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Abstract

This paper presents a method for the cre-
ation of three-dimensional maps of under-
water cisterns and wells using a submersible
robot equipped with two scanning sonars and
a compass. Previous work in this area utilized
a particle filter to perform offline simultane-
ous localization and mapping (SLAM) in two
dimensions using a single sonar [11]. This
work utilizes scan matching and incorporates
an additional sonar that scans in a perpendic-
ular plane.
Given a set of overlapping horizontal and

vertical sonar scans, an algorithm was im-
plemented to map underwater chambers by
matching sets of scans using a weighted
iterative closest point (ICP) method. This
matching process has been augmented to
align the features of the underwater cistern
data without robot odometry. Results from a
swimming pool and an archeological site tri-
als indicate successful mapping is achieved.

I. Introduction

Underwater robots are used for the study of harsh,
inaccessible environments. These robots allow
researchers to explore and collect samples from
regions that are dangerous or costly for humans to
explore. The application of underwater robots to
retrieve data has led to advances in several areas
including oceanographic research [15], marine bi-
ology, and marine archeology [6]. For example,
in [24] underwater robots were shown to navigate

Figure 1: An ROV navigating through an ancient tunnel sys-
tem in Malta (top) and corresponding render in the generated
map (bottom)

rough terrain and efficiently gather data to survey
hydrothermal vents.
Small-scale (i.e. less than 0.5 meters) underwater

robots are ideal for exploration of narrow passage-
ways (see Fig. 1a) including wells, cisterns and var-



ious underwater chambers that feature tight tunnels
and access points. Moreover, maps generated of
cisterns can provide archaeologists with a detailed
glimpse into the underlying structure of these sites.
A robot navigating narrow passages and small

entrances is unfortunately limited in payload. Fur-
thermore tight passage ways and unpredictable
obstacles make motion simulation difficult. This
paper presents a strategy that does not require
odometry sensors, e.g. Doppler Velocity Log, or
motion modeling to construct maps of such under-
water tunnel systems. Instead, an ICP algorithm is
proposed that uses sonar scans to generate a global
map of the underwater passageways. The algorithm
relies on measurements from horizontal and vertical
scanning sonars, a depth sensor, and a compass.
This work is motivated by the multi-year, multi-

institutional project International Computer Engi-
neering Experience (ICEX) that aims to construct
maps of ancient water storage systems in collab-
oration with archeologists in Malta, Gozo, and
Sicily. Data was gathered in cisterns and wells
in locations that include catacombs, historic parks,
modern theaters and conference centres wheremod-
ern architecture has built on top of ancient sites.
What follows is a brief description of related

work in Section II, followed by the proposed map-
ping algorithm in Section III. Swimming pool and
archeological site experiments used to validate the
approach are documented in Section IV. Results
and conclusions drawn from the experiments are
presented in Sections V and VI respectively.

II. Background

In recent years, implementations of SLAM al-
gorithms have been used to navigate and map
underwater terrain [7]. The constructed maps have
been used for precise robot navigation and research
applications in fields such as marine biology and
archaeology.
Underwater robot mapping techniques typically

combine both odometry and additional sensor infor-
mation to create a global map of the surrounding
environment. Two common mapping techniques
are visual mosaics and occupancy grids. The visual
mosaic approach generates a composite view of the
mapped region from local maps. For example, in

[16], a real time navigation system used underwater
mosaics to navigate the seafloor. An occupancy
grid, however, discretizes the space being mapped
into a grid of cells. The log-likelihood algorithm is
typically used to determine the liklihood that each
cell of that grid is occupied [23].

Rather than fitting geometric contours to sensor
measurements, the scan-matching technique com-
pares and aligns data from raw measurements. In
particular, the Iterative Closest Point (ICP) algo-
rithmmatches point clouds to determine the relative
transformation between scan pairs by iteratively
minimizing the distance between points in the data.
ICP can be implemented for localization, map
building, and path planning. For example, in [10]
a pose-based SLAM algorithm was implemented
with ICP to estimate robot displacement between
consecutive sonar scans.

Previous work in Maltese cistern mapping [5],
[8], [21], [11] generated maps by visually mosaick-
ing sonar scans, implementing underwater robot
SLAM using mobile and stationary scans, and
performing particle filter based mapping on sets of
stationary scans. Over sixty single sonar data sets
have been captured from different Maltese mapping
expeditions in the field. Sonar scan mosaicking
combined overlapping images by hand to create
a composite map. Manual scan mosaicking is
tedious and prone to error in estimating the length
of overlapping walls between scans, especially for
longer tunnels or large, rectangular chambers. In
[21], the FastSLAM algorithm used a motion model
of the underwater robot to estimate the robot's
pose, however the unpredictablility of collisionwith
obstacles severly limited the use of the motion
model.

Recent work [11] implemented an offline particle
filter based pairwise scan matching technique and
successfully generated two dimensional maps of
Maltese cisterns. Unlike [11], this approach uses
ICP based scan matching to determine relative
horizontal robot translations between scans, and
incorporates additional sonar scans in a perpen-
dicular plane to construct three-dimensional maps.
The algorithm uses overlapping stationary scans to
localize the robot in the horizontal plane, without
robot odometry or a motion model.



(a) Dual sonar configuration. (b) Plot of signal strengths.

[φ1 zh,1 zv,1] [φ2 zh,2 zv,2]

[φ3 zh,3 zv,3]

(c) Series of overlapping scan pairs at unknown poses.
Figure 2: Method of data collection using the VideoRay Pro 3
by taking successive stationary horizontal and vertical scans.

III. Algorithm

The purpose of this algorithm is to construct a 3D
occupancy grid mapM = {mi,j,k ∈ [0, 1]|i, j, k ∈
[0..Imax]}, from a set of sonar measurements Z
= {[φt zh,t zv,t]|t ∈ [0..tmax]}. A scan pair mea-
surement consists of the robot's compass readingφt

and two corresponding 360◦ sonar scans: one in the
horizontal plane, zh,t, and one in the vertical plane,
zv,t. To obtain this data set, the robot must use two
scanning sonars mounted as shown in Fig. 2a.
Each stationary scan zt contains a series of scan

angles αi containing a vector of signal strengths.
The returned signal strengths are a function of range
and represent the echo intensities of the discretized
sonar signal. These orthogonal scan pairs are
assumed to be taken simultaneously at time t from
a static robot pose Xt = [xt yt φt], (see Fig. 2b).
A series of stationary scan pairs were collected at
unknown poses (xt, yt) as shown in Fig. 2c.
To accomplish this goal, the LatticeMap algo-

rithm (Alg. 1) is proposed. LatticeMap begins
by low-pass filtering the raw sonar data Z and
converting it from polar coordinates to Cartesian
coordinates, (step 1). These filtered measurements
Z', are next used to estimate the robot's pose X̂t at
each time step t (i.e. at each stationary scan loca-
tions). This estimation is accomplished by finding
the pose X̂t that results in the best match between
the horizontal sonar scan zh,t and the previous τ
horizontal scans. In this case, we determine the

Algorithm 1 M = LatticeMap(Z)
1: Z'← preprocess(Z)
2: for all τ ∈ T do
3: for all t do
4: Xpotential ← ∅
5: while X0 ← poseGen (z′h,t−τ :t, φt) do
6: X∗ ← scan matcher(z′h,t, z

′
h,t−τ :t, X0)

7: q ← match eval(z′h,t, z
′
h,t−τ :t, X

∗)
8: Xpotential ← (X∗, q)
9: end while
10: X̂t ← max(Xpotential)
11: end for
12: end for
13: M← occupancyGrid(X̂,Z')

bestmatch by generating a number of random robot
poses X0, and using these poses as initial guesses
in an ICP algorithm which converges to a local
minimum best pose X∗, (step 6). The quality q
of this pose is calculated using a match evaluation
algorithm, (step 7). The best pose is that which
has the highest q, (step 10). Once the estimated
robot poses X̂t are determined, the entire processed
measurement set Z', including vertical scans zv,t,
are converted to a 3D occupancy grid, (step 13).
The algorithm iterates through the scans and

considers the scan at time t with respect to the
previous τ scans zh,t−τ :t. Multiple passes with
different values of τ eliminate noise and generate
a more consistent composite map.
The key steps to Alg. 1, namely preprocessing,

pose generation, scan matching, and match evalua-
tion, are described below.

A. Preprocessing

Preprocessing reduces the raw sonar measure-
ment data inZ to the a filtered set of 2D cartesian co-
ordinate points in Z' that represent wall locations in
the corresponding environment. The effectiveness
of the process depends on the environment and data
collection method. Sonar data collected in narrow
passageways is subject to a higher likelihood of
multipath while data collected in open areas has
increased noise levels at longer ranges.
To start, each sonar scan is comprised of an array

of strength of return measurements si,j for each
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Figure 4: Step 7 of the LatticeMap algorithm: Scan matches
are raytraced to produce occupancy grids, then overlayed.
Cells in agreement add to the matchings score.

angle the sonar faces αi. That is, zh,t = {[αi

si,0 ... si,b] | i ∈ [0 : 360]}. In this case the
index that increments from 0 to b corresponds to
range from the sonar where the bth strength of return
measurement is that at the maximum range.
For each angleαi, strength of returns correspond-

ing to a predefined distance from the origin are
zeroed (i.e. a deadzone). A low pass filter is then
applied to strength of return arrays. All strength of
return values are then zeroed but the nmost intense
points. Finally, the remaining non-zero strength
signals are converted to points in an x-y Cartesian
coordinate frame, i.e. z′h,t = {[xj,t yj,t] | j ∈ [1 :
n]}. See Fig. 3a.

B. Pose generation

The pose generation step creates initial robot
poses X0 for the scan zh,t that the ICP algorithm
will then use as a starting point for matching zh,t
with previous scans zh,t−τ :t. Several starting points
for the ICP algorithm are required to search for the
nearest local minimum [4].
The goal of the pose generator is to generate

the minimum number of poses necessary to ide-



ally find the global minimum of the search space.
Because overlap is assumed between consecutive
scans, poses are only generated within the bounds
of the previous scans zt−τ :t as shown in Fig. 3b.
Furthermore, generating several initial poses that
will result in identical scan matches are prevented
by defining a radius around each generated poseX0

within which no additional poses are generated.

C. Scan Matching

The scan matcher uses an ICP algorithm to
determine the pose offset X∗ between any model
set of points zmodel and a target set of points ztarget
given an inital offset X0. Within the context of the
LatticeMap algorithm, the model and target point
sets will be z′h,t and z′h,t−τ :t respectively. Fig. 3c
shows an example of initial and final poses between
two scans. As in preprocessing, implementation
details are data-specific.
The scan matcher shown in Alg. 2 uses an

iterative approach to bring the two point clouds
closer together until either of two stopping criterion
are met: 1) the number of iterations reaches a
specified maximum (step 2) or 2) the sum of square
errors between correspondences reaches a threshold
errorMin (step 6). As in [17], the three distinctive
components of Alg. 2 are point matching (steps
3,4), correspondence rejection (steps 5-14), and
minimization (step 15).
The point matching component in step 3 con-

siders all points of data. Points in the model set
zmodel are matched with their k nearest neighbors
by Euclidean distance in the target set ztarget. These
correspondences are prioritized by distance and
filtered such that no point in either set is repeated,
(step 4).
Next, the correspondence rejection component

filters the remaining correspondences based on their
Euclidean distance, (steps 9-14). The average µ
and standard deviation σ of the correspondence
distances are determined; the correspondences with
distance d > µ + S × σ are rejected where S is
a predefined scalar. Weighting the distances when
calculating these statistics prevents outliers from
overly affecting this process. For less noisy data
sets, the correspondances can be further filtered by
the difference between each corresponding point's

local normal vector [17]. These rejected coorespon-
dences play no further role in the current iteration of
scan matching. For the remaining correspondences,
the sum of square errors SSE =

∑
||ztargeti −

zmodeli ||2 is calculated. If SSE < errorMin, the
algorithm halts.
Finally, for the minimization component, a pre-

specified error metric is minimized (step 15) using
the singular value decomposition method [2] or a
LevenburgMarquardt solver [1]. A weighted point-
point error metric was used for noisier data which
minimizes

∑
mi||T ·zmodeli−ztargeti ||2 where T is

the transformation matrix corresponding to x′ [19].
Here the weight w of a point is proportional to the
distance from the scan origin. For cleaner data sets,
normal estimation is more reliable and a point to
plane error metric is used:

∑
wi||ni · (T · zmodeli −

ztargeti)||2 where n is the estimated normal about a
point [25].
The algorithm transforms zmodel by X∗ and

repeats. After one of the two stopping criteria is
reached, the final pose offestX∗ is returned.

Algorithm 2 X∗ = ScanMatch(zmodel, ztarget, X0)
1: T ← X0

2: while iterations < maxIters do
3: M ← KNearestNeighborsztarget(T · zmodel)
4: M ′ ← StableMarriage(Distances(M ))
5: sse←

∑
m∈M ′ ||mtarget −mmodel||2

6: if sse < errorMin then break
7: µ← Average(Distances(M ′)
8: σ ← StandardDeviation(Distances(M ′))
9: for allm ∈M ′ do
10: if Distance(m) < µ+ S × σ then
11: wi ← DistanceWeight(m)
12: else
13: wi ← 0

14: end for
15: T ← argmin(

∑
wi||T · zmodeli − ztargeti ||2)

16: end while
17: X∗ ← T

D. Match Evaluation

Thematch evaluator considers a scan z′h,t−τ :t and
matched scan zh,t with pose X∗ and heuristcally
score the quality of the matching q. The scans



are superimposed onto a grid and overlayed as
shown in Fig. 4. A score is given to each pair of
corresponding cells. If a cell occupancy in the grid
of z′h,t−τ :t matches the cell occupancy in the grid of
zh,t then that cell is given a positive score.
Futhermore a ray is traced between the sensor

positions of each scan. If the ray does not encounter
any occupied cells, an additional score is given
to the matching. As such, it is assumed that
consecutive scans exist within line of sight of each
other.
Finally the score of the matching q is the sum of

the scores of all the cells and the line of sight bonus.

E. Occupancy Grid Generation

Given a set of processed scansZ' and correspond-
ing poses X̂ , the occupancy grid generator produces
a map M = {mi,j,k ∈ [0, 1]|i, j, k ∈ [0..Imax]}
using an octree based log-odds approach [23]. A
ray is traced from the sensor origin X̂t to each
point in z′v,t and z′h,t, updating each cell m along
the way according to log-odds(mi,j,k,t | Z ′

t) =
log-odds(Z ′

t |mi,j,k,t−1) + log-odds(mi,j,k,t−1).

IV. Experiment

To validate the use of the mapping algorithm
on an underwater robot system, a micro-ROV was
deployed at a swimming pool of known size and
several unexplored cisterns.

A. Hardware Implementation

A VideoRay Pro 3 mounted with two Tritech
Micron scanning sonars was used to collect data.
The vehicle payload includes a depth sensor, com-
pass, and video camera. The vehicle is driven
with two thrusters placed parallel to each other in
the horizontal plane to provide differential thrust
control as wel as a single thruster aligned with the
vertical plane for depth control. Custom software
was developed using the Robot Operating System
(ROS) framework [14] to allow for synchronized
real time data capture of the control signals and
sensors.
The scanning sonars were mounted to scan in

perpendicular planes. To create a 360◦ planar scan,
the Tritech sonar transmits a directional acoustic

ping for each angle in increments of .4◦ to 1.8◦ at
a rate of 10Hz-50Hz and records signal strength of
return as a function of distance. A high intensity
return signal represents strong acoustic reflection in
the water at that position. However, due to noise
and signal multipath, the highest intensity bin does
not necessarily represent a wall or an object.

B. Site Descriptions

The algorithm was validated using data sets
collected at Maltese cistern and at a swimming
pool with known geometry. At both sites, a series
of 360◦ horizontal and vertical stationary scans
was recorded as shown in Fig. 2b and Fig. 5.
Motion between scans was limited to ensure overlap
between consecutive scans as illustrated in Fig. 2c.
A reference data set was collected at the Scripps

College Tiernan Field House swimming pool lo-
cated in Claremont, California. The pool is 25
meters in length, has vertical walls, a sloping
bottom, and features a semicircular stairwell located
in the center of the shallow end of the pool. This
data set was used to validate the ICP matching
algorithm accuracy.
Field exploration was conducted in a cistern lo-

cated below the Mediterranean Conference Center
(MCC) in Malta. The MCC has its roots as a 16th
century hospital originally belonging to the Order
of St. John [3].

V. Results

The LatticeMap algorithm was applied to three
data sets: two from a swimming pool at Scripps Col-
lege Tiernan Field House and one from a cistern at
theMediterranean Conference Center inMalta. The
accuracy of the LatticeMap algorithmwas validated
by comparing the resulting map with the actual
pool dimensions with dimensions extracted from
the point cloud map generated by the LatticeMap
procedure as shown in Fig. 6a. Additionally the
generated poses were compare to truth poses as
shown in Fig. 7. The generation of the pool data
sets took roughly one minute while the cistern data
set took five.
The true pool dimensions were determined using

a measuring tape with an uncertainty of 0.05m.
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Figure 5: Point map of the Scripps Tiernan House pool. Scan
15 is highlighted to illustrate the range of the sonar. Plot
includes scans from 23 locations.

Twenty-three stationary scan pairs were collected
at the swimming pool (see Fig 5). The error of the
LatticeMap algorithm was computed by measuring
the dimensions of 9 different geometric parts of the
swimming pool. For each part, the truth dimension
was compared to the algorithm generated dimension
by measuring 10 to 20 different locations on the
point cloud generated map.
The calculated standard error for themapped pool

dimensions are listed in Fig. 6, demonstrating that
5 out of 9 LatticeMap measurements are within the
95% confidence interval.
Additionally, the poses generated by the Lat-

ticeMap algorithm were compared to truth poses
for 18 scans as shown in Fig. 7. The error in
y measurements is an absolute .1 m at all points
while the error in x measurements in absolute .1m
up to 7.5 meters then compounds at a rate of .1
meters/meter. The error in the x direction grows
by approximately 2 cm per meter travelled by the
ROV while the error in the y direction averages at
.06 m; both errors are within the error of the truth
measurements.
The map created of MCC meets expectations

based on a hand made mosaic of the site and shows
that the algorithm can produce a feasible map even
when scans are recorded in disjoint chambers as
shown in Fig. 8. Furthermore, three-dimensional
mesh rendering (Fig. 1b and 8) roughly matches
video taken during data collection.
To provide archaeologists with a 3D visualization

of the MCC, surfaces of the MCC cistern data set
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(c) Cross section A.
Alg. (m, ◦) Truth (m, ◦)

a 2.03± .03 2
b 6.91± .05 7.25
c 1.30± .02 1.25
d 23.82± .12 25
e - .25
f - .625
g 1.13± .02 1
r 3.19± .05 3.25
α 16.95± .95 25.9± 3.

Figure 6: Map of Scripps pool generated by LatticeMap
and comparison to truth data. Standard error of distance
measurements is reported.

are reconstructed using the level set technique as
shown in Fig. 9. The method is similar to those
described in [26] and [12] with some additional
processing. Starting with an unorganized point
cloud, the data is processed to remove outliers and
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Figure 7: x position error vs. truth x position from 18 scans
at the Scripps pool with errors bars reporting the error in truth
measurements.

separate individual rooms/sections. For the MCC
data set, each room and the connecting tunnel are
separated to create three sections. For each section,
an occupancy grid is generated and each surface is
reconstructed individually. See [13], [26] and [12]
for details on the surface reconstruction process.
All sections are then merged volumetrically and the
surface is generated using marching cubes [9].

VI. Conclusion

In this paper an ICP-based three-dimensional
underwater mapping method is demonstrated. No-
tably the algorithm does not require odometric
information to generate a consistent global map.
Results from two sites validate the method.
Extensions to this algorithm may increase the

accuracy of the generatedmaps by incorporating the
uncertainty associated with sonar measurements.
For example, [10] shows the use of theMahalanobis
distance metric. While most cisterns do not contain
looping features, the algorithm could be extended to

Figure 8: Map of two rooms connected by a small tunnel in
the MCC cistern.

Figure 9: Three-dimensional rendered visualization of
Mediterranean Conference Center cisterns.

detect loop-closures due to backtracking.
Finally, while three-dimensional maps were gen-

erated, they relied on the fact that all data was
collected on the same z-plane. Removing this
limitation and localizing in three dimensions would
allow for the capture of richer three-dimensional
features.
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