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Abstract—This paper presents the Push-Swap-Wait (PSW)
algorithm, a scalable, decentralized and complete approach for
multi-robot motion planning in confined spaces. The algorithm
builds upon a “push and swap” paradigm that has been
used effectively in centralized navigation. This push and swap
approach was expanded to apply to decentralized planning
by adding a waiting mode to handle situations in which
communication between robots is lost. The completeness of
the PSW algorithm can be guaranteed in cases where the
environment can be modeled as a tree T for which the number
of leaf nodes is greater than the number of robots navigating
through it. The algorithm has a time complexity that is linear
with the number of robots currently within communication,
indicating that this algorithm is well suited for scaling to
large systems of robots. To validate the PSW algorithm it was
implemented successfully in multi-robot simulations and on
hardware with four Dr. Robot Jaguar Lite Robots.

I. INTRODUCTION

Multi-robot systems have demonstrated the potential to
increase performance over single robot systems in tasks re-
quiring decreased mission times, spatio-temporal sampling,
robustness to mission failure, and force multiplication [2],
[5]. This paper addresses the problem of coordinating the
motion of multiple robots attempting to reach their indepen-
dent goal destinations in single lane tunnel environments.

In general, Multi Robot Motion Planning (MRMP) can
be accomplished with a centralized control architecture, in
which one robot or agent dictates the motion of all robots,
or using a decentralized architecture in which each robot
calculates its own motions. Additionally, the algorithms im-
plemented within these architectures can either be coupled,
in which the algorithm searches the composite configuration
space of all robots to construct paths for all robots, or
decoupled, in which the algorithms search each individual
robot’s configuration space for individual paths that are later
coordinated. Implementation of both coupled and decoupled
planning can be centralized, but decentralized architectures
are more amenable to decoupled planning.

Several centralized approaches for robot navigation in
confined spaces already exist [14], [10], [11], [3]. Some
of these algorithms have the desirable property of being
complete - that is, they guarantee that a solution will be
found if it exists. Such algorithms can also be classified
as either optimal or non-optimal. Optimal algorithms, such
as search algorithms like A*, are capable of computing the

Fig. 1: DrRobot Jaguar Lite robots at Harvey Mudd College.

shortest set of paths that solve the problem (if a solution
exists), but the computation is NP-complete [9], [13].

Decentralized approaches offer several advantages over
centralized algorithms [4] including the ability to scale to
large systems by distributing computation. Most impor-
tantly, many real systems are decentralized due to limita-
tions in communication. In these cases, global and complete
information is not available to all robots, making it difficult
to guarantee that a solution is always found. For this reason,
decentralized algorithms to date are not complete and suffer
from the possibility of deadlocks [9], [17]. Others make use
of decentralized computation, but rely on globally broadcast
information for completeness guarantees [6], [1].

Recently, several centralized approaches have been pre-
sented that aim for increased optimality while striving
for completeness. The MAPP algorithm [19] demonstrated
completeness when paths satisfy three properties termed
blank availability, alternate connectivity, and target isola-
tion. In [18], MAPP was extended to increase the range of
problems for which completeness was guaranteed. In [16],
the state space searched by A* is optimized using Operator
Decomposition (OD) and Independence Detection (ID). By
adding a check for maximum group size, they produced an
anytime algorithm which finds an initial solution and then
refines it for optimality.
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Several other recent approches have leveraged the
linear-time feasibility test for multi-agent path finding [12].
In [7], the Tree-Based Agent Swapping Strategy (TASS)
was presented which is complete within a defined domain
of solvable trees. Most related to this work is the Push and
Swap (PaS) algorithm presented in [11] which is complete
for n-2 agents operating in a graph of size n. The algorithm
uses two primitives, Push - agents move towards their goals
by forcing other agents to clear a path - and Swap - two
agents swap positions without altering configurations of
other agents, after which all agents must return to their
positions. In [8], the authors’ work was improved for
efficient run time and path quality.

The work proposed here builds from the PaS algorithm,
and combines it with the priority approach to completeness
demonstrated in [14], to develop a new MRMP algorithm
for robots navigating in connected graph-based environ-
ments called Push-Swap-Wait (PSW). Unlike all the previ-
ous approaches mentioned above this approach is not only
complete, but is decentralized to allow implementation
in scenarios that are practical, run in real-time, and have
limited inter-robot communication.

II. PROBLEM FORMULATION

Consider a set of nodes N and a set of bi-directional
connecting edges between them E which form a graph
G(N,E). Occupying G is a set of autonomous robotic
agents R. At each timestep t, there is an assignment A
that maps each robot r ∈ R to its location in G, such
that A(r, t) ∈ N. All agents have knowledge of G(N,E)
and each has a unique assigned goal g(r) ∈ N such
that g(ri) 6= g(rj) if i 6= j. Each node can contain
only one robot at a time, meaning that ∀ri, rj ∈ R,
if i 6= j, then A(ri, t) 6= A(rj , t). Between timesteps,
robots may move from node no to node np provided that
∃ e ∈ E : e = (no, np).

However, two robots cannot traverse the same edge
between the same timesteps, so ∀ri, rj ∈ R, if A(ri, t +
1) = A(rj , t), then A(rj , t + 1) 6= A(ri, t). The change
from one assignment A(R, t) to another A(R, t + 1) is
determined by the individual position change made by each
robot, π(r, t). At each timestep t, every robot r computes
which move π(r, t) to make, which may take the robot
along an edge e to a new node n (provided the conditions
given above hold) or keep the robot at its current node. The
goal is to rearrange the robots from an initial assignment
A(R, 0) to a final assignment A(R, tfinal) = g(R).

All robots ri within ρ nodes of r are considered to be in
direct communication with r (it is assumed that the robots’
communication range is always greater than the maximum
distance spanned by ρ nodes on the graph). Robots are
assumed to broadcast information about themselves and
any other robots of which they are aware. This information
includes the positions, goals, and planned paths of all robots
with which the broadcaster is in communication, including
itself. In this way, robots that cannot communicate directly
may do so indirectly through the formation of an ad-hoc
communication network. The set C(r) includes all robots
in communication with r, whether direct or indirect.

Fig. 2: Example Tree. Leaf and branch nodes are high-
lighted, while node priority is indicated by numbers. Twig
nodes of the top right branch node are highlighted by
arrows.

For the algorithm presented here, robotic motion is
restricted to a spanning tree T of G, such that T = T (N, ε),
where ε ⊆ E. Robots are assumed to be able to plan their
next move on a timescale much shorter than the time taken
to travel between nodes. Furthermore, it is assumed that no
robot motion failures will occur.

With this tree framework in mind, the following defini-
tions and Figure 2 are used to describe the PSW algorithm:

Definition. LEAF NODE: A leaf is defined as a node l such
that ∃!n : (l, n) ∈ ε, or in other words, a node connected
to only one other node, i.e. a dead-end. The set of nodes
L contains the leaf nodes of T , such that L ⊆ N .

Definition. BRANCH NODE: A branch node b is a node
that has 3 or more neighbors. Branch nodes are the
intersections of T and are contained in a set B : B ⊂ N .

Definition. TWIG NODE: A node γ is considered to be a
twig of branch node b if node γ is adjacent to b such that
∃e ∈ ε : e = (b, γ) .

Definition. AVAILABLE BRANCH NODE: A branch node b
is considered to be available if 3 or more of b’s twig nodes
are free for swapping, i.e. not blocked by other robots.

Definition. UNAVAILABLE BRANCH NODE: A branch
node b is considered to be unavailable if 2 or fewer of
b’s twig nodes are free for swapping, i.e. all other twig
nodes are blocked by other robots.

Definition. ANCESTORS: The set of ancestors of a node
n ∈ N is the set of nodes P (n) ∈ N such that P (n) =
parent(n) +P (parent(n)) and is empty for n = root(T ).

Definition. PRIORITY: The priority of a node n belonging
to tree T is denoted by Φ(n). Priorities are unique integer
values, and are assigned according to a post-order traversal
of T. A robot’s priority is set to be that of it’s goal node,
i.e. Φ(r) = Φ(g(r)).

Definition. SOLVED: A robot r is solved at time t if:

1) ∃t1 < t, A(r, t1) = g(r)
2) ∀rL ∈ R such that Φ(rL) < Φ(r) and ∀t′ : t1 ≤

t′ ≤ t it holds that A(r, t′) 6∈ P (A(rL, t
′))

3) and ∀rH ∈ R such that Φ(rH) > Φ(r), robot rH
is also solved.
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Note that the term “solved” refers to the global state of
the problem. Therefore, an individual robot may consider
itself solved based on the other robots in its communica-
tion network, but the robot is not truly solved unless the
conditions listed above apply globally.

III. PUSH-SWAP-WAIT ALGORITHM

The Push-Swap-Wait (PSW) algorithm presented here
draws inspiration from the centralized push-swap algorithm
[11]. A third mode, waiting, is added to guarantee com-
pleteness for the decentralized problem.

Upon initialization, each robot constructs an identical
spanning tree T from G. Every node n ∈ N will be
assigned a unique priority value Φ(n) based on a postorder
traversal of the tree. Figure 2 illustrates a tree and the
assignment of priority to nodes on that tree, with lower
numbers denoting higher priorities. Each robot r ∈ R is
given a priority equal to the priority of its goal g(r), such
that Φ(r) = Φ(g(r)). The algorithm dictates that robots
become solved in order of their priority. The ordering of
robots by priority is central to the guarantee of complete-
ness for cases where |R| ≤ |L| − 1.

Algorithm 1: π(r)=PSW(r)

1 //Check to see if robot r should wait for a swapping robot to return
2 IF there exists a waiting robot ri in set C(r)
3 and the robot that ri is waiting for is not in C(r)
4 return π(r)← A(r) //Wait
5
6 //Check if r should be pushed, swap, or move normally to its goal
7 ELSE
8 [swapF lag, r∗, r∗]← CheckSwap(r)
9

10 IF [ swapF lag = SWAP or SOLO ] and [ r 6∈ [r∗, r∗] ]
11 return π(r)← Push(r, r∗, r∗)
12 ELSEIF swapF lag = SWAP
13 return π(r)← Swap(r, r∗, r∗)
14 ELSE
15 IF there exists rj in C(r) such that Φ(A(rj)) > Φ(A(r))
16 and nextNode(A(r), g(r)) belongs to path(rj)
17 and swapF lag = SUPPRESS
18 return π(r)← A(r) //Yield to rj on higher priority b
19 ELSE
20 return π(r)← nextNode(A(r), g(r)) //Go to goal

At each time step t, each robot r ∈ R calls the PSW()
function (Alg. 1) to decide on its next move based on
its knowledge of other robots in the local communication
network C(r). The PSW () function first checks if r or
any robot ri ∈ C(r) is waiting for a swapping robot
r∗ 6∈ C(r) to complete its swap and return to the com-
munication network. This is necessary to avoid interrupting
an ongoing swap between robots that have temporarily left
the communication network. The Push() function (Alg. 4)
determines when a robot begins and ends waiting.

The PSW () function next checks on line 6 if robot r
itself should be swapping. The CheckSwap() function (Alg.
2) is called, which returns either the two robots that should
be swapping, just the highest priority unsolved robot if it
does not need to swap, or NULLs if no swaps should occur.
Additionally, CheckSwap() returns a value for swapFlag
that can have values of SWAP (two robots r∗ and r∗ are

swapping), SOLO (r∗ is moving straight towards its goal
and other robots are pushed out of the way), or SUPPRESS
(no swaps occur, and no robots get pushed).

If a swap is occurring, and r is not a swapping robot,
Push() will be called to ensure that r does not interfere
with the swap.

Similarly, if swapF lag = SOLO, indicating that r∗ is
driving to its goal, and r 6= r∗, Push() will be called to
ensure that r does not block its path. If r is one of the
swapping robots, then the algorithm will call the Swap()
function (Alg. 3) to ensure that r carries out the swap.

Beginning on line 14, PSW() handles the motion of
robots when no swaps are taking place. This is the case
when r = r∗ (driving straight to its goal), when r∗ = NULL
(all robots are solved), or when swapping is being sup-
pressed in C(r) (details of swap suppression are handled in
the CheckSwap() function). If swaps are being suppressed
or if all robots are solved, the algorithm checks if there
is a robot rj ∈ C(r) on a higher priority branch than r,
and r pauses if the next node between r and its goal is
on the path of rj . The nextNode(n1, n2) function, which
returns the next node on the shortest path from node n1
to node n2 is used here. Since robots always choose the
lowest priority branch available when getting pushed (see
details of Push(), below), this behavior ensures that a robot
that got pushed down a higher priority branch moves back
up first, preserving the order of solved robots.

Finally, if all other checks fail, the PSW() function
reaches the case where r = r∗, no swap needs to occur,
and r can simply maneuver straight for its goal.

The CheckSwap() function called by PSW () determines
which robots in a communication network should be swap-
ping, if any. The function first finds the highest priority
unsolved robot r∗ in C(r). If r∗ is already swapping with
a robot r∗, the function returns the robot pair [r∗, r∗] and
swapF lag = SWAP to allow the swap to finish. If no
swap was previously taking place, line 9 of CheckSwap()
determines if swaps should be suppressed because r∗ is at a
child node of a solved robot’s goal. This swap suppression
ensures that any solved robots that were disturbed by the
previous swap are able to regain communication before a
new swap occurs (see Fig. 3). Note that CheckSwap() will
also return SUPPRESS if all robots are solved to allow all
robots to return to their goals.

CheckSwap() next determines if there exists another
robot with which r∗ needs to swap. Specifically, two robots
r∗ and r∗ need to swap if any of the following are true:

1) r∗ is on the path from r∗ to g(r∗) and r∗ is on
the path from r∗ to g(r∗)

2) r∗ and g(r∗) are on the path from r∗ to g(r∗)
3) r∗ and g(r∗) are on the path from r∗ to g(r∗)
4) r∗ is heading to its goal without swapping and r∗

is unable to move out of the way

If CheckSwap() finds a robot r∗ that is adjacent to and
needs to swap with r∗, the pair of robots is returned along
with swapF lag = SWAP. Otherwise, r∗ is returned with
swapF lag = SOLO so that it can move straight towards its
goal, pushing other robots out of its way.
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(a) (b)

Fig. 3: Swap suppression at child of g(rs). In (a), two robots
r∗ and r∗ initiate a swap that takes them to the other side
of the tree, where they push two unsolved robots, r4 and
r5, and one solved robot rs. In (b), rs is waiting for the
return of the swappers before moving back to its goal gs,
preventing it from becoming unsolved.

Algorithm 2: [swapF lag, r∗, r∗] = CheckSwap(r)

1 r∗ ← robot with the highest priority in C(r) that is not yet solved
2 //If all robots are solved, r∗ ← NULL
3
4 //Complete swaps before starting new swaps
5 if r∗ is swapping
6 r∗ ← swapping partner of r∗
7 return [SWAP, r∗, r∗]
8
9 if [ there exists a solved robot rs such that g(rs) is P (A(r∗)) ] or

10 [ r∗ = NULL ]
11 return [SUPPRESS, NULL, NULL]
12
13 // Check if a robot r∗ exists that is beside r∗ and must swap with r∗

14 for ri in C(r)
15 if [ri and r∗ are adjacent ] and [ ri and r∗ should swap ]
16 r∗ ← ri
17 return [SWAP, r∗, r∗]
18
19 return [SOLO, r∗, NULL]

If CheckSwap() determines that two robot should be
swapping, PSW () will call the Swap() function to plan
the motion of r as it carries out a swap. In the first call
to Swap(), as well as in subsequent calls whenever a new
branch node must be selected, the algorithm chooses a
branch node b∗ at which the two robots may be able to
perform a swap. Node b∗ is added to the visited array
which stores the list of branch nodes that have already been
checked. The function also removes any ancestor nodes of
b∗ from the visited array to ensure that the swapping robots
will check those nodes again on their way back up the tree.

On all other calls to Swap(), r will be directed along
a path to branch node b∗. If at any point b∗ is determined
to be unavailable, the next call to Swap() will select a new
branch node. Otherwise, once the two robots have reached
b∗, Swap() uses logic to exchange the positions of the two
robots, at which point the swap is complete (see Fig. 4).

The PSW () function also calls Push() to govern the
behavior of robot r in the case where r is neither swapping
nor the highest priority robot in C(r) and r is not waiting to
regain communication with r∗. If r is on the path of either
one of the swapping robots or another pushed robot, it sets
its destination to the lowest-priority adjacent node available,
δL(A(r)). If no such node exists, r is stuck, the swapping
robots will determine that the branch node they are heading

(a)

(b) (c)

Fig. 4: Process of finishing a swap. In (a), the robots r∗
and r∗ have just arrived at an available branch node b∗. In
(b), r∗ and r∗ arrive at their respective twigs γ1 and γ2 (c)
shows r∗ and r∗ after the swap with positions reversed.

Algorithm 3: π(r) = Swap(r, r∗, r∗)

1 if first call to swap for the pair of robots [r∗, r∗] or b∗ is unavailable
2 b∗ = highest priority available branch node that is not in set visited
3
4 // Add b∗ to list of visited branches and remove the ancestors of b∗
5 visited += b∗

6 visited −= P (b∗)
7
8 //Set destination to b∗
9 π(r)← nextNode(A(r), b∗)

10
11 if r∗ and r∗ have reached b∗
12 π(r)← swap at b∗
13
14 return π(r)

towards is unavailable, and the Swap() algorithm will select
a new branch node.

Next, r checks if it must wait in case it loses commu-
nication with r∗. If r∗ is in direct communication with r
and moving away from its goal, r will know to wait if r∗ is
not in C(r) on the next iteration of PSW (). Otherwise, r

Algorithm 4: π(r) = Push(r, r∗, r∗)

1 //Check if r will get pushed by another robot in C(r) that is
2 //swapping or being pushed
3 if [ there exists a robot ri in C(r) such that A(r) in path(ri) ] and
4 [ ri is being pushed or belongs to [r∗, r∗] ] and
5 [ there exists a node n available to be pushed to ]
6 return π(r)← δL(A(r))
7
8 //If r∗ is in direct communication with r
9 if r∗ is in c(r)

10 if r∗ is moving towards g(r∗)
11 r is not waiting
12 else
13 r will wait for r∗
14
15 return π(r)← A(r)
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will not wait and will proceed through the rest of PSW ()
on the next iteration. In either case, r sets its goal to its
current position and remains stationary.

IV. ALGORITHM COMPLETENESS

The completeness of this algorithm requires that the tree
T is known by all robots ahead of time and that there are
more leaf nodes than robots. Completeness can be proven
with several lemmas.

Lemma 1 - For any given tree T and set of robots R
such that |R| ≤ |L|−1, the highest priority pair of swapping
robots, r∗, r∗ ∈ R, will find a branch with which to swap.

Proof - Let B be the set of all branch nodes in T .
The swapping robots will attempt to exhaustively search all
branch nodes in B for one that is available for swapping,
and do so in order of their priority Φ().

Each time the robots visit a branch node bi and deter-
mine it is unavailable, they will depart bi and move to the
next potentially available branch node b′i such that Φ(bi) >
Φ(b′i) as determined by the order in which branches are
searched. All other non-swapping robots encountered will
wait or be pushed according to Algorithm 1.

The Lemma can now be proved indirectly. Assume that
the swapping pair completely searches all branch nodes in
T and does not find one available. Define cT as the sum
of the number of extra twigs beyond 3 connected to each
branch node. An equation relating cT to number of leaf and
branch nodes can be derived as follows: when adding a node
to a tree, it can be connected to an existing node with 1
edge (preserving |L|, |B|, and cT ), an existing node with 2
edges (increasing |L| and |B| by one while preserving cT ),
or an existing node with 3 or more edges (increasing |L| and
cT by one while preserving |B|). That is, ∆ |L| = ∆cT +
∆ |B|. In the most basic trees (containing no branches),
|B| = 0, cT = 0, and |L| = 2. Given this initial condition,
this yields |L| = cT + |B|+ 2.

Now, for each individual branch node bi that is found
to be unavailable, all but 2 of the twig nodes of bi must
be occupied by non-swapping robots that are now stuck
(unable to leave those twig nodes). That is, bi will have ci
extra twigs (i.e. ci + 3 total twigs), of which at least ci + 1
will be occupied by non-swapping robots. For all branch
nodes in a tree to be unavailable, the total number of non-
swapping robots rns must satisfy rns ≥ (c1 + 1) + (c2 +
1) + ...+ (cB + 1) = cT + |B|. Since, |R| = rns + 2, it can
be determined that |R| ≥ cT + |B|+ 2.

Substituting |L| for cT + |B|+ 2 in this inequality, we
see that if the swapping robots find no available branch
nodes, then |R| ≥ |L|. But this contradicts our property of
the workspace that |R| < |L|. Hence Lemma 1 must hold.

Once the swapping pair has found an available branch
node, it can conduct a swap as proven below.

Lemma 2 - For a pair of adjacent robots r∗, r∗ ∈ R
such that r∗ resides on an available branch node b∗ ∈ T ,
there exists a sequence of moves Π over some time period
t1 to t2 such that A(r∗, t2) = A(r∗, t1) and A(r∗, t2) =
A(r∗, t1).

Proof - At t1, r∗ occupies b∗ and, because the robots
are adjacent, r∗ occupies one of the available twig nodes of
b∗, γ0. Because b∗ is an available branch node, there exists
at least two other available twig nodes, γ1 and γ2. If r∗
moves to γ1, then r∗ is free to move from γ0 through b∗ to
γ2, which then allows r∗ to move from γ1 through b∗ to γ0.
Finally, at t2, r∗ can move from γ2 to b∗, such that b∗ =
A(r∗, t2) = A(r∗, t1) and γ0 = A(r∗, t2) = A(r∗, t1),
meaning that the two robots have swapped positions (see
Fig. 4).

The algorithm guarantees that once the highest priority
robot has swapped with any robot meeting one of the four
swap conditions described in Section III, those two robots
will never need to swap again.

Lemma 3 - Once the highest priority unsolved robot
r∗ has swapped with another robot r, the two robots will
not need to swap again for as long as r∗ is unsolved.

Proof - When the swap between robots r∗ and r is
complete, any of the four conditions listed in Section III
that caused the swap to occur will no longer be true. At the
completion of the swap, then, r∗ and r will not immediately
need to swap again. As time goes on, no motion by either
robot will allow r to come between r∗ and g(r∗), and vice
versa. To prove this, consider three cases: r and r∗ maintain
communication; r and r∗ lose communication while r∗ is
moving away from g(r∗); and r and r∗ lose communication
while r∗ is moving towards g(r∗).

Case 1: Whenever the two robots are in communication,
r will not move at all unless pushed by r∗, and therefore
cannot come between r∗ and g(r∗).

Case 2: If communication is lost and r∗ is heading away
from its goal, r will wait without moving for r∗ to return.
Therefore, the two robots cannot exchange positions.

Case 3: If communication is lost and r∗ is heading
towards its goal, r may move and even begin other swaps.
However, since robots select branch nodes for swaps in
order of decreasing priority, r will always select the same
branch node as r∗ and will follow r∗ to maintain the same
relative position between the two. Hence, they will not swap
again for as long as r∗ is the highest priority unsolved robot.

Note that it is possible for another, higher-priority robot
to enter the network and move such that r∗ and r will
need to swap again, but in this case r∗ was not the highest
priority robot in the first place, so the conditions stated in
Lemma 3 were not met and the lemma is still valid. Next,
it will be shown that through a series of swaps a robot
becomes solved.

Lemma 4 - The highest priority unsolved robot r∗ can
become solved through a series of swaps and, once solved,
will never enter into another swap.

Proof - As robot r∗ progresses towards its goal and
encounters any other robot ri with which it must swap, the
pair will find an available branch node b∗ (Lemma 1), and
once at b∗ r∗ and ri will be able to exchange positions
(Lemma 2). Once r∗ and ri have swapped, the two robots
will never again need to swap for as long as r∗ is the highest
priority unsolved robot (Lemma 3). Therefore, in the worst
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case, robot r∗ will swap with every other robot, at which
point it must be solved since none of the conditions listed in
Section III can be true with any other robots. Once r∗ has
been solved, it will not enter any swaps with other robots.
This follows from the definition of solved robots: all robots
below r∗ are solved and therefore do not need to swap with
r∗, and all robots above r∗ are lower priority than r∗ and
hence have goals up the tree from r∗, so none of the swap
conditions listed in Sec. III are met.

Yet while a robot r∗ can become solved through a series
of swaps, and once solved will not enter into new swaps,
it is possible for lower priority robots swapping up the
tree from r∗ to push r∗ off g(r∗). Even in these cases
the algorithm prevents r∗ from becoming unsolved.

Lemma 5 - Once a robot rs becomes solved, no future
action will cause it to become unsolved.

Proof - As shown in Lemma 4, once a robot becomes
solved, it will never need to initiate another swap; therefore,
the only action that can cause a solved robot (rs) to leave
its goal is getting pushed by a new, lower-priority pair of
swapping robots (r∗ and r∗). Since a solved robot has no
lower priority robots below it in the tree, this swapping
pair must be coming from above rs and will be pushing
rs down the tree. Furthermore, as rs is pushed down the
tree, the PSW() algorithm dictates that it will be pushed
down toward the lowest priority node available (line 6 of
algorithm 4). If rs maintains communication with r∗ and
r∗, it will hold its position until the swappers have reached
a lower priority node above A(rs) (because PSW() gives
right of way to robots on higher priority nodes), at which
point rs can move up the tree towards its goal.

If communication is lost, rs will wait until it re-
gains communication with r∗ and r∗ (since any swapping
robots heading down the branch of a solved robot will be
heading away from their goals). Once communication is
reestablished, rs will again hold its position, due to the
aforementioned right-of-way rule, and then return to its goal
after the swapping pair has passed up the tree. Additionally,
no new swaps can be initiated below the goal of a solved
robot, due to the swap suppresion rule of PSW() (line 9 of
algorithm 2), so rs will always observe r∗ and r∗ heading
up the tree past it before it observes a new swapping pair
that keeps it pushed below its goal g(rs). Regardless of how
many swaps may take place with rs pushed below its goal,
the right-of-way rule will ensure that it is the last pushed
robot to reach g(rs), at which time there will again be no
lower priority robots below it on the tree.

Proof of Completeness - By Lemma 4, the highest
priority robot can be solved with a series of swaps, and,
by Lemma 5, once solved will never become unsolved by
future swaps. Because robots are solved in order of their
priority without un-solving previously solved robots, for a
finite number of robots, all robots will be solved. Therefore,
for the cases where |R| ≤ |L|−1, the algorithm is complete.

V. ALGORITHM RUN TIME COMPLEXITY

To evaluate the run-time complexity of a single call of
the PSW() algorithm, one can observe that the greatest num-
ber of steps occurs in the CheckSwap() function (algorithm

(a) (b) (c)

(d)

Fig. 5: PSW Performance: In (a), test cases with 10 robots
in a randomly generated 5x5 grid, with more difficult
cases in (b,c). In (d), extra distance is (Number of nodes
traversed) - (Number of nodes on the direct path from start
node to goal node). The red line indicates the median num-
ber of nodes and the blue box illustrates the interquartile
range.

2). CheckSwap() loops through all robots in C(r) to find
the highest priority unsolved robot r∗ (line 1), a second
time on line 9, and again to find r∗ (line 14). These loops
iterate 3 |C(r)| times. Given that |C(r)| ≤ R, the resulting
run-time complexity is O(R) for a single call of PSW().

VI. IMPLEMENTATION AND EXPERIMENTS

The first implementation of the PSW algorithm (refer
to Scobee and Wiktor thesis, [15]) was tested in MATLAB.
Robots were modeled as differential drive non-holonomic
robots that are restricted to following paths along the tree
T . First, the algorithm successfully solved one hundred
problem instances with a random graph of 5x5 nodes and
ten robots with random positions and goals (see Fig. 5a).
Second, the algorithm successfully solved problems in a
sparsely populated map, this time solving one hundred
random problem instances with a 10x10 node graph and ten
robots. Third, several problem instances were specifically
designed to test certain aspects of the implementation,
and once again the algorithm successfully solved them all.
These included a map with only one branch node and many
leafs designed to test the ability of robots to choose and
execute swaps, as well as one with a single long branch
and a distant branch node designed to test the ability of
robots to push others out of the way (see Fig. 5b, c).
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Fig. 6: Jaguars performing a swap in hardware and the graphical interface, where nodes are represented by dark circles
and walls are depicted by solid lines. Robots were positioned in the hallway on distinct nodes. In (a), robots start lined
up. Next, Robots 1 and 2 move down the hallway (b), while 3 and 4 begin a swap. In (c) Robot 4 moves out of the way
of Robot 3. In (d) Robot 3 moves past and the swap is complete. All robots have reached their goal.

To further evaluate the performance of the PSW al-
gorithm, it was tested by generating a set of ten random
10x10 node graphs, then running ten simulations with
random robot positions and increasing the number of robots
|R| = 5, 10, 15, 20, 30. Performance data is presented in
Fig. 5(d). As expected, robots are pushed further off their
path as the number of robots increases, thereby increasing
path length with the number of robots. More interestingly,
the worst case individual call to PSW () took on the order
of 0.01 s for cases with 30 robots. This short individual
planning time demonstrates the scalability of the algorithm
to large numbers of robots.

The algorithm was also implemented on the Dr. Robot
Jaguar Lite platform (see Fig. 1). The Jaguar Lite is
a rugged, treaded, outdoor robotic platform capable of
speeds up to 2.4 m/s. The robot is outfitted with two
encoder equipped motors, a GPS, a 9 DOF IMU, a 30
FPS color camera, and a 4 m range model Hokuyo URG
laser scanner. A computer running C# code, including the
planner, communicates with robots over an ad hoc WiFi
802.11N network. Four robots were able to successfully
use the algorithm as a decentralized approach to all reach
their respective goals. Communication was limited to 2
edges and messages were passed between robots in a
decentralized manner. Online localization was performed
with a particle filter fusing odometry, inertial measurement
unit data, and laser scan data. Robots were able to navigate
without collision and performed as expected as shown in
Fig. 6.

These hardware experiments validate the approach is
feasible on real systems where robots are running asyn-
chronously and communication is not always possible.

VII. CONCLUSION

Unlike all previous work, the Push-Swap-Wait algo-
rithm presented is a complete solution to the problem of
effectively coordinating the motion of many autonomous
agents navigating a graph structure G in real time without
reliance on global communication. The decentralized nature
of the algorithm allows each robot r ∈ R to plan its next
move without full knowledge of the other robots in the
system, but with a subset of information from its ad-hoc
communication network C(r). Even with this limited infor-
mation, the algorithm was proven to always find a solution
in cases where G can be transformed into a tree T such that
|R| ≤ |L|−1 and the radius of communication ρ is greater
than or equal to two edge lengths on this tree. In contrast
to other multi-robot motion planning algorithms presented
to date, the Push-Swap-Wait algorithm is guaranteed to
find a solution and avoid deadlocks while still offering the
advantages of a decentralized control architecture.

VIII. FUTURE WORK

An important next step for this work will be to fully ex-
plore the quality of solutions found by the PSW algorithm,
e.g. in terms of path length. The numerous other algorithms
referenced that are complete, although not decentralized,
have strived to increase optimality. These algorithms will
provide a means for comparison if implemented in similar
test environments. The authors believe there are several
opportunities to modify the algorithm to decrease path
length. Also, relaxing the constraint |R| ≤ |L|−1 to provide
completeness for a greater range of planning problems
would increase the value of the approach.
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