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Abstract— This paper presents a graph-based model of pe-
riodic migrations of tagged fish populations and two multi-
AUV stochastic controllers developed to track these fish from
the model. The model presented in this paper characterizes
patterns in the historical movement of tagged fish and is used
to develop stochastic tracking by a “model based control” and
a “feedback control”. These two controllers permit swarms
of AUVs to track the transition probabilities of the tagged
population between vertices of the model. To validate these
controllers, a periodic model is developed for a simulated
population based on three months of geolocation data from
a kelp bass (Paralabrax clathratus), and AUV teams utilizing
both controllers are simulated in tracking this population.
Results show the viability of stochastic controls for multi-AUV
tracking of populations whose behavior is well-approximated by
the graph-based model. Preliminary trials with physical AUV
systems indicate the plausibility of hardware implementation.

I. INTRODUCTION

The study of marine environments provides the knowl-
edge necessary for monitoring and sustaining our planet.
Understanding fish movement patterns with respect to their
habitats, through observation and modeling can provide us
with essential information for making decisions that affect
our environment, health, finances, and safety.

This paper establishes graph-based, stochastic models of
such movement patterns, as well as stochastic motion plan-
ning controls for Autonomous Underwater Vehicles (AUVs)
that leverage these models to enable autonomous tracking of
populations. Specifically, the work focuses on the stochastic
modeling and AUV tracking of periodic fish movement pat-
terns, particularly diel migrations. Such periodic migratory
behavior including diel, lunar and seasonal migrations can
be found in a large number of marine fishes [1], [2], [3], [4].

A data set of time-stamped geolocations of kelp bass
(Paralabrax clathratus) collected at Big Fisherman’s Cove,
Santa Catalina Island, California, motivates this work. In
2010, three individuals tagged with acoustic transmitters
were tracked by a static acoustic array from January through
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Fig. 1: A three-month track of three tagged fish motivated
this work. (a) The aggregated detections showed a high
degree of clustering. (b) Furthermore, migrations between
these clusters were periodic.

March, yielding the scatterplot of data in Fig. 1a. This plot
reveals several clusters of frequented locations, permitting
discretization of the tracking space. Furthermore, as shown
in Fig. 1b, the bass exhibited highly periodic behavior which
is amenable to stochastic modeling.

The contributions of this work include the following:
• Graph-based modeling of (periodic) migrations
• Two stochastic AUV control systems that enable track-

ing of graph vertices: 1) a model-based control, and 2)
a nonlinear feedback control, with proof of convergence

• Simulated verification of the control systems
• Implementation of control systems on a physical AUV

to demonstrate hardware implementation plausibility
Our general approach to stochastic tracking consists of two

broad steps. First, fish movements are modeled as transitions
between vertices on a graph, using historical tracks. These
measurements are used to generate a transition model, which
predicts future distributions of fish population density over
the graph. This modeling can occur online in real-time,
or offline before tracking occurs. Section III provides a
mathematical derivation of this graph-based modeling.

Second, a control system distributes AUVs over the graph
in real-time to minimize the difference between AUV and
fish population densities. Section IV describes two possible
control systems: a model-based control, tracking historical
transition probabilities; and a feedback control, which mon-
itors real-time detections and distributes AUVs accordingly.
Section V validates these controls in simulation, and Section
VI discusses preliminary experiments implementing such
systems on physical AUVs.
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Fig. 2: To create a transition model, the area of interest is first discretized to vertices, by gridding (a) or other processes like
k-means clustering (b). Historical data then informs the choice of time-dependent transition probabilities between vertices
(c).

II. BACKGROUND

Patterns of movement of marine animals change with
environmental conditions, species interactions, and social
context. For example, water temperature can affect animals
aggregation locations, and rapid drops in barometric pressure
associated with storm fronts trigger mass migrations from
shallow water to deeper habitats [5], [6]. Investigation of
periodic migratory paths is particularly important in under-
standing both environmental factors and migratory behavior
of marine animals, as periodic changes in environmental
factors drive the movement of several species of marine
animals [7], [8], [9]. Such periodic patterns of movement
can also inform tracking.

Tracking marine animals historically includes tagging in-
dividuals with acoustic transmitters and using a receiver-
array to detect pings from the tags [10], [11]. Active track-
ing of marine movement patterns has traditionally required
mounting a directional hydrophone on a boat and following
tagged animals to acquire geopositions for up to 72 hours
at a time [12]. Advancements in the last few decades have
introduced automated methods of tracking humans and other
objects objects [13], [14], [15], [16]. More recently, methods
of tracking marine animals with robotic visual and acoustic
systems are beginning to develop [17], [18], [19], [20], [21].

Unlike the previous work [22], [23], [24] relating to
autonomous tracking of tagged individuals with AUVs, this
work presents stochastic control systems that utilize either
historical or real-time detections, capable of handling mul-
tiple AUVs and tagged individuals. These control systems
allocate robots according to changing target densities. Similar
work [25], [26], [27] exists on ground-based robots tracking
target distributions, where swarms of robots were deployed
stochastically for specific tasks such as site visits.

III. TRANSITION MODELING

A. Discretization

The tracking problem is simplified by partitioning the
space of possible fish locations into a set V of discrete

vertices. These vertices may be chosen by any process,
such as gridding or k-means clustering. Fig. 2a illustrates
a uniform grid discretization over the motivating data set
while Fig. 2b illustrates a k-means clustered data set with
k=6. To note, the vertices used in this work were stationary,
but this is not a requirement.

Then, for a tracked population of M fish, the vertex
occupied by a particular fish s ∈ {1,2, . . . ,M} at time k is
denoted v f ,s[k] ∈ {1,2, . . . , |V |}. The fish population density
of a particular vertex i ∈V is defined as:

pf,i[k] =
1
M

∣∣{s ∈ {1,2, . . . ,M} | vf,s[k] = i
}∣∣ (1)

Since

∑
i∈V

pf,i[k] = 1 (2)

the vector of fish population densities pf[k]
=
(

pf,1[k] pf,2[k] ... pf,|V |[k]
)T is a stochastic vector.

B. Transition Modeling

Given a set of vertices V , movements of fish are then
modeled as transitions between the vertices, akin to following
the edges of a graph G(V,E) formed by the vertices and a
set of edges E between adjacent vertices.

Since many species of fish show periodic patterns of
movement, analysis of previous fish locations may predict
future distributions of the fish population over the location
graph. These predictions take the form of a transition model,
a |V | × |V | left stochastic transition matrix T f [k], in which
the i, j-th entry indicates the probability of a fish at vertex j
transitioning to vertex i at time k. Hence the dynamics can
be written as:

pf[k+1] = T f [k]pf[k] (3)

A transition matrix can be constructed by choosing tran-
sition probabilities that direct AUVs toward the populated
vertices at each time.



A positive-valued kernel function Kh, such as a Gaussian
curve with smoothing parameter h

Kh(x) = exp
(
− x2

2h2

)
(4)

is added to the transition probability Ti j[k] at each time
any fish is located at vertex i. More formally, if Xi,s =
{k0 | v f ,s[k0] = i} is the set of times at which a fish s is
located at vertex i, then

Ti j[k] =
1

C j

M

∑
s=1

∑
k0∈Xi,s

Kh(k− k0) (5)

where C j is a normalization factor

C j =
|V |

∑
j=1

Ti j[k0] (6)

to enforce that the transition matrix is left stochastic.
The use of a kernel function serves to smooth the tran-

sition probabilities and avoid over-fitting. Sharper kernel
functions will result in a transition matrix whose expected
fish population densities are closer to those of the population
being modeled, at the expense of sharper and less-periodic
transition probabilities.

From some initial population density p f [0], the transition
model makes a prediction for subsequent population densities
by (3). These predictions pmodel can be compared with the
population density p f [k] to be modeled, with discrepancies
between the densities quantified by the error term

ep =

√
1
2
(pfish−pmodel) · (pfish−pmodel) (7)

that ranges from zero (for identical densities) to one (where
all fish in one vector are located at vertex i, all fish in the
other are at vertex j, and i 6= j).

To test this model, the location of one of the kelp bass
mentioned in the introduction was estimated at two-minute
intervals by linear interpolation over a course of ten days,
and it was discretized into six vertices, chosen by k-means
clustering (see Fig. 2 (b)). A transition model was fit to the
resulting sequence of vertices by the above method, with a
Gaussian kernel and smoothing parameter h of 2 minutes.
The population density predictions of this model had an
average error of 0.09 over the entire ten day period.

IV. CONTROL SYSTEMS

Once a transition model has been constructed, a team of N
AUVs can utilize the model to track the population. Similar
to the fish, the AUVs can be distributed across V , and the
location of a particular AUV r ∈ {1,2, . . . ,N} is denoted
vAUV,r. The AUV population density of a particular vertex
i ∈V is

pAUV,i[k] =
1
N
|{r ∈ {1,2, . . . ,N} | vAUV,r[k] = i}| (8)

so that
∑
i∈V

pAUV,i[k] = 1 (9)

Where as the fish use linear dynamics based on the
modeled transition matrix Tf [k], the AUV population density
vector pAUV[k] is updated according to the transition matrix
TAUV [k].

pAUV[k+1] = TAUV [k]pAUV[k] (10)

The goal of the control system, is to construct TAUV [k] at
each time step so as to minimize the difference between each
vertex’s fish population density pf[k] and its AUV population
density pAUV[k]. To accomplish this goal, two approaches
are presented: Model Based Control in which the AUVs
follow the estimated fish transition matrix, and Nonlinear
Feedback Control which attempts to match fish population
density directly.

A. Control Method 1: Model Based Control

In this first method, to leverage periodic behavior of
the fish population, a predetermined number of frequency
components L from the fish transition matrix are used to
construct the AUV transition matrix. That is,

TAUV,i j[k] =
L

∑
x=1

T̂ c
f ,i j[ωx]cos(ωxk)+ T̂ s

f ,i j[ωx]sin(ωxk) (11)

for the coefficeints T̂ c
f ,i j and T̂ s

f ,i j of the Fourier cosine
and sine transforms of Ti j[k], respectively. Generally the
frequencies ωx are chosen as the L frequencies corresponding
to the Fourier coefficients of greatest magnitude.

B. Control System 2: Nonlinear Feedback Control

In tracking population density, the objective is to minimize
the difference between fish population density p f [k] and
robot population density pAUV[k]. A feedback control may
be used to this end. Defining an error vector e[k] = p f [k]−
pAUV[k], and partition V into two sets V+ and V−, where
V+ = {i ∈ V | ei ≥ 0} and V− = {i ∈ V | ei < 0}. Denote
the cardinality of V+ as m and the cardinality of V− as n.
Then, the following transition matrix TAUV [k] is proposed to
incorporate nonlinear feedback control:

TAUV,i j =


1+mk je j[k]/pAUV, j[k] i = j and j ∈V−
1 i = j and j ∈V+

−k je j[k]/pAUV, j[k] i ∈V+ and j ∈V−
0 otherwise

(12)
where

k j = min
{

r
m
,−

pAUV[k], j

me j[k]

}
(13)

for some parameter 0 < r < 1. It can be seen that each entry
of TAUV,i j is nonnegative and that each column sums to 1, so
that TAUV [k] is a left stochastic matrix.



C. Proof of Feedback Control Convergence

At time k+1, the AUV population density error at vertex
i is ei[k+1] = p f ,i[k+1]− pAUV,i[k+1]. In vector notation:

e[k+1] = p f [k+1]−pAUV[k+1] (14)

Assume that p f [k + 1] remains constant relative to the
faster dynamics of pAUV [k+1], which is a valid assumption
considering the AUV velocity relative to the time periods of
the periodic fish migrations of interest. Then substitution of
(10) into (14) yield for positive errors, where i ∈V+:

ei[k+1] = p f ,i[k]−

(
pAUV,i[k]+

n

∑
j

−k je j[k]
pAUV, j[k]

pAUV, j[k]

)

= ei[k]+
n

∑
j∈V−

k je j[k]

(15)

And for negative errors, where i ∈V−:

ei[k+1] = (1−mki)ei[k] (16)

In (16), if ki is selected such that 0< ki < 1/m, then clearly
ei[k]→ 0 as k→ ∞. Hence all negative errors will decay to
0 over time.

To prove that positive errors will also decay, it can be
observed that given a finite number of AUVs, the negative
error must balance the positive error. That is, the excess
number of AUVs at some vertices with negative error must
balance with the deficit number of AUVs at vertices with
positive error:

∑
i∈V+

ei[k] =− ∑
j∈V−

e j[k] (17)

Since it was shown that all negative errors decay to zero,
applying this to (17) yields ∑i∈V+ ei[k]→ 0. Since individual
errors ei[k] are positive, then for the sum to decay to 0, the
individual errors do as well. That is, ei[k]→ 0.

V. SIMULATION RESULTS AND DISCUSSION

To validate the two control systems’ effectiveness for AUV
tracking of fish undergoing periodic motion behaviors, both
the model based control and nonlinear feedback control
strategies were implemented in a MATLAB simulation and
tested against the data set described in Section 1.

A transition model was constructed from one week of
location data of a single kelp bass from the Catalina tracks.
The fish’s behavior during this time was highly periodic, as
shown in Fig. 1b. Using this transition model, 100 fish were
simulated, and a varying number of AUVs were also simulat-
ed. Two sets of simulations were conducted, one where the
AUVs employed the model-based controller, and a second
where they employed the nonlinear feedback controller. To
compare the two control systems, three performance metrics
were calculated for each simulation:

1) Closest AUV Distance The Closest AUV Distance
error tracked the distance from each simulated fish to

the closest AUV, averaged across all of the fish and all
time steps of the simulation.

2) Population Density Error at Destination Vertex
Population Density Error is a measure between 0 and 1
quantifying the difference between the distribution of
simulated fish across the vertices and the distribution
of AUVs. For a fish density pfish and AUV density
pAUV, this error is calculated as

e =

√
1
2
(pfish−pAUV) · (pfish−pAUV) (18)

The Population Density Error at Destination Vertex
assumes that the location nAUV,r of each AUV is its
current destination vertex. E.g., as soon as AUV r
transitions from vertex i to vertex j, this metric defines
nAUV,r = j.

3) Population Density Error at Closest Vertex The
Population Density Error at Closest Vertex is identical
to Population Density Error at Closest Vertex, except
the AUV locations are chosen to be the geometrically
nearest vertex at each time.

A. Model Based Control

To simulate the model based control, a transition model
using a Guassian kernel with a smoothing parameter h of
two minutes was fit to 7 days of tracking data from one kelp
bass in the data set, whose position was linearly interpo-
lated every two minutes. Since the week of historical data
contained 5,040 samples, the resulting transition probability
functions contained 2,520 frequency components. The model
based control was tested using various numbers of these
components, between zero of them for completely random
transitions and all of them to have an identical transition
matrix to the fish, and with varying numbers of AUVs.
A target population of 100 fish following the kelp bass
transition model was used in computing the error metrics.
The fish and AUVs moved with the same speed, a fair
assumption for this species.

Fig. 3a shows the Closest AUV Distance error for each of
the combinations of parameters. As would be expected, when
more AUVs are present, fish are more likely to be close to
an AUV. When 10 or more AUVs are used, i.e., when there
are more AUVs than vertices, even random transitions result
in an error below 13 meters.

Fig. 3b shows the Population Density Error at Destination
Vertex. This error tends to decrease with additional frequency
components and is relatively insensitive to the number of
AUVs when there are more AUVs than vertices. The errors
were overall relatively high, as the model based control
passively relies on transition probabilities to match the AUV
to fish population density.

Finally, Fig. 3c shows the Population Density Error at
Closest Vertex. Larger teams of AUVs and increasing num-
bers of frequency components used drive this error very close
to zero, as the simulated AUVs populations become more
similar to the target simulated fish population in size and
transition model.
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Fig. 3: (a) shows shows the average distance from a fish to the closest AUV when using the periodic control with varying
numbers of AUVs and Fourier components. (b) plots the average population density error metric from (18), where AUV
vertex locations are taken to be their current destination; while (c) shows the same error but with AUV vertex locations taken
to be the geometrically closest vertex at each time. Plots (d), (e), and (f) show the same error metrics using the feedback
control with a gain parameter of r = 0.99 for varying numbers of AUVs and fractions of the population whose locations are
known to the controller.

B. Feedback Control

To simulate the feedback control, the same simulated
population of 100 fish following the kelp bass transition
model was tracked by AUVs distributed by the feedback
control with a gain parameter of r = 0.99 over seven days.
Again, AUV teams of various sizes were tested. Additionally,
the controller was only made aware of a certain subset of the
target population, so that the target AUV population density
used by the feedback control to calculate the AUV transition
matrix at each time depended on these “tagged” fish. Varying
numbers of these “tagged” fish were also tested, between one
fish and every fish in the target population. Again, the AUVs
and fish moved with the same speed.

Fig. 3d shows the Closest AUV Distance error for these
parameters. Since the simulated fish population in these tests
follows the transition model of a single fish, the distribution
of fish is unimodal; as such, a single tagged fish is usually
sufficient to bring the AUVs near most of target population.

Fig. 3e and Fig. 3f show the Population Density Error at
Destination Vertex for the feedback control. In both of these
plots, error decreased as larger AUV teams allowed the AUV
population density to converge on the fish population density
to a finer grain. Due to the unimodal distribution of the fish,
error depended very little on the number of tagged fish in
the population.

These plots show a difference between the performance
of the feedback control and the model based control: the
model based control had a lower closest-vertex error, while
the feedback control had a lower destination vertex error.
Due to the feedback control’s active monitoring of the
target population density, the feedback control will always
direct transitioning AUVs to destination vertices with high
fish population densities. But slow AUVs are unable to
keep up with rapidly-changing fish densities when they take
a long time to transition between vertices, resulting in a
higher closest-vertex error. The feedback control in particular
benefits from AUVs that are faster than the fish, while the
model based control tolerates slower AUV speeds closer to
that of the fish.

VI. FIELD TEST RESULTS AND DISCUSSION

In validating the periodic models and stochastic controller-
s, the system was implemented on an OceanServer Iver2
AUV, (see Fig. 4d). Its actuators include a motor driven
propeller and 4 fins to steer. The vehicle has a maximum
depth rating of 100m and maximum speed of 4.0 knots.
To detect tagged fish, the Lotek hydrophone system is
installed on the vehicle. A WHOI Micro-Modem is used for
inter-AUV communication. The field trials presented were
performed during June, 2015 and December 2015 at Big
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Fig. 4: Results of trial runs shown in (a), (b) and (c). In (a), the six vertex locations are randomly selected. The AUV runs at
the surface of the water. In (b), the six vertices are calculated based on the historical fish data. The AUV runs at 0 - 4 meter
depth in water. The trial shown in (c) uses the model from historical data set. (d) shows a picture of OceanServer Iver2
AUV that is used for experiments presented in the paper. (e) shows the recorded robot position in relation to the expected
transition probabilities for the trial in (c).

Fishermans Cove, Santa Catalina island, California.

A. Preliminary System Verification

The results from a system verification trial is shown
in Fig. 4a, where the goal was to establish that a real
AUV could use a given transition matrix to make stochastic
decisions about which vertex to navigate towards, and then
autonomously drive to that vertex. The transition matrix was
randomly generated for a six vertex graph. The AUV was
programmed to transition to a new vertex once it reached
within a threshold distance τ of vertex i based on Eq. (19).
The experiment lasted for 30 minutes. The AUV successfully
transitioned between vertices many times throughout the
experiment, demonstrating the ability for the AUV to follow
a given transition matrix.

|XAUV −Xnodei |< τ (19)

B. Tracking Historical Fish Detections

For final verification of the system, the transition models
and stochastic controller were implemented on the AUV. This
included using vertex locations that represented locations
from the historical fish detection, as well as a transition
model constructed using the method detailed in Section III.
To verify the transitions match those of the historical fish
data set, two kinds of trials were performed.

First, a two vertex representation of the data set was used
as shown in Fig. 4c. This trial shows that the AUV is able
to follow the correct transition behavior of the tagged fish
during a 24-hour period back and forth between the north and
south locations. Since it was infeasible to run a week-long
experiment, the experiment was accelerated to fit within a 40-
minute window. Unfortunately, accounting for this speedup
factor, the AUV moved at a speed a factor of ten slower
than that of the fish that generated the historical data set.
Consequently, the resulting AUV density did not match well
with the target AUV density. Future work should allow more
time for experiments to limit the effect of this problem.

The second set of trials were performed using the six
vertex representation of the data set, and tests similar to
the two-vertex case were performed. The results from Fig.
4c demonstrate the feasibility of implementing the periodic
model and stochastic controller onto a physical system, as
the data shows the AUV correctly follows the transition
probabilities defined by the models.

VII. CONCLUSIONS AND FUTURE WORK

One graph-based periodic model and two stochastic AUV
controllers are presented in the paper. The model based
controllers allow a multi-AUV system to track migratory
paths of tagged fish groups using data of historical detections.
In validation of the controllers, results of simulated and



physical experiments are presented. It is shown that a single
AUV system is capable of tracking the transition probabilities
of the historical detections based on the models developed
in this paper. This work makes several contributions to
future fish tracking and interpreting patterns of marine animal
movement, including: 1) allowing AUVs to predict where to
search for a tagged fish after losing detections, 2) making
inferences and predictions of schooling species based on
individual historical data, 3), maximizing information gain
during monitoring and tracking schools of marine animals,
and 4) allowing future development of a multi-AUV system
to simultaneous tracking and exploring of a marine environ-
ment.
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