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Abstract— This paper presents a multi-AUV state-estimator
that can determine the 3D position of a tagged fish. In addition
to angle measurements, the state-estimator also incorporates
distance and depth measurements. These additional sensor
measurements allow for greater accuracy in the position es-
timates. A newly developed motion model that better accounts
for multiple hypotheses of the motion of a tagged fish is used
to increase the robustness of the state-estimator. A series of
multi-AUV shark tracks were conducted at Santa Catalina
Island, California over the span of four days to demonstrate
the ability of the state-estimator to determine the 3D position
of a tagged leopard shark. Additional experiments in which the
AUVs tracked a tagged boat of known location were conducted
to quantify the performance of the presented state-estimator.
Experimental results demonstrate a three-fold decrease in mean
state-estimation error compared to previous works.

I. INTRODUCTION

Studying the spatial movement of sharks and other fishes
is an important tool for monitoring habitat and maintaining
fish populations. Typical methods for tracking fish include
tagging individuals with acoustic transmitters, and then
using hydrophone-receiver systems to detect and measure
the signals transmitted. Often, the hydrophone-receivers are
placed at fixed locations around an environment of interest
to passively track tagged individuals that move through the
static array [1]. Alternatively, active tracking can be done
manually by mounting a directional hydrophone on a boat
and continuously following the tagged individual from the
surface for periods up to 96 h [2].

To enable active tracking without the need for human
operators, the authors have demonstrated in previous works
that a multi-AUV system using only low resolution angle
measurements is able to autonomously track and follow
tagged leopard sharks [3]. A key component of this system
is a state-estimator which determines the 2D position of
the tagged shark [4]. In order to provide more sensor
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measurements that can be incorporated by the state-estimator,
the authors have also developed a method of calculating
the distance-to-tag [5]. The work presented here expands on
these previous works. Its contributions include:

• 3D position estimates of the tagged fish.
• The incorporation of distance and depth measurements

into the state-estimator.
• Increased accuracy in position estimates.
• A new motion model that is able to better account for

multiple hypothesis of the motion of a tagged fish.
• Demonstration of the state-estimator in real shark track-

ing over an extended period of time in Big Fishermans
Cove, Catalina Island, California, and additional boat
track experiments to validate the performance of the
state-estimator.

The paper is organized as follows. Section II describes
the past work and related research on the topic. Sections III
gives an overview of the multi-AUV system, and Section IV
presents the state-estimator. Sections V and VI describe the
experiments performed at Catalina Island that demonstrate
effectiveness of the state-estimator.

II. BACKGROUND

Tracking stationary and moving targets with robotic sys-
tems is a well-studied field of research [6], [7], [8], [9],
[10], [11]. Within the context of using underwater robots
to track individuals, both optical based methods [12], [13],
[14], and acoustic based methods [15], [16] have been used.
In [12] autonomous tracking of jellyfish with an ROV was
conducted using basic image processing techniques. Work
presented in [13] demonstrated the use of SIFT features in
tracking individual fish between video frames captured from
an ROV. Image processing techniques were also shown to be
useful in tracking divers with a robot in [14]. Unfortunately,
most optical methods employed in underwater environments
suffer from limited visibility due to poor lighting conditions
and presence of debris.

While acoustic methods of tracking marine individuals
have been used for decades, hydrophone receivers have only
recently been mounted on underwater vehicles. For example,
work done by [11], [15] has demonstrated the ability to
track tagged sturgeon using a REMUS AUV equipped with a
Lotek hydrophone system. Unlike the work presented by the
authors, work by [11], [15] did not use in-situ measurements
to actively steer the AUV.

One problem encountered during state-estimation is the
inability to geometrically determine the position of the

2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2014)
September 14-18, 2014, Chicago, IL, USA

978-1-4799-6934-0/14/$31.00 ©2014 IEEE 3469
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Fig. 1. Hydrophones mounted on a prototype PVC frame attached to an OceanServer Iver2, suspended 0.4m down with 2.4m of separation is shown
in (a). The two AUVs circling in (b) are tracking the tagged leopard shark shown in (c)

tag using the sensor measurements. To address this issue,
Monte Carlo Localization (MCL) methods have been used
in the past [17], [18], [19], [20], [21], [22]. Unfortunately,
traditional MCL methods suffer from the particle deprivation
problem; variants of MCL that handle particle deprivation
include [23], [24]. A genetic filter presented by [23] uses
residual mutation to “push” lost particles towards the true
state. Adaptive Monte Carlo Localization (aMCL) presented
by [24] adds random particles based on the long- and short-
term likelihoods of sensor measurements to prevent clus-
tering of particles in wrong locations. The adaptive hybrid
motion model presented in this paper builds on these works.

The authors are also aware of the tracking of a White
Shark using a REMUS-100 AUV conducted by researchers
at the Woods Hole Oceanographic Institute (WHOI). Their
work was featured by Discovery Channel in 2013. In their
approach, a cylindrical transponder approximately 30 cm
long is used as a tag. An Ultra-Short BaseLine receiver
mounted on the REMUS-100 AUV queries the transponder
to determine range and bearing. Our approach uses much
smaller off-the-shelf Lotek acoustic tags that are only capable
of pulse transmission. While bearing and range measure-
ments obtained from these tags tend to be less accurate than
that of a transponder, the small size of these tags makes them
applicable to to a large variety of smaller fish. Our system
also attempts to minimize any changes in behavior of the
shark being tracking by using a controller that circles and
maintains a predetermined buffer distance from the shark
instead of getting as close as possible.

This paper presents a state-estimator capable of determin-
ing the 3D position of a tagged fish by incorporating new
sensor measurements. A new motion model, combined with
the incorporation of additional sensor measurements, allows
the state-estimator to localize the tag with increased accuracy.

III. SYSTEM OVERVIEW

The state estimator is part of a multi-AUV system capable
of following and tracking a tagged fish. The system consists
of two OceanServer Iver2 AUVs, a torpedo-shaped vehicle
(see Fig. 1(a)) with a rear propeller to provide locomotion,
and four fins to control the vehicle’s pitch, row and yaw. It
is equipped with two processors, a primary and secondary,
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Fig. 2. Flow control within an AUV.

each running an embedded Windows operating system. The
primary processor communicates with the AUV’s sensors
and actuators. The secondary processor interfaces with the
primary via serial and hosts the user programmed control,
estimation and communication systems. The AUVs share its
current position and sensor measurements with each other
via a WHOI Micro-Modem [25] and externally mounted
transducers, allowing for cooperative tracking and following
of the tagged marine animal.

The flow control within each AUV is shown in Fig. 2.
The estimated state of the tagged fish is passed to a de-
centralized target circumnavigational controller described in
detail in [26]. The AUVs will circumnavigate the current
estimate of the tag position (see Fig. 1(b)), and transition to
circumnavigate a newer estimate of the tag position when it
has moved past a threshold distance from the last position
being circumnavigated. The AUVs transition from the older
circumnavigation position to the newer one by travelling in
a straight line. If a tag position estimate is outside of the
defined safe boundary, the AUVs will circumnavigate the
closest point on the boundary instead. Currently, the control
system only does circumnavigation on the surface, but will
be extended in the future to circumnavigate underwater.

The sensor payload used to determine the AUV state in-
cludes a 3-DOF compass, a wireless antenna, a GPS receiver,
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and a 6-beam Doppler Velocity Logger. Each AUV is also
outfitted with a Lotek MAP600RT receiver and an associated
stereo-hydrophone set, designed to listen for acoustic signals
at a frequency of 76 kHz. These allow the vehicles to receive
transmissions from Lotek MM-M-16-50-PM acoustic tags,
which transmit at 76.8 kHz. The tag has a pressure sensor
and its readings are encoded into the tag transmission. Depth
is calculated from pressure reading using linear extrapolation.
The two hydrophones of the stereo-hydrophone system are
mounted 2.4m apart and suspended 0.4m beneath each AUV.
The separation of the hydrophones allows the angle between
the AUV and the acoustic tag to be calculated by the Lotek
MapHost software.

Due to the periodic nature of the tag transmissions, it is
possible to extrapolate and predict the time of transmission
from some initial transmission time and the transmission
period [5]; this allows the distance-to-tag to be calculated
using time-of-flight. The specifics are presented in [5] and
experimental results in [5] show that the calculated distance
has an error with a mean and standard deviation on the order
of 2m over a time span of 4 h, with a drift of 1.5m over a
time span of 22 h.

IV. STATE ESTIMATOR

A. State Estimation Problem

An overview of the state estimation problem is shown in
Fig. 3. The state of the ith AUV and sensor measurements
at time t are denoted by Xi

auv,t and Zi
t , respectively. The

hydrophones h1 and h2 are mounted on the nose and tail
ends of the AUV and the difference in time of arrival of
a tag transmission is used by the Lotek MapHost software
to calculate the angle to the tag (with a sign ambiguity),
denoted by ziα. Using the time of arrival measurement, the
distance-to-tag ziβ can be calculated. The depth of the tag ziγ
is determined using the measurement transmitted from the
tag.

`

`

1

auvX

2

auvX

tagX

1z

2z

1

auv

2

auv

2z

1z

y

x
z

1,2z

1h

2h

1h

2h

Fig. 3. An overview of the state estimation problem.

The multi-AUV state estimation problem is defined as
follows. Given a system of n AUVs at time t where the

ith AUV has the state

Xi
auv,t = [xi

auv yiauv ziauv θiauv]t (1)

and sensor measurements

Zi
t = [ziα ziβ ziγ ]t, (2)

determine the tag state

Xtag,t = [xtag ytag ztag]t. (3)

The state estimator must also handle incomplete sensor
measurements, such as the case of Zi

t only containing a
valid distance measurement ziβ but invalid angle and depth
measurements.

B. Particle Filter Overview

The state-estimator is based on a particle filter [22], [24].
To represent the belief state at time t, the particle filter
uses a set of particles denoted by Pt. Each particle p ∈ Pt

represents the set {Xp
tag, w

p} containing a tag state Xp
tag and

weight wp. The tag state Xtag,t is the average of Xp
tag ∈ p

of all p ∈ Pt. At initialization, Pt is filled with particles
whose xyz coordinates are sampled randomly from uniform
distributions. The algorithm for the state-estimator is shown
in Alg. 1.

Algorithm 1 Multi-AUV State Estimator
1: //Prediction
2: for p ∈ Pt do
3: Xp

tag ∈ p← Motion Model(Xp
tag)

4: for i from 1 : n do
5: αp

exp ← Vector Angle(Xi
auv,t, X

p
tag)

6: βp
exp ← Euclidean Dist(Xi

auv,t, X
p
tag)

7: γp
exp ← ztag ∈ Xp

tag

8: wp ←W (ziγ , γ
p
exp, σγ) ∗W (ziβ , β

p
exp, σβ)

∗W (ziα, α
p
exp, σα)

9: end for
10: end for

11: //Correction
12: if there are valid measurements then
13: for 1 : |Pt| do
14: choose p ∈ Pt with probability ∝ wp

15: add p to Pt+1

16: end for
17: else
18: Pt+1 ← Pt

19: end if

At each time step, the set of particles is propagated based
on a motion model (Alg. 1, line 3). The particle weights
wp are calculated using the n AUV states and corresponding
sensor measurements (Alg. 1, line 5-8). The expected angle
measurement αp

exp (Alg. 1, line 5) is calculated by subtract-
ing π/2 from the angle between the two vectors

θ⃗ = [cos(θiauv), sin(θ
i
auv), 0]
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TABLE I
MOTION MODEL AND WEIGHT FUNCTION PARAMETERS.

Parameter σv (m/s) σvz (m/s) k (m/s) λ (m/s) ρ αslow αfast ϕ σα (rad) σγ (m) σβ (m)
Value 1 0.8 0.5 1 0.66 0.05 0.5 0.025 π/18 0.75 2

Algorithm 2 Hybrid Random Walk Motion Model
1: θptag ← UniformDistribution(0, 2π)
2: vztag ← NormalDistribution(0, σvz)

3: // ρ is a number between 0 and 1
4: if ρ ≥ UniformDistribution(0, 1) then
5: vxytag ← ParetoDistribution(k, λ)
6: else
7: vxytag ← Abs(NormalDistribution(0, σv))
8: end if

9: xp
tag ← xp

tag + |v
xy
tag| cos(θ

p
tag)∆t

10: yptag ← yptag + |v
xy
tag| sin(θ

p
tag)∆t

11: zptag ← zptag + vztag∆t

and

p⃗ = [xi
auv − xp

tag, y
i
auv − yptag, z

i
auv − zptag].

The weighting function W implements a Gaussian probabil-
ity density function [17]. If there are valid measurements,
the particles are re-sampled based on their weights to create
a new set of particles (Alg. 1, line 13-16). The following
subsections go into more detail about the main functions
used in Alg. 1.

C. Hybrid Motion Model

Due to lack of odometry from the tag, a stochastic motion
model is used in the prediction step of the state-estimator to
propagate the particles. The motion model used is described
in Alg. 2 and builds upon [3]. It is best described as a hybrid
Brownian and Levy Flight motion model.

The Brownian random walk motion model draws its step
length from a normal distribution centered at 0 and the
direction of the step from a uniform distribution with interval
[0, 2π]. Due to the exponential tail of the normal distribution,
the likelihood of a long step is extremely low. The problem
arises during extended periods of time without valid sensor
measurements. During these periods, there tends to be a
higher probability of the tagged fish moving to a new
location. If this happens, the inability of the Brownian motion
model to simulate long jumps often means that none of the
particles will be near the vicinity of the true location of the
tagged fish when a new sensor measurement is obtained.
Thus, extended periods without valid sensor measurements
lead to particle deprivation and degrade the performance of
the state-estimator.

In contrast, the Levy Flight random walk motion model
draws its step length from a tail heavy distribution. However,
it often over-compensates for the weakness of the Brownian
motion model by spreading out the particles too aggressively.

Algorithm 3 Determining ρ adaptively
1: static wslow, wfast, τ

2: if there are valid measurements then
3: wavg ← 1

|Pt|Σ(w
p ∈ Pt)

4: wslow ← wslow + αslow(wavg − wslow)
5: wfast ← wfast + αfast(wavg − wfast)
6: ρ← max(0, 1− wfast/wslow, Clip(τ ∗ ϕ, 0, 1))
7: end if

This degrades the performance of the state-estimator when
the tagged fish is loitering around slowly or almost stationary.

The hybrid Brownian and Levy flight motion model ad-
dresses the weaknesses of using solely the Brownian or Levy
flight motion models. In lines 4-8 of Alg. 2, the motion
model chooses with probability ρ and 1 − ρ of using a tail
heavy (Pareto distribution with scale and shape parameter of
k and λ respectively) or normal distribution in determining
step length respectively. By using an appropriate value of
ρ, the weakness of the Brownian flight motion model is
compensated by the Levy flight motion model and vice-versa.
There are two possible ways of determining ρ.

1) Hybrid Fixed: The probability ρ can be fixed using a
priori knowledge about the motions of the tagged fish.

2) Hybrid Adaptive: An alternative to fixing the probabil-
ity ρ is to adjust it adaptively. Drawing from aMCL in [24],
ρ can be adjusted by comparing the short and long term
average of the likelihood of sensor measurement Zi

t . This
requires adding an addition step right after the correction step
in Alg. 1 and is shown in Alg. 3. The number of time steps
since a valid measurement was received, denoted by τ , is also
taken into account in line 6 of Alg. 3; the Clip function limits
τ ∗ ϕ to the interval [0, 1]. Thus, if no measurements were
received after 1/ϕ time steps or more, the motion model will
always draw its step length from the tail heavy distribution.

D. Weight Function
For some measurement zs, where s ∈ {α, β, γ}, with

expected measurement spexp and standard deviation σs cor-
responding to particle p, the weight function (Alg. 1, line 8)
implements a Gaussian distribution function given by

W (zs, s
p
exp, σs) =

1√
2πσs

e
�(s

p
exp�zs)2

2σ2
s . (4)

For zα, zβ and zγ , the standard deviations used are deter-
mined experimentally and shown in Table I.

V. EXPERIMENTS

A series of verification experiments were performed at Big
Fisherman’s Cove, Catalina Island, CA. The cove is adjacent
to the USC Wrigley Institute of Environmental Studies.
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(a) (b) (c)

Fig. 4. Result of stationary, boat and shark trials shown in (a), (b) and (c) respectively. In (b) and (c), the estimated tag locations are shown by the dots
ranging from yellow to red, which corresponds to estimated tag depth (m) shown in the bar legend. Even though the tag was held by a fixed length line
in (b), movement of the boat caused the tag to rise up.
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Fig. 5. Boat track errors as a function of time.

The first set of experiments referred to as the Static Trials
was conducted on 5 October 2013. A tag was placed on
the sea floor at depths ranging from 2m to 8m, and its
location was recorded with a GPS receiver. A single AUV
was deployed to simultaneously estimate tag position and
circle this estimated position.

The second set of experiments referred to as the Boat
Trials was conducted on 18 January 2014. A tag was hung
from a moving boat with a 2m line. Both AUVs were set
to circle a fixed point, and the boat was driven around
the cove at various speeds up to 2.0ms−1. The recorded
measurements from the AUVs were then post-processed
offline by the presented state-estimator. The true state of the
boat was recorded by a GPS receiver.

The third set of experiments is referred to as the Shark
Trials. A leopard shark was tagged and tracked from 15-18
July 2013 at different time intervals and 12.5 h of 3D location
data was obtained.

VI. RESULTS AND DISCUSSION

In the Static Trials and Shark Trials, an older state-
estimator was used for online tracking, and the measurements
obtained were then post processed with the new state-
estimator described above. In the Boat Trials, the measure-
ments were post processed to correct for delays due to the
low latency (10 s per 32 bytes) of the acoustic modems.

TABLE II
STATE ESTIMATION ERRORS OF STATIC AND BOAT TRIALS.

Trial Mean Err. (m) Median Err. (m) SD Err. (m)
Static Boat Static Boat Static Boat

1 8.1 8.0 7.2 5.0 4.3 10.5
2 4.8 6.8 4.6 5.3 1.6 4.8
3 3.7 13.7 3.6 8.4 1.1 13.2
4 2.8 8.8 2.0 6.5 3.4 8.4

A. Static Trials

A total of four stationary trials were conducted and the
results are shown in Fig. 4(a). In trial 1, the tag was
placed at a location outside the region that the AUV was
allowed to circle. Thus, the AUV circled a point on the
boundary that was nearest to the estimated tag location. As
successful angle measurements require both hydrophones to
get good detections, increased distances or blocked line of
sight increases the likelihood of failed angle measurements;
in the case of trial 1, these factors lead to a 99% failure rate
for angle measurements during trial 1, causing the higher
mean error of 8.1m shown in Table II.

B. Boat Trials

A total of four boat trials were conducted and the only
results of trial 1 is shown in Fig. 4(b). The state estimation
errors of all four trials are shown in Table II and Fig. 5. For
trial 1, a mean error of 8.0m was obtained. An approximation
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TABLE III
COMPARISON OF ERRORS USING DIFFERENT MOTION MODELS.

Motion Model Mean Err. (m) Median Err. (m) 2nd Quartile (m) 3rd Quartile (m) Max Err. (m) SD Err. (m)
Static Boat Static Boat Static Boat Static Boat Static Boat Static Boat

Hybrid Fixed 7.6 8.9 5.9 5.9 3.7 3.5 8.9 10.2 105.1 115.7 8.0 9.7
Hybrid Adaptive 8.8 9.6 6.0 6.2 4.1 3.7 9.3 10.7 109.1 113.5 10.5 10.9

Brownian 7.5 27.2 5.2 14.2 3.4 5.7 7.9 42.9 103.6 154.2 9.4 28.8
Levy 10.0 8.8 8.1 5.8 4.4 3.5 12.3 10.1 108.0 117.0 9.8 9.5

TABLE IV
PERFORMANCE WITH AND WITHOUT DISTANCE MEASUREMENTS.

Trial Mean Err. (m) Median Err. (m) SD Err. (m)
Dist. No Dist. Dist. No Dist. Dist. No Dist.

1 7.6 27.4 4.8 20.2 9.3 23.7
2 6.9 19.8 5.3 16.0 5.0 17.3
3 13.5 34.5 7.9 29.6 13.8 23.5
4 9.2 29.7 6.8 26.4 8.5 20.9

of the state-estimation error ϵt at time t is calculated by

ϵt =
√
IQR2

x + IQR2
y, (5)

where IQRx and IQRy are the interquartile range of the
x and y coordinates of the particles at time t. Let et be
the actual error at time t. The distribution of ϵt − et for
the boat trials resembles a Gaussian with mean and standard
deviation of 1.4m and 10.9m respectively. This suggests that
while ϵt may not be a reliable approximation of error at
each time step, it can provide a good approximation of the
overall error of a track. Indeed, the overall mean error of
the boat trials in Table II is 9.0m, and the approximation of
the overall mean error is 10.4m. Being able to approximate
the state-estimation error is important when there are no truth
measurements, such as during the tracking of a tagged shark.

C. Shark Trials

The result of the shark trials are shown in Fig. 4(c), which
aggregates the data from 6 individual tracks. Within these
tracks, the amount of time in which the AUVs were circling
the estimated shark position versus the amount of time in
which the AUVs were circling a point on the boundary is
roughly equal. Using Eq. 5, the overall mean and median
error of the shark trials are approximated to be 12.9m and
7.5m respectively. The standard deviation of these errors
is approximated to be 14.9m. It is observed that shark
locations were not distributed uniformly across the cove,
instead locations were aggregated. With the addition of the
3D location data it is observed that the shark’s depth is
associated with the sea floor, as evidenced by deeper depths
in deeper areas of the cove. Both of these observations agree
with the known behavior of leopard sharks [27].

D. Effect of Distance Measurements on Performance

To test the effect of incorporating distance measurements
on the performance of the state-estimator, measurements
from the boat trial were post processed with and without
distance measurements. This was repeated 40 times for each

TABLE V
COMPARISON OF RECOVERY TIMES.

Motion Model Mean Recovery Time (time steps)
15m 30m 45m 60m 75m

Hybrid Fixed 38 49 82 58 132
Hybrid Adaptive 34 60 90 68 65

Brownian 70 171 291 1142 1511
Levy 39 44 53 61 70

trial, and the results are shown in Table IV. By incorporating
distance measurements, mean state-estimation errors were
driven down by a factor of 3.6, 2.9, 2.6 and 3.2 for boat
trials 1, 2, 3 and 4 respectively. This demonstrates a level of
accuracy that was previously unobtainable.

E. Comparison of Motion Models

1) State-Estimation Error: Measurements from all four
boat trials were post processed 50 times for each motion
model to compare the effect of each motion model on state-
estimation errors. The results are summarized in Table III.
For the boat trial, the Brownian motion model suffered
from poor performance due to its inability to spread out
particles fast enough during time intervals without sensor
measurements, causing it to have the higher mean error
of 27.2m. Even though the Levy flight motion model has
similar performance to the hybrid motion models in the boat
trials, its aggressiveness in spreading out particles led to the
higher mean error of 10.0m for the static trials. In contrast,
the Hybrid Fixed motion model performed better, with mean
errors of 7.6m and 8.9m for the stationary and boat trials
respectively. The difference between the mean error of the
Hybrid Adaptive and Hybrid Fixed motion models is sta-
tistically significant according to a t-test; even though the
Hybrid Adaptive motion model performed slightly worse, it
has the advantage of requiring less a priori knowledge about
the tagged target.

2) Recovery: State and sensor measurements from trial 2
of the stationary trials were used to investigate the speed of
recovery of the state-estimator from bad estimates. Particle
deprivation was artificially introduced by placing a cluster of
particles of radius 1m at different distances from the true tag
location at some random time step during the trial, simulating
the case of a tagged fish moving rapidly from its previous
location to a new location. This was repeated 50 times for
each motion model tested. A recovery by the state-estimator
is defined as when the estimated tag location is within a
5.5m radius of the true tag location. The results are shown
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in Table V. As expected, the Brownian motion model took
the longest time to recover, taking an average of 1142 time
steps when the initial particle cluster is 60m from the true
tag location. In contrast, the Hybrid Fixed, Hybrid Adaptive
and Levy flight motion models had shorter mean recovery
times of 58, 68 and 61 time steps respectively when the
initial particle cluster is 60m from the true tag location.

VII. CONCLUSIONS AND FUTURE WORK

The presented system represent a new state-estimator
capable of determining the 3D position of a fish tagged
with small, off-the-shelf acoustic transmitters. In trials during
which the true position of the tag was known, comparisons
show that using the newly developed hybrid motion model
can improve performance and robustness of the state estima-
tor. It is also shown that incorporating distance measurements
can drive down state-estimation errors by a factor of three.

Future work will attempt to further drive down the state-
estimation errors by using tags with inertial measurement
units. The acceleration data from the tags can then be
incorporated into the motion model, potentially leading to
more accurate location estimates for time intervals that lack
other sensor measurements.
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