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ABSTRACT
This paper presents a method for modeling and then track-
ing the 2D planar size, location, orientation, and number of
individuals of an animal aggregation using Autonomous Un-
derwater Vehicles (AUVs). It is assumed that the AUVs are
equipped with sensors that can measure the position states
of a subset of individuals from within the aggregation being
tracked. A new aggregation model based on provably sta-
ble Markov Process Matrices is shown as a viable model for
representing aggregations. Then, a multi-stage state estima-
tion architecture based on Particle Filters is presented that
can estimate the time-varying model parameters in real-time
using sensor measurements obtained by AUVs. To validate
the approach, a historical data set is used consisting of >100
shark trajectories from a leopard shark aggregation observed
in the La Jolla, CA coast area. The method is generalizable
to any stable group movement model constructed using a
Markov Matrix. Simulation results show that, when at least
40% of sharks are tagged, the estimated number of sharks
in the aggregation has an error of 6%. This error increased
to 27% when the system was tested with real data.

CCS Concepts
•Computing methodologies → Multi-agent systems;
Intelligent agents; Cooperation and coordination; Mobile
agents;
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Studying the spatial interactions of individuals within an
animal aggregation provides insight to the group level dy-
namics. Work done by various research teams has recently
shown that multiple AUVs can cooperatively and auto-
nomously track and follow a marine target tagged with an
acoustic transmitter [1, 2]. However, these works focus on
fine-scale localization and characterization of the movements
of only the individuals within a group that are tagged (i.e.
those that can be observed). In contrast, the goal of many
marine biologists is to determine the movement behaviors
and the nature of association for a population of aggregat-
ing individuals while in a particular habitat (i.e. Fig. 1).
Understanding these motion behaviors, including the move-
ment pattern of the entire aggregation as well as the indi-
viduals that form the aggregation, is essential for monitoring
and protecting marine habitats and associated resources.

This work aims to provide a new tool for tracking whole
aggregations of animals, despite only having access to ob-
servations of a subset of individuals within the aggregation.
Specifically, the contributions of this work include:
• A new animal aggregation model based on provably

stable Markov Process Matrices, that can be con-
structed from real animal position data or artificial
potential field simulations.
• A multi-stage state estimation architecture based on

Particle Filters that estimates aggregation model pa-
rameters including size, position, orientation, and
number of individuals in the aggregation using sensor
measurements obtained by AUVs.
• Validation of the model and filter using an aerial video

data set of a leopard shark aggregation.

2. BACKGROUND
Many marine species exhibit aggregation behavior that

form from either social interactions and/or result from con-
straining or preferred environmental conditions. This be-
havior results in group-level motion behaviors. For example,
a highly polarized shoal results in schooling behavior that
protects individuals within the group from predators as well
as enhancing foraging abilities [3]. Understanding individual
movements within an aggregation can lead to deeper insights
into the social behavior of the species and how individuals
respond to changing environmental conditions.



Movement patterns of a wide variety of marine animals
have been extensively studied to produce mathematical
models that describe an aggregation’s group dynamic [4, 5,
6, 7, 8, 9]. Theoretical work has been done to model the col-
lective behavior within a fish school. Many of such models
are based on the physics-inspired model where individuals
of an aggregation interact through attraction, repulsion and
alignment [4, 5, 6, 7]. The movement patterns of leopard
sharks in response to changing water temperature has been
extensively studied [10, 11]. Observations have shown that
sharks prefer the warmest areas of an environment and move
to warmer locations over the course of the day [10]. Track-
ing fish aggregations has been done more often in captivity
and on individuals that are small in size [12, 13, 14]. Most
often, image processing techniques coupled with filtering al-
gorithms have been used to automatically detect and track
fish schools from video data. For example, in [15], image
processing is first used to identify possible fish heads, then
filtering and feature matching are used to track the fish. Fi-
nally the feature information is processed through trajectory
linking. To better approximate the uncertainty of fish mo-
tions and improve position estimate, Particle Filters (PF)
were introduced to use a hybrid motion model [16].

Within the context of tracking individual large marine an-
imals in natural habitats, conventional methods include tag-
ging the individuals with acoustic transmitters (tags). Un-
like small species that can be easily tracked and their move-
ments characterized in a lab, larger and more mobile species
require acoustic tracking to quantify their movements. The
acoustic transmissions from these tags are detected by an ar-
ray of hydrophones, and the difference in time-of-arrival of
the transmission between hydrophones in the array is used
to estimate the position of the individual [17, 18]. Alter-
natively, active tracking of a marine target can be done by
mounting hydrophones on a boat and following it with a
boat to get position estimates [19]. With the advancement
of technology, tracking a marine animal can be automated
by using AUVs [20, 21, 22]. A multiple AUV system can be
used to track and follow a marine target autonomously [1,
2]. However, the work has been limited to tracking a single
marine target, not entire aggregations. In addition, a single
AUV has demonstrated the capability of tracking six sharks
simultaneously for a continuous 1-3 hours [23]. However, the
AUV was not able to estimate the relative positions of other
sharks within the aggregation.

Unlike the works cited above, this research uses a tran-
sition matrix generated from a stochastic movement model
to indicate the likelihood an individual will be a certain dis-
tance from the aggregation, and leverages the resulting prob-
ability density function to estimate the number of sharks in
an aggregation. The work also generalizes to any movement
model that can generate a stable transition matrix.

3. MOTIVATING DATA SET
A historical data H was acquired by applying an im-

age processing algorithm to video footage of aggregations
of sharks filmed by a GoPro attached to a 30m high helium
balloon. The video frames include approximately 200 sharks
in a 20 by 30 meter surface area. The video consists of two
17 minute video clips and was acquired on June 5th 2014.

The image processing algorithm employs two steps to ex-
tract shark trajectories from the video image frames. The
first step applies a threshold filter to produce sharp con-

(a)

(b)

(c)

(d)

Figure 1: Cropped aerial image of a leopard shark
aggregation with 112 sharks(a). A threshold filter is
applied to the video and the position of each shark
is indicated by a red line, (b). In (c), the x and y
coordinates of each shark are plotted. The attrac-
tion line is indicated by the red line. Aggregation
model parameters are shown in (d).

trast images with (black) sharks on a (white) background,
as shown in Fig. 1(b). Standard blob tracking is applied
to the threshold images to construct shark trajectories, by
using the Matlab Computer Vision System Toolbox.

The algorithm’s second step uses a Kalman Filter (KF)
for tracking each individual shark in the aggregation. In this
case, the KF outputs the 2D position, orientation, and ve-
locity of each shark. The KF follows a standard prediction
step/correction step structure. Specifically, for each video
image frame, shark states are predicted using previous ve-
locity and orientation estimates. Shark position states are
corrected using blob centroid positions, and shark orienta-



tions are corrected using the blob major axis orientations.
The algorithm also uses the blob size, which corresponds to
the number of pixels covered by a shark, to determine if the
blob includes observations of multiple sharks. An example
output of this step is illustrated by red lines in Fig. 1(c).

Lastly, a polynomial regression calibration algorithm is
applied to the shark trajectories to convert a shark’s location
and velocity from pixel to meters, and correct the space
distortion from the fish eye camera lens.

4. PROBLEM DEFINITION
The goal of this project is to estimate the 2D planar size,

location, orientation, and number of individuals of an ani-
mal aggregation using robots equipped with sensors that can
measure the position states of a subset of individuals within
the aggregation. For this particular problem, as shown in
Fig. 1(d), we represent the aggregation with a line of attrac-
tion (red line in Fig. 1) with position end points x1, y1, x2,
y2 where there is a favorable temperature zone [11], length
L, and number of animals n. The state of the attraction
line end points at time t is denoted by Xline

t . The state
of the aggregation number of individuals and line length at
time t is denoted by Xagg

t . The paper introduces a pair of
coordinate axes based on the attraction line, with ρ as the
distance from the line and ψ as the distance along the line
from the line’s center.

Given: A set H of historical data sets, each consisting of
xy position data of individuals within aggregations, as well
real-time position measurements Zt of m tagged individuals
within the aggregation of n individuals being tracked:

Zt = {Zi,t|i ∈ (1,m), t ∈ (1, T )}

Determine: The time-varying attraction line and aggrega-
tion states:

Xline,t = {[x1, y1, x2, y2]t|t ∈ (1, T )}
Xagg,t = {[n,L]t|t ∈ (1, T )}

5. PROPOSED METHOD
The proposed system is summarized in the block diagram

shown in Fig. 2. The historical data set H is first processed
to determine the parameters of a stable multi-agent swarm
model. In this paper, we use a swarm model based on Arti-
ficial Potential Fields (APFs), where the model parameters
are attractive and repulsive gains (Katt, Krep, Khab).

The swarm model parameters are used in Transition Ma-
trix Modeling to run a large number of simulations in which
aggregation parameters (e.g. n, L) are varied. From these
simulations, Markov Matrix model parameters ρ90 and ψ90

are determined, which correspond respectively to the dis-
tance from the line, and the distance from the center along
the line within which 90% of individuals in the aggregation
are found. These parameters are essential for the Particle
Filter (PF) correction step of the aggregation state estima-
tion. Details are provided in subsequent sections.

During real time aggregation tracking with an AUV, new
measurements Zi,t of i = 1..m tagged individuals are used
by Individual Particle Filters to estimate the state of each
tagged individual Xi,t at time t. The estimated position
states of the tagged individuals Xi,t are used to estimate
the attraction line state Xline,t using the Attraction Line
Particle Filter, where Xline,t = [x1, y1, x2, y2]t.

Figure 2: Overall system block diagram.

The estimated position states of the tagged individuals
Xi,t and the estimated line state Xline,t are used to esti-
mate the aggregation state Xagg,t at time t using the Ag-
gregation Particle Filter. In this case, the aggregation state
is defined by the swarm model’s line segment of attraction,
where Xagg,t = [n,L]t. In particular, states Xi,t are used in
the aggregation particle filter to update the measured val-
ues of ρ90 and ψ90 for comparison with each aggregation
particle’s expected ρ90 and ψ90.

6. OFFLINE MODELING
The goal of the offline modeling is to generate discrete

time transition matrices, or Markov matrices, that model
an individual’s movement with respect a line of attraction.
Specifically, the model includes two types of transition ma-
trices, one that represents the likelihood an individual will
increase or decrease its ρ value, and a second transition ma-
trix that represents the likelihood an individual will increase
or decrease its ψ value. Once the transition matrices are
known, and they are shown to be stable, their steady state
values can be used within the online state estimation de-
scribed later to estimate aggregation parameters n and L.

In the model proposed here, movements of each shark are
modeled as transitions between the discretized values of ρ
and ψ. Fig. 3 illustrates the line of attraction (red line) and
the discretized ρ and ψ values in (a) and (b) respectively.
For example, In Fig. 3(a), the transition from ρ2 to ρ1 is
indicated by the lowest curved arrow, and the likelihood of
the shark making this transition is Tρ(2, 1).

We define pρ,t = [pρ,−s ...pρ,−1 pρ,1 pρ,2 ... pρ,s]t to be a
s x 1 vector in which pρi is the likelihood at time t that the
shark is at discretized distance ρi with respect to the line of
attraction. The linear transition matrix Tρ encodes the like-
lihood of transitions between discrete ρ values. That is the
i, jth element of Tρ is the likelihood of a shark transitioning
from ρi to ρj at time step t.

pρ,t = Tρpρ,t−1

= (Tρ)
tpρ,0

(1)

Vector pψ,t and matrix Tψ can similarly be defined. No-
tably, the transition Matrices Tρ and Tψ are dependent on
the number of sharks n in the aggregation and the line of
attraction length L.

If the system described by Equation 1 is stable, then pρ,t
converges to a steady state probability vector pρ,∞.

pρ,∞ = Tρpρ,∞ (2)

For the system to be stable, the transition matrices obtained
must be Markov Matrices which have a maximum absolute



eigenvalue of 1. By the Perron-Frobenius theorem [24], the
eigenvector pρ,∞ corresponding to the eigenvalue of 1 is the
stable equilibrium distribution of the Markov matrix. As the
eigenvalue of 1 will be dominant, the probability distribution
will converge to the steady state probability pρ,∞ regardless
of the initial distribution.

6.1 Transition Model Generating
Two methods are presented for generating transition mod-

els. One method generates the transition matrices Tρ and
Tψ directly from historical data set shark trajectories. To
be specific, each shark trajectory of the motivating data set
is used. For each time step of each trajectory, the shark’s
transition from its current discretized ρi,t to its next ρj,t+1

is recorded. The transition likelihood for each entry in the
transition matrix is then calculated as in Eq. 3, where δs,i,j,t
equals 1 if shark s transitioned from ρi to ρj at time t, and
equals 0 otherwise.

Tρ(i, j) =

∑
s

∑
t δs,i,j,t∑

s

∑
k

∑
t δs,i,k,t

(3)

A second method for generating transition matrices can be
used when a historical data set is not available, but a well
known swarm model for the animals of interest exists. In this
later case, the transition matrices can be generated from the
shark trajectories outputted from swarm model simulations.
In this paper, we use an Artifical Potential Field (APF) [4]
swarm model to produce shark trajectories.

In the APF model, simulated sharks move in response to
forces created by both attractive artificial potentials as well
as repulsive potentials. In this case sharks are attracted to
both the line of attraction as well as other sharks. Once
the sharks are too close to each other, they feel a repulsive
force from each other. This model is shown in Fig. 3(c),
which illustrates the behavioral zones at which attraction
and repulsion occurs [4]. In the model, each shark updates

its direction vector ~di,t based on Equation 4, where ~ri,j rep-
resents the vector from individual j to individual i.

~di,t =

n∑
j=1

fij
~r t−1
i,j

||~r t−1
i,j ||

+Khab

~r t−1
i,line

||~r t−1
i,line||

(4)

where

fij =


−Krep 0 ≤ ||~r t−1

i,j || ≤ rrep
0 rrep ≤ ||~r t−1

i,j || ≤ rneu
Katt rneu ≤ ||~r t−1

i,j || ≤ ratt
0 ratt ≤ ||~r t−1

i,j || <∞

Eq. 4 is used to update the position of sharks at each
time step t of a simulation. After a simulation has run for
100,000+ iterations, the shark trajectories created during
the simulation can be processed with Eq. 3 to generate
transition matrices Tρ and Tψ.

Regardless of the method used to generate transition ma-
trices, there are two criteria that Tρ and Tψ must satisfy.
First, the transition matrices must be stable in that their
maximum eigenvalue is 1. Second, the eigenvector pρ,∞ as-
sociated with the eigenvalue of 1 represents the likelihood of
a real shark in the aggregation being found at distances ρ
and ψ.

To validate that our transition matrix modeling from the
motivating data set meets both criteria, we first observe that

(a)

(b)

(c)

Figure 3: The shark movement space is discretized
into bins of distances from the attraction line, as
shown in (a). The shark movement space is dis-
cretized into bins of distances from the center along
the line, as shown in (b). The two figures show the
three possible transitions a shark originally at state
2 can make. In (c), A graphical representation of
the artificial potential field model.

the maximum eigenvalues of both Tρ and Tψ are 1.0 and 1.0
respectively. In both cases the maximum eigenvalues are 1.0,
which is expected given they are Markov matrices. Second,
running lengthy (i.e. 100,000 time steps) simulations by
randomly initializing shark positions and using Eq. 1 can
generate a histogram of shark ρ and ψ values that match
the original distribution as shown in Fig. 4.

6.2 Parameter Modeling
The transition matrices generated, and the associated

steady state (eigen)vectors pρ,∞ and pψ,∞ will be used dur-
ing the the on-line state estimation of aggregation parame-
ters. Notably, the transition matrices and eigenvectors are
functions of both the number of sharks n as well as the
length of the line of attraction L. For example, the more
sharks in the aggregation, the greater the maximum value



(a)

(b)

Figure 4: The histograms from model and actual are
compared, in (a), for ρ and, in (b), for ψ.

of ρ that has non-negligible likelihood of containing sharks
in the aggregation. With this in mind, we define ρ90(n,L)
and ψ90(n,L) to be values of ρ and ψ that are expected to
bound 90% of the steady state distributions pρ,∞ and pψ,∞.
Fig. 4 illustrates these values for the motivating data set.

Given the shark trajectories from a large historical data
set or swarm model simulations, one can calculate the tran-
sition matrices, associated eigenvectors, and hence ρ90 and
ψ90 for different values of n and L. Fig. 5(a) and Fig. 5(b)
show the models of ρ90(n,L) and ψ90(n,L) as determined
by Transition Matrix Modeling. Hence, for a given n and L,
there is an expected ρ90 and ψ90. During on-line state esti-
mation, this will be used in the Particle Filter to estimate
candidate values of n and L by comparing their expected
values of ρ90 and ψ90 with those measured in real time.

7. ONLINE STATE ESTIMATION
The hierarchical state estimator is based on Particle Fil-

tering, which estimates the aggregation state in three stages
as shown in Fig. 2. In the first stage, sensor measurements
of the tagged individuals from the AUVs are used to esti-
mate shark positions Xt with Individual Particle Filters. In
the second stage, the position estimates Xi,t of each tagged
individual i are used to estimate the attraction line orien-
tation and position Xline,t by the Attraction Line Particle
Filter. In the final stage, the position estimates Xi,t and es-
timated attraction line Xline,t are used by the Aggregation
Particle Filter to estimate the aggregation state Xagg,t.

7.1 Individual Particle Filters
The state of each tagged individual is estimated with an

Individual State Estimator that fuses measurements from
sensors mounted on the AUVs. This leverages work done
by previous researchers where a distributed PF was used to
fuse measurements from AUV mounted hydrophones to esti-
mate shark position[2]. Position estimates errors from their
trials were documented to be on the order of 5m. Our work
assumes AUVs will be available that have similar sensors.

7.2 Attraction Line Particle Filter

Algorithm 1 Attraction Line Particle Filter

1: for p ∈ Pline,t do
2: // Propagate
3: Xp

line,t ← Xp
line,t−1 + NormalDist(0, σ)

4: // Prediction
5: Zline,t ←

∑m
i=1 Dist To Line(Xi,t, X

p
line,t)

6: wpline,t ← exp(−Z2
line,t/σ

2
line)

7: end for
8: // Correction
9: for 1 : |Pline,t| do

10: draw p ∈ Pline,twith probability ∝ wpline,t
11: add p to Pline,t+1

12: end for

The Attraction Line PF represents the belief state of the
aggregation at time t with a set of particles denoted by
Pline,t. Each particle p ∈ Pline,t is represented by the set
Xp
line,t, w

p
line,t, where Xp

line,t is the particle’s estimate of the

attraction line state and wpline,t is its associated weight.
The attraction line state estimator uses the estimated

shark positions in Xi,t to calculate the line state Xline,t.
Each p ∈ Pline,t is initialized with xy coordinates of line
end points sampled randomly from uniform distributions.
The algorithm for the attraction line particle filter is shown
in Alg. 1. The relevant weight function and propagation
parameters are found in Table 1.

At each time step t, the Particle Filter measures the total
line error (Alg. 1, Lines 4-7). The attraction line particle
weights wpline,t are calculated as the conditional probability
of obtaining shark states Xi,t, assuming the particle’s line
of attraction end points are correct. This conditional proba-
bility is a Gaussian function with measurement mean 0 and
standard deviation σline, shown in Table 1.

7.3 Aggregation Particle Filter
The Aggregation Particle Filter represents the belief state

of the aggregation at time t with a set of particles denoted
by Pagg,t. Each particle p ∈ Pagg,t is represented by the
set Xp

agg,t, w
p
agg,t, where Xp

agg,t is the particle’s estimate of
the aggregation state at time t and wpagg,t is its associated
weight. Xp

agg,t contains npt and Lpt , which represents the
particle’s estimate of number of sharks and attraction line
length respectively.

The aggregation state estimator takes in position esti-
mates of the tagged sharks Xi,t to estimate the aggregation
state Xagg,t. Each p ∈ Pagg,t is initialized with a number of
sharks and an attraction line length that are sampled ran-
domly from uniform distributions. The algorithm for the
aggregation state estimator is shown in Alg. 2. The rele-
vant weight function and propagation parameters are found
in Table 1.

Alg. 2 shows that at each time step t, the state estimator
iteratively updates the particle set Pagg,t. In one time step,
say t, the set of particles in Pagg,t are propagated randomly
with a normal distribution (Alg. 2 Line 4-5).

Each particle’s weight wpagg,t is determined using a mov-
ing window (of size τ) of accumulated tagged shark mea-
surements taken from time t − τ to time t. Using this ac-
cumulated data, histograms of measured ρ and ψ values are
constructed from which the measured values of ρ90 and ψ90

are extracted as Zρ,t and Zψ,t. These are compared with the
expected values of ρ90(npt , L

p
t ) and ψ90(npt , L

p
t ) for each par-



Figure 5: Comparison of p∞ and Histogram of (a) sharks’ distance away from line (b) sharks’ distance along
the line from the center for n = 100 and L = 40. (c) ρ90(n,L) and (d) ψ90(n,L) from Transition Matrix Modeling.

Algorithm 2 Aggregation Particle Filter

1: // Prediction
2: for p ∈ Pagg,t do
3: // Propagation
4: npt ← npt−1 + NormalDist(0, σn)
5: Lpt ← Lpt−1 + NormalDist(0, σL)
6: Dp

ρ ← ρ90(npt , L
p
t )− Zρ,t

7: Dp
ψ ← ψ90(npt , L

p
t )− Zψ,t

8: wpagg,t ← exp(−(Dp
ρ)2/σ2

ρ − (Dp
ψ)2/σ2

ψ)
9: end for

10: // Correction
11: for 1 : Pagg,t do
12: draw p ∈ Pagg,twith probability ∝ wpagg,t
13: add p to Pagg,t+1

14: end for

ticle, which are obtained from the transition models. The
difference between the measured and expected values Dρ,t
and Dψ,t are passed through a Gaussian function to obtain
the particle weight. New particles wpagg,t+1 are resampled
using the particle weights wpagg,t.

8. RESULTS AND DISCUSSION
The state estimation process is validated using both sim-

ulated and actual aggregation shark trajectories. The simu-
lated aggregation trajectories were generated using the APF
model. The actual aggregation trajectories were extracted
from the motivating video data set of n = 112 sharks with
a L = 30m attraction line described in Section 3. For both
cases, the moving window parameter τ is the length of the
data set. The aggregation state estimation is not real-time
in either case, but the later case demonstrates how the the
system will perform with actual shark aggregation data. The
state estimation ran on a Windows computer with a Intel
Core i5-3570K processor @ 3.40 GHz and 7.89GB RAM. The

state estimation (50 particles for attraction line PF and ag-
gregation PF) took 0.455 seconds per algorithm iteration,
each of which processed observations of 100 tagged sharks.

8.1 Simulation Data Results
Simulations of aggregations with 100 sharks (n = 100) and

a line of attraction length L = 40m were conducted. During
simulations, the sharks followed the APF model using the
gain values shown in Table 1. Results from the simulation
are shown in Fig. 6 and summarized in Table 1. To note,
the line error at time t is calculated by:

εlinet =

∑∞
n=1

√
||~ri,lineest || − ||~ri,lineact ||

2

n
(5)

The RMS state estimation errors are found in Table 2. As
shown in Fig. 6, when at least 40% of sharks are tagged,
the attraction line, the number of sharks and attraction line
length are estimated well. To be specific, the line position
estimation errors are consistently less than the threshold of
0.1m/shark. The root mean squared (RMS) error of esti-
mated number of sharks is within 11% of the actual number
of sharks. RMS errors in state estimation are higher when
10% of sharks are tagged. Although not included in the fig-
ure, the RMS error of estimated segment length stayed con-
sistently within 12% of the actual segment length at steady
state. When 10% of sharks are tagged, the line error ex-
ceeds the threshold of 0.1m/shark. It should be noted that
the Aggregation Particle Filter requires accurate estimates
of Xi,t and Xline,t, therefore an above-threshold line error
results in a higher mean error in n and L.

8.2 Experiment Data Results
The motivating video data set consisting of n = 112 sharks

and L = 30m attraction line was also used to validate the
state estimation process. Out of the 112 shark trajectories,
the image processing algorithm was able to extract 92 tra-
jectories. The position estimates Xt from these trajectories



Table 1: Particle Filter Parameters and APF Constants
Parameter σ(m) σL(m) σn σline(m) σρ(m) σψ(m) pcrit(%) Katt Krep Khab rrep(m) rneutral(m) ratt(m)
Value 5 10 10 20 1 1 90 1 57.5 205 2 5 10

(a)

(b)

(c)

Figure 6: Simulation results with n = 100 and L =
40 for m = 10, 40, 70, 100. (a) shows line error, (b)
shows estimated number of shark n, and (c) shows
estimated attraction line length L.

were then processed using Algs. 1 and 2 to obtain estimates
of n and L over time. For the purpose of these experiments,
a random set of shark trajectories were said to be tagged.
For example, to generate state estimation results for a case
when only 10% of the sharks are tagged, a random set of
10% of the trajectories extracted from the video data set
are used in conjunction with the algorithms.

The results are shown in Fig. 7 and the RMS state esti-
mation errors are found in Table 3. The results show that,
when 80% of sharks are tagged, the system is able to es-
timate the line, number of sharks n and attraction line L.
The line position estimation errors are consistently less than
the threshold of 0.1m/shark. The RMS error of estimated

Table 2: RMS error of simulation results
εm (out of 100 Sharks) εline(m/shark) εn εL(m)
100 0.03 6.48 4.17
70 0.03 10.37 4.81
40 0.03 6.07 4.03
10 0.09 23.87 6.52

(a)

(b)

(c)

Figure 7: Experimental results for shark aggrega-
tion video data with n = 112 and L = 30m for
m = 10, 40, 70, 92. (a) shows line error, (b) shows esti-
mated number of shark n, and (c) shows estimated
attraction line length L.

segment length is within 24% of the actual segment length
at steady state. The estimated number of sharks is within
6% of the actual number of sharks. RMS errors in state esti-
mation are higher when less than 80% of sharks are tagged.

9. CONCLUSIONS AND FUTURE WORK
The paper presents a method to track the position, orien-

tation, and size of 2D animal aggregations. A model based
on Markov Matrices built from historical data is presented
as a viable model for representing aggregations. A hierar-
chical state estimator based on Particle Filtering is used to
estimate the time-varying model parameters in real-time.
The proposed method has been tested against simulation
and has shown to estimate model parameters very well. In
the motivating data set presented, sharks aggregate around
a line of attraction. However, in another location where
there is no constraining coastline, environment may include
a point of attraction. For such cases, a similar approach
can be used with a different model parameters. The ability
to track an animal aggregation allows insight into the so-



Table 3: RMS error of experimental results
εm (out of 112 Sharks) εline(m/shark) εn εL(m)
92 0.03 6.63 7.16
70 0.04 17.49 6.32
40 0.05 27.01 6.42
10 0.11 25.46 6.50

cial behaviors and environmental dependence of the tagged
fish. Long term changes to the population (ex. migration
patterns, size changes) can be observed from a subset of in-
dividuals in the aggregation. The same process can be used
for other stochastic group dynamics models (ex. Density-
based model) to estimate aggregation parameters. Future
work for this project includes extending the process to track
different animal aggregations, including barred sandbass, gi-
ant seabass and stingrays. Finally, we hope to deploy AUVs
to conduct real-time, in situ tracking.
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