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Abstract— This paper presents a system of multiple coordi-
nating autonomous underwater vehicles (AUV) that can localize
and track a shark tagged with an acoustic transmitter. Each
AUV is equipped with a stereo-hydrophone system that provides
measurements of the relative bearing to the transmitter, as well
as an acoustic modem that allows for inter-AUV communication
and hence cooperative shark state estimation and decentralized
tracking control. Online state estimation of the shark’s state is
performed using a Particle Filter in which measurements are
shared between AUVs. The decentralized control system enables
the AUVs to circumnavigate a dynamic target, (i.e. the estimated
shark location). Each AUV circles the target by tracking circles
of different radii and at different phase angles with respect to
the target so as to obtain simultaneous sensor vantage points
and minimize chance of AUV collision. A series of experiments
using two AUVs were conducted in Big Fisherman’s Cove
in Santa Catalina Island, CA and demonstrated the ability
to track a tagged leopard shark (Triakis semifasciata). The
performance of the tracking was compared to standard manual
tracking performed using an directional hydrophone operated
by a researcher in a boat. In an additional experiment, the
AUVs tracked an acoustic tag attached to the tracking boat to
quantify the error of the state estimation of the system.

I. INTRODUCTION

The study of the behavior of marine species remains an
important area of inquiry in marine biology. Past studies of
the fine-scale movement patterns of fish have generally in-
cluded fish tagging and tracking. Currently, there are several
approaches to tracking fish. Tagging fish with satellite tags
provides moderately accurate, long-term position informa-
tion, but measurements can only be gathered when the fish is
at the water’s surface and accuracy depends on ocean condi-
tions [1]. Acoustic transmitters work while underwater, but
require additional tracking to determine position. Acoustic
transmitters attached to fish can currently be tracked using
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hydrophones mounted to a stationary array or a manually
controlled boat [2]. Stationary arrays can provide accurate
information, but only when the fish is in range. A manually
controlled boat can be repositioned as the fish moves, but is
expensive in terms of labor and may not be feasible for wide
ranging, migratory fish such as sharks.

Advances in technology have made it increasingly feasible
for AUVs to provide an alternative approach. Previous work
by the authors [3] presented a single AUV system for
localization and tracking of a shark. The work presented
here expands on this by presenting a system of multiple
coordinating AUVs for localization and tracking of a shark.
The contributions of this work include:

• A cooperative multi-AUV target tracking estimator that
incorporates sensor measurement sharing through inter-
AUV communication

• A decentralized multi-AUV control strategy that enables
multiple AUVs to circumnavigate a common target at
desired radii and with desired phase angle difference
between AUVs, reduces the likelihood of collision,
ensures multiple sensor vantage points, and has proven
stability guarantees.

• Demonstration of the system in real shark tracking ex-
periments conducted in Big Fisherman’s Cove, Catalina
Island, CA.

The paper is organized as follows. Section II describes the
past work and related research on the topic. Sections III and
IV describe the system of AUVs, the filtering strategy and
the control scheme used to coordinate the AUVs. Sections
V and VI describe the experiments performed at Catalina
Island the show effectiveness of the described system.

II. BACKGROUND

Gathering highly detailed information about fish motion is
often done by tracking an individual using acoustic teleme-
try. An acoustic telemetry system generally consists of a
transmitter and a receiver. The transmitter, often called a
”tag”, is attached to the fish and emits an acoustic signal.
The signal can encode information such as an identification
number, velocity, acceleration, pressure and temperature. The
signal can enable the fish to be localized using an array
of omni-directional receivers or a receiver mounted to a
mobile platform such as a boat [4], [5], [6]. Receiver arrays
are comprised of multiple hydrophones, strategically placed
in an area of interest. Fish positions are estimated based
upon time difference of arrival of the transmission relative
to neighboring hydrophones. The accuracy of the localization
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Fig. 1. The OceanServer Iver2 AUV is shown in (a). Flow control within a single AUV, and between AUVs using communication, are shown in (b) and
(c) respectively.

decreases if the fish is far away or outside of the boundaries
of array [5]. Fish in estuaries along the western Atlantic such
as winter flounder and shortnose sturgeon have been studied
using acoustic tags and stationary arrays [6]. An alternative
approach is to track the tag with a boat and onboard receiver.
The boat is manually repositioned to allow for accurate
measurements of the fish location. This approach tends to
labor intensive and operationally expensive.

In general, much attention has been payed to the tracking
of moving objects with mobile robots. E.g., mobile robots
have been used to track moving humans in an indoor
environment [7], [8], [9], [10]. In this work the focus is on
underwater robot tracking systems. E.g., remotely operated
underwater vehicles using visual sensors have been effective
in tracking fish and jellyfish [11], [12]. In [13], a single
AUV following predetermined paths, and equipped with two
hydrophones, was used to take measurements from tagged
Atlantic Sturgeon in the Hudson River. [14] presented a
system of one robotic raft following a predetermined set
of waypoints to triangulate the position of fish tagged with
a radio tag in Minnesota. In [3], a single AUV with two
hydrophones was shown to autonomously track and follow a
tagged shark, using real-time state estimation and a control
to drive the AUV towards the shark.

Robots are often used in groups when tracking to improve
redundancy and performance. [15] presents the tracking of a
moving target with a group of mobile robots with directional
sensors and a control scheme to arrange the robots around the
target. A similar project showed a group of robots sharing
sensor measurements could achieve improved accuracy in
tracking a target, especially in cases in which the target
could be detected by some of the robots, but not others
[16]. Coordinated tracking schemes have also been widely
used with the control of groups of unmanned aerial vehicles
because they often operate in noisy environments in which
redundancy is needed. UAVs have been used to track moving
ground targets such as forest fires and cars [17], [18].

Prior to this project, systems using AUVs to track ocean
fish had been restricted to one AUV. This paper presents
an acoustic based system for localization and tracking of a
tagged fish using a system of multiple coordinating AUVs.

III. SYSTEM OVERVIEW

The proposed Multi-AUV system includes two
Oceanserver IVER2 AUVs (Fig. 1(a)), that are actuated
by two pitch fins, two yaw fins, and a propeller. The
AUV is equipped with GPS that provides latitude and
longitude measurements, ZGPS , used to estimate the AUV
position. It is also equipped with a 3-axis compass which
provides a yaw measurement of Zθ. The flow control of the
AUV is shown in Fig. 1(b). It consists of two processors
that run simultaneously. The AUV’s primary processor
communicates with the IVER’s actuators and sensors. The
secondary processor interfaces with the primary processor
and hosts any user programmed control, planning, and
estimation. Each AUV is also configured with a Lotek
MAP600RT stereo-hydrophone set and receiver. Acoustic
tag measurements in the form of relative bearing and signal
strength, Zss and Zα, are provided by the Lotek System
and allows estimation of the shark’s position Xshark.
The controller uses Xshark, ZGPS , Zθ, and Zmodem to
determine a control input U that is sent to the actuators.

The Lotek hydrophones are mounted on a custom frame
such that they are 2.4 meters apart with one near the
front and one near the back, (see [3] for details). The
hydrophones detect uniquely identifiable tags broadcasting
at 76 kHz. Detections are converted to measurements of the
relative bearing of the tag with respect to the AUV, Zα. The
bearing measurements are integer values between 8 to -8
that correspond to angles between −π/2 and π/2 radians.
A measurement of 8 Lotek units indicates the tag is directly
in front of the AUV and a measurement of -8 Lotek units
indicates the tag is directly behind. Note that these units do
not indicate whether the target is on port or starboard side.

Communication between the AUVs is facilitated using a
WHOI Micro-Modem and an externally mounted transducer.
The modem, connected to the secondary processor, receives
incoming messages Zmodem from all other AUVs. These
messages include the sending AUV’s state estimate XAUV

and most recent Lotek measurement angle Zα. Communica-
tion between AUVs is initiated from a topside computer,
that sends a command to a single AUV instructing it to
send its position, orientation and Lotek measurements to all
other AUVs and the topside computer. The topside computer
waits until it receives a reply or times out. It then sends the



same command to the next AUV in the system, (see Fig.
1(c)). For the data packets transmitted in this work, a full
communication cycle across n AUVs takes 10.0n seconds.

IV. CONTROLLER AND STATE ESTIMATOR

A. State Estimation

For a system of n AUVs, let Xi
auv,t represent the planar

position, orientation, forward velocity, and rotational velocity
of AUV i with respect to an inertial coordinate frame at time
t, where 1 ≤ i ≤ n.

Xi
auv,t = [xauv yauv θauv νauv ωauv]

i
t (1)

Also, at time step t, the AUV may obtain Lotek sensor
measurement Ziα,t. Given AUV positions and Lotek mea-
surements are broadcasted from all members of the AUV
team, the collective measurement Zimodem,t is:

Zimodem,t = [X1
auv,t Z

1
α,t X

2
auv,t Z

2
α,t ... X

n
auv,t Z

n
α,t] (2)

The specific goal of this state estimation problem, is for
each AUV i to use Zimodem,t to generate at time t an
estimate of the shark’s position, orientation, and velocity
states Xi

shark,t.

Xi
shark,t = [xshark yshark θshark vshark]it (3)

This problem is complicated by the fact that due to
acoustic occlusions and reflections within the underwater
environment, both Lotek measurements and broadcasted
messages are not received with high likelihood. As well, the
Lotek measurements are limited in resolution (≈ π

9 ) and have
a sign ambiguity regarding the bearing to tag angle.

To accommodate these issues, a multi-AUV Particle Filter
(PF) based estimation strategy that allows for non-Gaussian
belief distributions and sharing of measurements through
communication is proposed. To collectively represent the
belief state, the PF uses a set of P particles, each with a state
Xp
shark, and weight wp. This set is denoted {Xp

sharkw
p}. To

initialize, the P particles are randomly assigned an orienta-
tion, velocity, and position. The orientations are randomly
sampled from a uniform distribution from −π to π. The
velocities are randomly sampled from a uniform distribution
from 0 to vmax, where vmax is a predetermined maximum
particle velocity that is set using historical shark data. The
position coordinates (x, y) are randomly sampled from a
uniform distribution from −L to L where L is approximately
the range of the receiver system. The pseudocode for the
particle filter can be seen in Alg. 1, where the time and
AUV scripts are ommitted for clarity.

At each time step, the PF updates the particle distribution
using two steps, prediction and correction. The prediction
step propagates each particle forward in time using a stochas-
tic motion model, (Alg. 1 Line 3). Much work has been
done in studying models for individual movements as random
walks including Brownian motion, Lévy flights, etc. [19],
[20]. The motion model used in this project uses a random
walk as described in Alg. 2.

Fig. 2. A top down view of 2 AUVs cooperatively tracking and following
a target. Hydrophones are shown as blue dots ahead of and behind the AUV.
Control error variables are in red.

Algorithm 1 Shark State Estimator({Xp
sharkw

p}, Zimodem)
1: //Prediction
2: for p=1:P particles do
3: Xp

shark ← Motion Model(Xp
shark)

4: if Zα is valid then
5: αpexp ← atan2(yauv − ypshark, xauv − x

p
shrk)−θauv

6: αpexp ← g(αpexp)
7: wp ← h(Zα, α

p
exp)

8: end if
9: end for

10:
11: //Correction
12: if Zα is valid then
13: for all p particles do
14: Xp ← RandParticle({Xp

shark}temp)
15: end for
16: end if

If a valid measurement Zα has been received by any AUV,
an expected measurement angle αpexp is calculated (Alg. 1
Line 5) using the geometry of the positions of the AUV and
particle. A sensor model function g converts the angle from
radians to the integer based Lotek Units. A large number
of ocean tests and function approximation techniques were
used to experimentally determine g.

g(αpexp) = −.19(αpexp)
3 + .066(αpexp)

2 + 5.4αpexp − .28
(4)

A comparison between the expected and actual Lotek
measurement angle is used to recalculate the particle’s
weight, (Alg. 1 Line 7). The weighting function, h(zα, α

p
exp),

implements a Gaussian probability density function. The

Algorithm 2 Motion Model(Xp
shark)

1: //RandomWalkModel
2: vprand ← UniformRandom(0, vmax)
3: θpshark ← UniformRandom(−π, π)
4: xpshark ← xpshark + vprand ∗ cos (θpshark) ∗∆t
5: ypshark ← ypshark + vprand ∗ sin (θpshark) ∗∆t



TABLE I
ESTIMATOR AND CONTROLLER PARAMETER VALUES

Parameter P vmax L σα Kρ Kβ Kγ vnom ∆γ R1
des R2

des τ1R τ2R τγ
Value 1000 4 m/s 75 m 1 Lotek Unit 0.1 0.4 0.5 0.56 m/s π rad 8 m 10 m 10 m 12 m π/8 rad

weight has a minimum value of 0.001, and is given a greater
value when the particle’s expected Lotek measurement, αpexp,
is closer to the measured Lotek measurement, Zα.

h(zα, α
p
exp) = 0.001 +

1√
2παpexp

e
−(α

p
exp−zα)2

2σ2α (5)

The correction step only occurs if a valid measurement
has been received. In the correction step, the particle set is
repopulated with particles chosen at random with probability
proportional to their weight. This is implemented with the
function RandParticle in Alg. 1 Line 14.

B. Controller

A decentralized target circumnavigation controller was
designed for this system and is described in detail in [21].
The requirements of the controller include, 1) each AUV
i circumnavigates a target or group of targets by tracking
a circular path that is centered on the target, 2) the radius
Ridesof each AUV i’s circular path is different and, 3) AUVs
maintain a desired phase difference ∆γdes with neighboring
AUVs along this circular path. The first requirement ensures
AUVs will follow the moving target while not altering
the target’s behavior. The second and third requirements
minimize the likelihood of inter-AUV collision. The third
also ensures multiple sensor vantage points of the target to
improve state estimation. In this system (Fig. 2 ), the target to
be circumnavigated and followed is set to be the lead AUV’s
shark state estimate X1

shark,t.

Algorithm 3 [νides, ω
i
des] = AUV Controller(i, Zit )

1: if i == 1 && |Xi
shark,t −Xtarget,t−1| > τshark

2: Broadcast Msg(X1
shark,t)

3: if new Lead AUV message received
4: Xtarget,t ← In Boundaries(X1

shark,t)
5: ∆Xtarget ← Xtarget,t −Xtarget,t−1

6: γexit ← atan2(−∆ytarget,−∆xtarget)
7: if |γexit − γit | < τγ && ri < τR
8: [νides, ω

i
des]← Track Point(Xtarget,t)

9: else
10: [νides, ω

i
des]← Track Circle(Xtarget,t, i)

Algorithm 3 describes the logic used by the AUV to
implement the circumnavigation controller. If the AUV is
the lead AUV of the team, i.e. i == 1, then it will check
if the shark position estimate has moved some minimum
distance τshark from the last target position being tracked.
If it has, the lead AUV broadcasts the new shark state to
all AUVs in the team. Upon receiving this message, AUVs
will reset their target point to be the location closest to the
shark state estimate that is within a safe boundary zone. It

also determines an acceptable phase angle γexit for which it
is safe to depart the current circle being tracked and move to
the next. By setting γexit to correspond with the AUV being
at the point on the current circular path that is farthest from
the new target point, AUVs will not collide when departing
one circular path to track another. If the AUV is within
some tolerance τγ of γexit, it will depart the current circular
path and drive directly towards the new target point using
Track Point(). Once the distance ri between the AUV and
new target is less than τR, it will invoke Track Circle(),
i.e. the circumnavigation controller described below.

The circumnavigation controller assumes that the motion
of AUV i can be modeled with discrete-time first order
equations as shown in (6), (7), and (8). The size of the time
step is ∆t seconds.

xiauv,t = xiauv,t−1 + νiauv,t cos(θiauv,t)∆t (6)

yiauv,t = yiauv,t−1 + νiauv,t sin(θiauv,t)∆t (7)

θiauv,t = θiauv,t−1 + ωiauv,t∆t (8)

At time t, let rit be the distance between AUV i and the
target. γit is the relative bearing of the AUV with respect to
the target. θides,t is the desired yaw angle of the robot, which
is tangent to the circle.

rit =
√

(xiauv,t − xtarget,t)2 + (yiauv,t − ytarget,t)2 (9)

γit = tan−1(yiauv,t − ytarget,t, xiauv,t − xtarget,t) (10)

θides,t = γit −
π

2
(11)

The system can be described in terms of error variables
ρit, β

i
t , and eit and is illustrated in Fig. 2.

ρit = Rides − rit (12)

βit = θides,t − θiauv,t (13)

eit = ∆γdes − (γi,t − γi−1,t) (14)

For AUV i at time t, the controller defines control values
ωides,t and νides,t to drive the error variables to 0 as time
goes to infinity. Kβ , Kρ, and Kγ are proportional controller
gains for β, ρ, and γ respectively. vnom is the AUV’s nominal
velocity.

ωides,t = −v
i
t cos(βit)

Rides − ρit
+
Kβ

∆t
βit +

Kρ

∆t
ρit (15)

νides,t =
Rides − ρit
Rides cos(βit)

(vnom+
RidesKγ

∆t
) ∗ (ei+1

t − eit) (16)

The authors show in [21] that desired velocities can be
tracked by the Iver2 AUV (i.e. νides,t = νit , ω

i
des,t = ωit),

and that system dynamics analysis can prove the controller
is stable when 0 < Kρ, 0 < Kβ < 4, and 0 < Kγ < 2/3.



Fig. 3. State estimation trajectories from the boat trial (a) and AUV 1’s error metrics plotted as a function of time (b). In (c), state estimation trajectories
in the first hour of the Shark trial and the corresponding error metrics plotted as a function of time (d).

TABLE II
EXPERIMENT RESULTS

Experiment name Avg error (m) Min error (m) Max error (m) Min σx (m) Max σx (m) Min σy (m) Max σy (m)
AUV 1: Shark Trial 31.42 1.68 95.96 5.57 35.84 4.92 31.80
AUV 2: Shark Trial 34.36 1.65 99.89 8.84 39.63 5.58 34.97
AUV 1: Boat Trial 15.90 0.14 48.79 4.64 30.65 4.99 34.79
AUV 2: Boat Trial 17.78 0.33 50.90 5.22 30.12 5.68 35.35

V. EXPERIMENTS

A series of verification experiments were performed in Big
Fisherman’s Cove located at Catalina Island, CA. The cove
is adjacent to the USC Wrigley Institute for Environmental
Studies. The cove contains fringing kelp forests and a large
population of leopard sharks. AUV estimator and controller
settings for these experiments are shown in Table I. Results
from only two experiments are shown below for brevity.

The first experiment, is referred as the Shark Trial. Prior
to the experiment, researchers attached an acoustic tag with
known ID number to a leopard shark. At 10AM, July 19th,
the two AUVs were deployed to cooperatively localize and
track the shark based upon the signals from the tag. At
the same time, researchers manually tracked the shark using
a boat and directional hydrophone. The researchers reposi-
tioned the boat based upon the hydrophone measurement to
move to the vicinity of the shark and approximate the shark
position. This approach to manual tracking is a standard
method for determining the movements of fish such as sharks
[22]. Error in this experiment is measured as the distance
between the AUV shark state estimate and the manual

tracking shark state estimate. Notably, the true shark state
is unknown.

The second experiment is referred to as the Boat Trial.
Prior to the experiment, an acoustic tag was attached to a
human controlled motor boat. At 1PM, July 19th, the two
AUVs coordinated to localize and track the boat. The error in
this experiment was measured as the difference between the
AUV’s boat state estimate and the boat’s GPS measurements.

VI. RESULTS AND DISCUSSION

The paths of AUVs, boat, and targets as estimated by the
AUV for the Shark trial and Boat trial are shown in Fig.
3(a) and 3(c) respectively. Real-time target state estimates
were used for active AUV control during experiments, while
offline processing of measurements were used to quantify
performance statistics.

The statistics of the tracking error and standard deviation
of the particle sets are tabulated in Table II. The tracking
error and standard deviation of the particle sets of lead
AUV 1, are plotted in Fig. 3(b) and 3(d). The experiment’s
location in the cove was near high densities of kelp which
hinders the progress of the AUVs and can occlude acoustic



communication. The plots include the signal rate, the rate at
which the AUV receives valid measurements from the tag,
averaged over the last 30 seconds. Decreases in signal rate
tend to increase the error and the standard deviation of the
particle set, e.g. in Fig. 3(b) near 500 seconds.

The Boat Trial error was much less than the Shark Trial
error for two possible reasons. First, the shark was swimming
in shallow areas outside the AUV safe boundary, and the boat
could get closer to the shark than the AUVs. Second, the
manual tracking method itself is not guaranteed to provide
accurate truth measurements of the shark’s location.

An advantage of using the AUV system over manual
tracking is the increase in measurement sampling frequency.
During the Shark Trial, the average sampling rate of the
manual tracking system was only 0.5 measurements/minute,
reflecting the time to find the shark signal and reposition the
boat. As seen in Fig. 3(b), the AUV has a much higher signal
rate (typically > 10 measurements/minute).

The standard deviation of the particle set indicates the
uncertainty associated with the position estimate and thus
the error. The proportion of time that the tracking error was
less than the standard deviation of the particle is tabulated to
compare the error and the standard deviation of the particle
set. The lead AUV’s error was less than the distance error
27.9% of the time in the Shark Trial and 52.3% of the time
in the Boat Trial.

VII. CONCLUSIONS AND FUTURE WORK

The presented results represent a novel attempt to use
coordinating AUVs in the task of localization and tracking
of a tagged fish. In trials in which the true position of the tag
was known, the error associated with the tracking was shown
to be of the same order of magnitude of existing approaches
such as manual tracking.

Future work could expand upon this work to study other
species of fish. In particularly, an AUV-based system could
be a powerful tool in tracking the movements of highly
migratory species of fish such as white sharks. Doing so
would require improvements to the communication and sen-
sor hardware. Additionally, usage of a tag that measures
pressure and depth could allow the system can be modified
to perform localization and tracking in 3 dimensions.
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