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Abstract

The relatively new field of robotics has many practical applications, including mapping

ancient cisterns in Malta. These field experiments, led by a team of researchers from the

California Polytechnic State University help archaeologists better understand the structures

the cisterns are built in and their surroundings. Because these underwater tunnels have such

low visibility, it is difficult for a human pilot to effectively navigate them with only video and

sonar. Thus, the goal of this paper is to propose and implement an autonomous control scheme

for a underwater robot, such as a Remotely Operated Vehicle(ROV), so it can navigate through

a cistern and take enough sonar scans so a complete map can be created. For this project, a

stable controller was proposed and implemented for depth and horizontal control for an ROV.

Although this method did not fully work for deployment due to an irregularity in one of the

ROV thrusters, this could serve as a basis for further development on more complex paths.
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Figure 1: Images taken from [3]. (A) Image of the ROV (B) ROV being lowered into a cistern entrance. (C) Individual
sonar scans on the left and complete mosaic on the right. (D) Example of probabilistic occupancy grid map for a
different cistern generated from the SLAM algorithm.

1 Introduction

Cisterns are underground chambers built to store and provide water for a building and thus are

important features to consider while studying such structures. A team of researchers from Califor-

nia Polytechnic State University, and this year Princeton University, in cooperation with Maltese

archaeologists, used Remotely Operated Vehicles(ROV’s) to study the interiors of these cisterns as

well as attempt to map each one. The ROV used is a small underwater robot with a tether connec-

tion back to the operator (shown in Figure 1 A). Control commands are sent to the robot through

the tether using the control box, while the sensor measurements are sent back to the control box or

computer. The cisterns being studied are mainly located in private residences, fortresses, churches,

and ancient temples. The Malta Cistern Exploration Project serves both to provide information

about the cisterns to the private owners as well as the archaeologists studying them.

The current method for mapping these cisterns is to lower the ROV into the well-like entrance
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to the cistern and manually drive around each chamber with the control box, taking sonar readings

every half minute or so and documenting direction of robot, position in the cistern, and a hand

drawn approximate map of the cistern in a log book. Distinct features such as corners or passage-

ways were prioritized, while still ensuring complete coverage of the system, when deciding the

location of the next sonar scan. After the ROV is evacuated from the cistern, an initial map is

created by mosaicing together the sonar scans with respect to the additional information recorded

in the log book.

To provide statistically sound maps, a SLAM algorithm was used to map in real time while

the ROV is in the cistern (Figure 1 D). The SLAM algorithm uses a particle filter to localize the

ROV and represents the cistern as an occupancy grid, where each square in the grid represents the

possibility of the presence of a wall. As the robot navigates manually through the cistern, the value

of each cell is calculated and represented in grayscale [8]. However, this method was not utilized

in Malta during the Spring 2012 visit.

Although the resulting map created using the mosaicing method(shown above in Figure 1 C)

appears clean and accurate, the individual sonar scans themselves are confusing, at times even

with the added information from the log books. In addition, for both of the previously mentioned

mapping techniques, visibility in the cisterns is often very poor, increasing the likelihood of a

human error while piloting the ROV. Disorientation is a major issue while piloting, especially for

an inexperienced operator. Even with the hand-drawn maps from the log books, the pilot needs to

be extremely careful while navigating or attempting to free the ROV from obstacles on the floor of

the cistern because many passageways and areas are roughly symmetrical, making it very difficult

to re-localize once the pilot is lost.

Due to these main reasons, the focus of this project is to design and implement an autonomous
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control system for the ROV to navigate without a pilot through a simple cistern. This is accom-

plished by implementing a wall-following method using proportional control to adjust the direction

and depth of the ROV as it explores the cistern.

2 Background

Although there has been an abundance of research and implementation of wall following in land

robots [1, 2], and even on the subject of sonar mapping and navigation [4], the number of instances

of this method being used in underwater robots, such as an ROV is far fewer due to the limitations

in underwater localization and sensor resolution. Most of the wall following methods mentioned

utilize infrared sensors and ultrasonic sensors such as sonar to detect information about the sur-

rounding area, but while underwater, there is a limited number of sensors that can be used, and the

information gathered by such sensors are not always accurate due to disturbances in the water and

interference from floating debris.

There has been previous work done with the VideoRay Pro 3, where researchers were suc-

cessful in implementing a stable, autonomous controller for the ROV to track a desired trajectory

underwater [7]. However, the original goal of this project was to implement an autonomous con-

troller based on closest wall distance and angle received from a wall finding function, researched

by a fellow student Anna Simpson, the wall following function in [7] could not be used because it

required a more sophisticated knowledge of the surrounding when applied to autonomous naviga-

tion of a system of chambers.

There have also been instances of researchers implementing an autonomous trajectory tracking

systems with collision detection for Autonomous Underwater Vehicles (AUV) such as the REMUS
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Figure 2: Top down view of ROV in mapping environment (A) Dotted line shows desired path of ROV while travelling
with set distance away from wall. (B) Close up view of ROV tracking wall. α is compass angle to nearest wall, θdes
desired compass angle, and θt −θdes desired angle with respect to the ROV. The desired distance and current distance
are represented by ρdes and ρt respectively.

for Naval mission purposes [5]. These methods, too, are not possible with only wall-following and

proportional control, but could prove helpful in improving and making adjustments to the simple

method presented in this project.

3 Problem Definition

The purpose of this project is to design an autonomous tracking control system for an underwater

robot(e.g. a Remotely Operated Vehicle, or ROV for short) so it is able to autonomously navigate

a variety of cisterns in Malta with different shapes and structures. Since there is low visibility in

some of the cisterns, it is very difficult for a human pilot to both navigate and localize the robot

within each room. An autonomous method of exploring these cisterns will serve to both make

the pilot’s job easier and to decrease the human error within the whole process. This method will

also enable 2D map construction using sonar scanning and ensure complete coverage of the cistern

structure for mapping purposes.

To do this, the robot must follow the walls of the structure at some nominal distance, ρdes in

Figure 2, to circumnavigate the entire cistern. In the diagram, ρt represents the current distance
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from the wall and θt represents the compass angle the robot is facing. The goal is to design two

controllers, Equations 1 and 2, to calculate control values to send to the robot for depth control and

horizontal movement control while minimizing the error functions, Equations 4, 5, and 6. Here,

θdes is α− π

2 because we want to travel along a path parallel to the closest wall on the right. In the

depth control equation, the desired depth thruster value is simply calculated from the current depth,

while the desired values for the port and starboard thrusters are calculated from current distance to

wall, current compass angle, and current compass angle to closest wall.

[Ud] = fd(zt) (1)

[Up,Us] = fp,s(ρt ,θt ,αt) (2)

θdes = α− f racpi2 (3)

ed,t = zdes− zt (4)

eρ,t = ρdes−ρt (5)

eθ ,t = θdes−θt (6)

In this case, we set v equal to some vnom for simplicity. We also want to minimize ed,t , eρ,t , and

eθ ,t for t = 0 : tmax and such that vnom× tmax represents the length of the entire inner perimeter of

the cistern, which is our desired path to follow.

The ROV is dependent upon a local control scheme because it is not equipped with a Global

Positioning System or an underwater acoustic positioning system. Since the only positioning in-

formation the ROV receives is from the depth sensor and the sonar, the robot must localize itself
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based on real-time features detected by the sonar. This method is not optimal in some situations,

such as in a room with a very large diameter, in which case the sonar readings will not be able to

reach the center of the room, leaving a hole in the final map. Issues also surface when the robot is

presented with a narrow tunnel while following the wall. It is unclear if the robot should enter the

tunnel, where it might run into obstacles or get dislodged inside the tunnel, or if the robot should

ignore the tunnel altogether, possibly missing vital information or another section of the structure.

Although these concerns would be crucial in the field while exploring ancient cisterns, for this

project, we will mainly focus on testing in small, simple spaces to test the autonomous control

method.

4 Controller Design

In this project, we will implement proportional controllers for both the depth and horizontal con-

trol, with proportional constant K for each variable. For the depth controller, we simply want to

send the depth thruster ż = Kz(zdes− zt) to drive ed,t to 0. This will keep the robot at a constant

depth, zdes. However, for horizontal wall-following, the controls need to be much more compli-

cated.

Since we want to design a controller that will follow a wall to the right, we want the ROV to

move based on both the angle to the closest wall and the distance from it. To handle turns correctly,

it will also need to recognize when to follow a new wall. Turning left is trivial because as the ROV

approaches the new wall on the left, there will be a point where the closest distance to the new

wall will be less than the closest distance to the old wall. Thus, it will turn to follow this new wall

automatically. However, detecting a new wall to the right is not so simple. As the previous wall to
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the right ends, the ROV might not register the next wall it needs to follow as the closest wall and

will keep heading straight towards the inside of the chamber. To correct this, we propose that if the

closest distance to a wall is greater than a certain threshold, ρmax, the controller sends the signal to

go straight at an angle of π

4 . This will cause the robot to start turning in a circle with a small radius.

The exact angle and speed should be adjusted based on ρdes and ρmax to avoid collision with the

wall or over-turning. If there is indeed a new wall connecting to the right, the robot will encounter

it and register it as the new closest wall and follow it. Since we are assuming the outerwalls of the

cistern are continous, this method will always find a new wall to follow.

For the wall-following section, we want to calculate control values, θ̇ and ρ̇ , such that etheta,t

and eρ,t are driven to 0. In this report, we propose the following functions as a control scheme:

θ̇ =−ω =−Kθ eθ ,t−Kρeρ,t (7)

ρ̇ = vsin(eθ ,t)≈ veθ ,t , for small θ (8)

From the first equation, we see that θ̇ takes into account both the angle difference to the desired

angle and the distance to desired distance. Note that θ̇ is also equal to negative of the angular

velocity, ω , because while the compass angles range from 0 to 2π clockwise, the angles passed to

the ROV thruster control are from −π to π counterclockwise.

To prove the stability of our controller, we use the method from [6]:
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θ̇

ρ̇

=

−Kθ −Kρ

v 0


θ

ρ

 (9)

First, the control equations can be written as the matrix above. To show that the controller is

stable, we need to find the Kθ and Kρ ‘s such that the eigenvalues of the constant term matrix in the

equation above are negative.

det(A−λ I) = (−Kθ −λ )(−λ )+Kρv

⇒ λ =
−Kθ ±

√
K2

θ
−4Kρv

2

Since λ < 0:

K2
θ −4Kρv < K2

θ

⇒ Kθ > 0 and Kρ > 0

Thus, we can see that the controller proposed above will be stable for all Kθ > 0 and Kρ > 0,

meaning that it will drive the error terms ed,t , eθ ,t , and eρ,t to 0, forcing the robot to drive along the

outerwall with velocity vnom.

5 Equipment

The ROV used in this project was a VideoRay Pro 3 ROV with dimensions 30.5 x 22.5 x 21 cm

and weight 3.8 kgs (shown in Figure 3). The maximum speed is 2.6 knots, with a depth rating of
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Figure 3: (A) ROV with sonar mounted and tether at the back. (B) Control box for the ROV with video, sonar, and
actuator control connections to computer.

152 m. The robot itself is equipped with both a front and back camera and two halogen lights in

the front of each of its two horizontal thrusters. There is also a vertical thruster at the top to control

depth. In the figure, there is a SeaSprite Scanning Sonar with range 2 - 75 meters attached in the

front.

Although the ROV can be manually controlled from the control box with a built-in joystick

and other various dials, we had to instead control the robot with a laptop in order to record sonar

and video data as well as implement autonomous control with the C++ code. This involved many

connections and wires. First, we used a Gigaware A/V to USB converter to import the video

from the ROV front and back cameras. Several serial to USB were required to import the actuator

control and sonar data to the laptop. There was no issue with the converter for thruster control, but

for sonar data, we experienced buffering and freezing issues with the previous converters and had

to contact VideoRay for ones with no freezing: an RS485 to RS232 converter and an EasySYNC

ES-U-1002-A RS232 to USB converter. The exact model for the RS232 to USB converter is

recommended because it is guaranteed to have no buffering issues.

All of the coding was done in Microsoft Visual Studios 2010. An autonomousControl() func-

tion was added to the previous ROV code, of which most was provided by VideoRay; however,
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Figure 4: Image of ROV deployment in DeNunzio Pool while running horizontal autonomous control.

due to the fact that most of the code was generated automatically, some of the structure and meth-

ods/variables were very confusing and took a lot of time to decipher. Also, due to the testing

restrictions of an underwater robot and hardware issues like the serial adapter mentioned above,

we were only able to fully test the autonomous control method in the Princeton University DeNun-

zio Pool, which meant that testing times were tightly restricted by pool availability and class times.

For these reasons, there were not as many opportunities to test the code for this project.

6 Experiments and Data

For the purpose of verifying the proposed controllers, several experiments were designed to test

the depth controller and the horizontal controller, both by varying α and ρ , the results of which are

shown in the following graphs. For all three graphs, Kd = 50.0, Kθ = 20.0, and Kρ = 40.0. These

values were determined experimentally to ensure fast convergence, with little overcorrection. All

three graphs were graphed in Gnuplot with Bezier smoothing.
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Figure 5: Graph of ROV vertical motion at several depths (0.5m, 1.0m, 1.5m, and 2.0m). In all cases, the ROV held at
desired depth after several seconds although fluctuated slightly within the depth sensor resolution (0.5m).

Figure 6: Graph of horizontal motion at many α‘s. For these experiments, ρt = ρdes In all cases, ROV tracked the
correct θdes and continued with a forward motion. Note the oscillations in the forward motion, to be discussed in the
Discussion section.
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Figure 7: Graph of horizontal motion at many ρt ‘s. For these experiments, θt = θdes In all cases, ROV tracked the
correct θdes and continued with a forward motion. Note the oscillations in the forward motion, to be discussed in the
Discussion section.

7 Discussion

For the depth controller, we can see from Figure 5 that the ROV depth sensor reading, zt con-

verges to around 0.2m smaller than zdes just a few seconds after starting. The reading then fluc-

tuates around that value (fluctuations cannot be seen as clearly in the figure because of the Bezier

smoothing) even though the control box displays the correct zdes and the robot is motionless in the

water. This can be mostly attributed to the low resolution of the depth sensor on the ROV. The

resolution is around 0.5m, and since all of the random fluctuations in zt are within 0.5m of zdes, we

can attribute most of the error to the sensor and say that ed,t mostly went to 0 as t increased.

As for the horizontal controller, we can also see from Figures 6 and 7 that the ROV converged

to θdes in only a few seconds and attempted to move in a straight line from there. However, in all

datasets, there was an oscillation of around 0.3m once the robot started to move in a straight line.
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As the ROV is also moving in a forward then backwards motion, this was not due to the error in

the compass measurements. After this forward and backward motion was first noticed, additional

tests were performed to test the thrusters. It was observed that when both thrusters were given the

same speed and a forward direction, the robot travelled in a circle to the left. This could be due to

the fact that the left thruster on the robot is spinning as fast as the right one.

The autonomous control method sends signals for the robot to move straight at a set speed,

in this case at a thruster value of 50 (while max thruster value is 255), if θ̇ is below a certain

threshold, π

6 in these experiments, in addition to the control scheme described in the Controller

Design section. This was added to prevent over-correcting, when it was believed that the forward

and backward movement of the robot was due to it always trying to correct the yaw even though

θt was very close to θdes.

Therefore, the oscillations observed in Figures 6 and 7 always from 0 to around 0.3 radians

was most likely due to the robot trying to go straight, but turning left instead due to the weak left

thruster, increasing θ̇ until it is above π

6 . The controller then attempts to correct itself by turning

right until θ̇ ≈ 0, from which the robot attempts to go straight again, creating a cycle, which can be

seen in both horizontal control graphs. One way to possibly solve this without tampering with the

hardware of the thruster is to multiply a constant to the speed sent to the left thruster, forcing it to

be proportionally the same as the speed of the right thruster. This was attempted after this issue was

discovered; however, due to time constraints, the exact constant could not be determined. Fixing

the thruster is one of the highest priorities before this project can move forward.
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8 Conclusion

The goal of this project was to create and implement a stable autonomous controller for an ROV to

navigate around a cistern by following its outer walls. Although it could not be coupled with real

time information about the closest wall, the control scheme described in this paper is proven to be

stable both theoretically and in the experiments for depth controller. For horizontal control, I be-

lieve if the left thruster issue could be resolved, the eθ ,t and eρ,t could be driven down to 0 as well.

The next step would be to couple it with the wall finding algorithm developed by a fellow student,

Anna Simpson, and test this method in real time. The gains would also need to be fine tuned, but

this system has proven to be functional in a real environment and could provide a foundation for a

more complex autonomous controller for an ROV to navigate a cistern for mapping purposes.

Honor Pledge: This paper represents my own work in accordance with university regulations.
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A Appendix

/* code for autonomous thruster control. Called from RunControlLoop */
void Robot::autonomousControl()
{

//Depth Control, keeps depth constant
char VERTICAL_THRUSTER = 2;
unsigned char vertSpeed;
bool vertDir;
connections[0]->z_desired = 0.5; //in deci?meters
//calculates values for vertical thrusters
double vertical_d = connections[0]->Kvert*((connections[0]->z_desired +
0.2) - state_est.z);

int vertical_i = convert((int)vertical_d, &vertSpeed, &vertDir);
//sets vertical thrusters
connections[0]->setThruster(VERTICAL_THRUSTER, vertSpeed, vertDir,
vertical_i);

//Yaw Control, keeps distance and angle to wall constant
char STARBOARD_THRUSTER = 1;
char PORT_THRUSTER = 0;
double desiredDist = 0.75;
double maxWallDist = 1.50;
double desiredYaw;
double K_theta = 20.0;
double K_dist = 2.0;;
unsigned char yawSpeed;
bool yawDir;
double closestAngle = closestWallBearing;

//for debugging, sets angle and dist to wall as desired constant value
closestAngle = -Pi/2.0;

closestWallDist = desiredDist;

double desiredAngle = angleDiff(closestAngle, Pi/2.0); //compass angle
for desired angle

double errorAngle = angleDiff(desiredAngle,z_compass) - (K_dist *
(desiredDist - closestWallDist)); //desired yaw relative to robot

//if lost, turn to the right
if (closestWallDist > maxWallDist) {

errorAngle = -Pi/4;
}

double u_theta = K_theta*errorAngle;

double yaw_d = -u_theta;
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int yaw_i = convert(yaw_d, &yawSpeed, &yawDir);

yawSpeed = min(yawSpeed, 255.0);

//time since start
double t = (clock() - start) / (double) CLOCKS_PER_SEC;

if (errorAngle <= (Pi / 6.0) && errorAngle >= (-Pi / 6.0)) {
yawSpeed = 50.0;
connections[0]->setThruster(PORT_THRUSTER, yawSpeed, yawDir, yaw_i);

}

else {
connections[0]->setThruster(PORT_THRUSTER, yawSpeed, !yawDir,
yaw_i);

}

connections[0]->setThruster(STARBOARD_THRUSTER, yawSpeed, yawDir, yaw_i);

//logging
char values[300];
sprintf(values, "t = %g, z_des = %g, state.z = %g, Dist_des = %g; Dist =
%g, closestWallBearing = %g, compass = %g, errorAngle = %g, u_theta =
%g, speed = %g, yaw_d = %g\n",
t, connections[0]->z_desired, state_est.z, desiredDist,
closestWallDist, closestAngle, z_compass, errorAngle, u_theta,
(double) yawSpeed, yaw_d);

OutputDebugString(values);
} // end autonomousControl
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