatively affected by noise that introduces false positives due to the misclas-

sification of debris in the water and multipaths as a wall. Lastly, if one of the

scans does not overlap with either the scan before it or after it, then that scan

along with the remaining scans in the set are eliminated. This last limitation is

avoided by collecting more scans that have ideally 50% or more overlap. These

three limitations are the focus for further research.

The pair wise scan matching algorithm could also be expanded to support

localizing an ROV in the third dimension. This is important when working in an

underwater environment with nonlinear walls like those found in many Maltese

cisterns.

Lastly, a necessary improvement for future work is the addition of a loop

closure algorithm. A simple approach would be to modify the pair wise scan

matching algorithm to use the distance to a previous scan as the determining

factor for comparing two scans with the particle filter. Ideally, this should reduce

the localization error when for example the last scan overlaps with the first scan.
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